比例谐振控制算法分析(1)
- 格式:docx
- 大小:213.23 KB
- 文档页数:18
比例谐振控制在永磁同步电机调速中的应用研究1. 引言1.1 研究背景永磁同步电机是一种应用广泛、性能优越的电机类型,广泛应用于工业生产中的众多领域,如风力发电、汽车电动化等。
随着电气化技术的不断发展,永磁同步电机调速技术也日益成熟。
随着电力需求的不断增长和对电机性能要求的提高,需要更加高效的控制方法来实现永磁同步电机的精密调速。
目前对比例谐振控制在永磁同步电机调速中的应用研究还比较有限,需要进一步深入探讨。
本研究旨在通过分析比例谐振控制的原理和方法,探讨其在永磁同步电机调速中的应用,为提升永磁同步电机的控制性能和应用前景提供理论支持和实验数据。
1.2 研究目的本研究的主要目的是探究比例谐振控制在永磁同步电机调速中的具体应用效果,并对其在电机控制领域中的潜在价值进行分析。
通过对比例谐振控制原理及方法的深入研究,结合永磁同步电机调速技术的现状,希望能够验证比例谐振控制在提高永磁同步电机性能和效率方面的有效性,并探讨其在实际应用中可能遇到的挑战和问题。
本研究也旨在为永磁同步电机调速技术的进一步发展提供新的思路和方法,为提高电机系统的稳定性和效率提供技术支持和参考。
通过实验设计和结果分析,将为比例谐振控制在永磁同步电机调速中的应用提供实际数据支持,验证其在实际工程中的可行性和效果,为电机控制领域的研究和发展做出贡献。
1.3 研究意义研究比例谐振控制在永磁同步电机调速中的应用可以提高永磁同步电机的性能指标,如提高调速精度、降低谐波扭矩、减小振动等。
这对于提高永磁同步电机的工作效率和负载能力具有重要意义。
研究比例谐振控制在永磁同步电机调速中的应用可以为工程实践提供技术支持和参考。
通过实验设计和结果分析,可以验证比例谐振控制在永磁同步电机调速中的有效性,为工程应用提供重要参考。
2. 正文2.1 永磁同步电机调速技术及现状永磁同步电机调速技术是现代电力传动领域的重要技术之一,其具有高效率、高功率因数、高控制精度等优点,得到了广泛的应用。
矩阵变换器输出电流比例谐振控制研究1.引言:介绍矩阵变换器和其在电力转换中的应用,介绍谐振控制的目的,说明文章研究的重要性和意义。
2.矩阵变换器的谐振控制理论:介绍矩阵变换器的结构和原理,介绍其在谐振控制中的应用,探讨谐振控制理论及电流比例谐振控制的原理。
3.模型及仿真:建立矩阵变换器的数学模型,利用Matlab/Simulink进行仿真,地面系统平台进行实验验证。
利用电流比例控制方法实现谐振控制。
4.实验及分析:从实验数据中提取必要的参数,对比实验结果和仿真结果,分析实验数据,探究电流比例控制谐振控制在矩阵变换器中的应用,分析问题所在,提出改进方案。
5.总结及展望:总结全文,归纳本文研究内容、方法和结论,指出本文的不足之处及未来研究的可能方向。
随着电力系统的发展和新能源的普及,矩阵变换器作为一种新型的电力转换器件,在电力转换领域得到了广泛的应用。
与传统的单相桥等电压变换器相比,矩阵变换器具有功率密度高、功率因数高、体积小等优点。
然而,在矩阵变换器的运行过程中,由于其独特的结构和工作方式,容易出现谐振现象,导致设备的损坏和系统的不稳定。
因此,如何有效地控制谐振问题已成为矩阵变换器研究领域的一个热点问题。
谐振问题在电力转换器中一直存在,如何解决问题成为了研究领域的重要任务。
利用谐振控制的技术可以有效地解决矩阵变换器的谐振问题。
谐振控制可以通过对谐振频率和振幅的监测来实现,通过改变控制系统的参数实现控制。
这种方法可以使系统更加灵活、稳定和可靠。
本文将针对矩阵变换器的谐振问题进行研究,通过分析控制系统的结构和控制策略,进一步研究电流比例谐振控制方法在矩阵变换器中的应用。
文章的研究意义在于为解决矩阵变换器谐振问题提供了一种全新的思路和方法,同时能够提升谐振控制能力。
本研究的目的在于寻找一种合适的电流比例谐振控制方案,并通过模拟实验和模型验证研究效果。
本章节主要对研究主题进行综合介绍。
第一节将详细介绍矩阵变换器和其在电力转换中的应用,包括其优点和缺点以及目前存在的问题。
∙在rlc电路中。
当电路的阻抗z(jw)的虚部为0时,此时z(jw)=r在频率w下最小。
此时电流i=u/|z|最大,此时可将频率为w的电流选出。
反之y=g往掉该频率,这是它们的关键点选频电路:利用lc串联电路。
和lc并联电路的谐振办到的,当w=1/√(lc)。
即f=1/2π√(lc)时,lc串联电路z=r发生谐振。
lc相当于短路。
谐振是什么意思可将频率为w的电流选出当w=1/√(lc),即f=1/2π√(lc)时。
lc并联电路z=g+j(wc-1/wl)的虚部为0,即j(wc-1/wl)=0。
此时导纳g 最小,即阻抗z最大。
lc并联电路相当于开路,可将频率为w的电流往掉,选频电路就就是lc的串并联用上面的关系达到选频的。
谐振电路振荡电路:就是有rlc 或电源的电路。
其中只有lc的串联电路w=1/√(lc),谐振电路:应该就是串联谐振和并联谐振吧。
滤波电路:应该跟选频电路差未几吧,串联谐振和并联谐振的区别:上面有讲到。
