第4章微机继电保护软件原理
- 格式:pps
- 大小:267.51 KB
- 文档页数:33
第四章 输电线路保护程序逻辑原理在微机保护故障处理程序中,最主要的部分是保护逻辑程序。
各种不同的保护因功能和原理不相同,它们的逻辑程序也不同。
第一节 中低压线路保护程序逻辑原理一、方向元件软件原理三段方向电流保护的方向元件,可以由软压板选择正方向、反方向动作方式。
现以正方向来说明方向元件原理。
为了保证在各种相间短路故障时,方向元件能可靠而灵敏动作,微机保护的方向元件的“接线方式”仍然采用900接线方式。
例如A 相方向元件(称DA 元件)电流量rI 取a I ,电压量r U 取bc U ,电流量与电压量的相位差为r ϕ。
为了使方向元件具有最大灵敏度,类似模拟电路型方向保护,引入转移相量αj e K- ,α角为方向元件内角,并把αj e I - 称为A 相量,bcU 称为B 相量,则绝对值比较方向元件的正方向动作方程式为B A+≥B A - (4-1)当a I 落在最大灵敏线M 方向时,I K 相量落在bc U 方向附近,B A +具有最大值,B A-具有最小值,方向元件处于最灵敏状态。
相量图如图4-1所示。
由相量图4-1分析可见,若以r U 为基准相量,如要使式(4-1)表示的保护正方向元件临界动作,则A和B 相量相位差角αϕ-r 应为 90±,当满足下式关系时保护动作9090-≥-≥αϕr )90(90αϕα--≥≥+ r (4-2)即rI 落在图中动作区域内时,方向元件动作。
如果方向元件内角取 30,而35kV 线路阻抗角 60=L ϕ,显然上述方向元件在3090==-=αϕϕL r 时,相量A和B 方向相同,保护具有最大的灵敏度。
由于微机保护可利用软件十分方便地完成移相和相位比较,因此在微机保护中采用相位比较式方向元件要比绝对值比较方式简单得多。
在微机保护中相位比较式方向元件,就是利用采样计算结果,比较方向元件电流相量r I 和电压相量rU 的相位角,检查其相位差角是否在正方向的取值范围内。
前言电系统的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。
但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。
继电保护(包括安全自动装置)是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。
许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。
因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。
因此,继电保护技术得天独厚,在几十年的时间里完成了发展的4个历史阶段。
(1)机电式继电保护阶段。
(2)晶体管式继电保护阶段。
(3)集成电路式继电保护阶段。
(4)计算机式继电保护阶段。
随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。
可以说从20 世纪90 年代开始我国继电保护技术已进入了微机保护的时代。
本次课程设计主要任务是通过对某简单电网进行继电保护系统设计,掌握继电保护的配置方法、基本原理和整定计算的基本方法,深化对线路、变压器、母线等元件的继电保护基本原理和装置结构的理解,掌握各种元件的保护配置和故障后的动作特性,掌握微机保护中各种保护的整定方法、接线方法。
掌握判定微机继电保护装置正确动作的方法。
第一章继电保护的配置按照《继电保护和安全自动装置技术规程》(GB14285-93)及《电力装置的继电保护和安全自动装置设计规范》(GB50062-92)的要求,35kV及以上中性点非直接接地电力网的线路,对相间短路和单相接地,应按本节的规定装设相应的保护。
保护装置采用远后备方式。
对单侧电源线路,可装设一段或两段式电流速断保护和过电流保护。
对单相接地故障,应在发电厂和变电站母线上,装设单相接地监视装置,监视装置反映零序电压,动作于信号。
近三十年来,计算机技术发展很快,计算机的应用已广泛而深入的影响着科学技术、生产、和生活的各个领域。
它给各部门的面貌带来了巨大的并且往往是质的变化。
计算机技术同样影响到继电保护技术的发展。
传统的继电保护基本上已被新型的微机保护所替换。
下面简单介绍一下微机保护。
一、微机保护装置的构成微机保护与传统继电保护的最大区别就在于前者不仅有实现继电保护功能的硬件电路,而且还必须有保护和管理功能的软件———程序;而后者则只有硬件电路。
微机保护装置的硬件构成可分为四部分:数据采集、微型计算机模块、开出开入、人机接口、其它(通讯,电源等)。
(一)数据采集传统保护是把电压互感器(TV)二次侧电压信号及电流互感器(TA)二次电流信号直接引入继电保护装置,或者把二次电压、电流经过变换(信号幅值变化或相位变化)组合后再引入继电保护装置。
因此,无论是电磁型、感应型继电器还是整流型、晶体管型继电保护装置都属于反应模拟信号的保护。
尽管在集成电路保护装置中采用数字逻辑电路,但从保护装置测量元件原理来看,它仍属于反应模拟量的保护。
而微机保护中的微机则是处理数字信号的,即送入微型计算机的信号必须是数字信号。
这就要求必须有一个将模拟信号变换成数字信号的系统,这就是数据采集系统的任务。
(二)微型计算机模块微型计算机是微机保护装置的核心。
数字信号采集进来后对其进行数字虑波,然后通过各种不同的算法对其进行计算处理,逻辑判断,动作出口,事故纪录等等处理。
目前计算机保护的计算机部分都是由微型计算或单片微型计算机构成的,这也是微机保护名称的由来。
由一片微处理器配以程序存贮器、数据存贮器、接口芯片(包括并行接口芯片、串行接口芯片)、定时器、计数器芯片等构成的微机系统称为单微机系统。
而在一套微机型保护装置中有两片或两片以上的微处理器构成的微机系统则称为多微机系统。
由单片微型计算机配以部分接口芯片也可以构成微机系统。
同样地,在一套微机保护装置中仅有一个微处理器称为单微机系统,而在一套保护装置中有两片或两片以上微处理器则称为多微机系统。
第4章
微机继电保护的
软件原理
4.1 微机保护主程序框图原理
微机保护装置接通电源(上电)或整组复归时,CPU响应复位中断,进入主程序入口。
4.1.1 初始化
“初始化”是指保护装置在上电或整组复归时首先执行的程序,它主要是对微机系统及其可编程扩展芯片的工作方式初始化、各种标志设置、参数的设置、整定值加载等,以便在后面的程序中按预定方案工作。
初始化包括初始化(一)、初始化(二)及数据采集系统初始化三个部分。
、变压器“△”侧出现零序电流则判为该侧断线;2、“
、 、 ,与零序电流,如出现差流则判断该侧a I b I c I 0
3I 01
3a b c d I I I I I ++->
4.4.3 优先级分配。