lc串联电路中z(jw)=r+j(wl-1/wc),lc并联电路中导纳y=g+j(wc-1/wl)。
所以w=1/√(lc),即f=1/2π√(lc)时前者电流最大。
被选出,后者电流最小。
被过滤,我只是大学生的啦知识有限。
不知对你有不有用,对了 w是指频率。
j是虚部符号,其他符号都有注明。
呵呵怕你的版本跟我的不一样∙谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比。
且总是指向平衡位置的回复力的作用下的振动,其动力学方程式是f=-kx。
谐振是什么∙谐振的现象是电流增大和电压减小,越接近谐振中心。
电流表电压表功率表转动变化快,但是和短路得区别是不会出现零序量,∙在物理学里。
有一个概念叫共振:当策动力的频率和系统的固有频率相等时,系统受迫振动的振幅最大。
这种现象叫共振。
谐振器电路里的谐振实在也是这个意思:当电路的激励的频率即是电路的固有频率时,电路的电磁振荡的振幅也将达到峰值,实际上。
第45卷第6期2011年6月电力电子技术PowerElectronicsV01.45,No.6June2011带LC滤波的三相逆变器的比例谐振控制李永坚,黄绍平(湖南工程学院,电气信息学院,湖南湘潭411104)摘要:针对带LC输出滤波器的三相电压型逆变器,提出一种新的无电流传感器比例谐振(PR)控制策略,仅需检测输出滤波电容电压。
无需检测其电流。
相比于同步旋转坐标系的PR控制器,提出的PR控制器基于静止坐标系.无需进行复杂的坐标变换,减少了计算量,能对正序与负序电流进行统一调节。
仿真和实验结果表明,该控制策略具有良好的动静态性能,可实现正弦交流指令的零稳态误差控制,利用其谐振控制器的特性对特定次谐波进行补偿.在逆变器带平衡负载和不平衡非线性负载时都能适用。
关键词:逆变器;比例谐振控制;滤波中图分类号:TM464文献标识码:A文章编号:1000一lOOX(2011)06—0076—03Proportinal.resonantControlforThree-phaseInverterwithLCFiltersLIYong-jian,HUANGShao・ping(HunanInstituteofEngineering,Xiangtan411104,China)Abstract:Anovelcurrentsensor]essproportional・resonant(PR)controlschemeforthree・phaseinverterwithLCout—putfiltersispresented.Theproposedcontrolschemewithuseofcurrentsensorlessonlyrequiesvoltagemeasuredacrosscapacityinsteadofcurrentmeasured.ComparedwithPRcontrollerinsynchronousframe,theproposedPRcon—trollerisimplementedinstationaryframewithoutcomplexreferenceframetransforms,itisabletoadjustpositiveandnegativesequencecomponentsoftheoutputcurrentsimultaneously.Simulationandexperimentalresultsshowthatthecontrolschemehasgooddynamicandstaticperformances,theproposedschemecarlachievezerosteady—stateerrorforsinusoidalreferencecommand,specificharmonicscanbecompensatedbyuseoftheresonantcharacteristicsofthecontroller,thecontrolledinvertercanoperatewellinblanceloadsornonlinearunbalanceloads.Keywords:inverter;proportinal—resonantcontrol;tiltingFoundationProject:SupportedbyScienceandTechnologyPlanningFundofHunanProvince(No.2010GK3100);CollegesandUniversitiesOpenInnovationPlatformFundofHunanProvince(No.2009K100)1引言逆变器按输出波形可分为正弦波逆变器与方波逆变器.前者在实际中应用较多。
利用pid求谐振频率的方法(原创实用版3篇)《利用pid求谐振频率的方法》篇1PID 控制器是一种常用的控制器设计方法,可以用于控制各种系统,包括谐振系统。
在谐振系统中,PID 控制器可以用来调整系统的谐振频率,以实现所需的控制目标。
以下是利用PID 控制器求谐振频率的一般步骤:1. 确定谐振系统的参数:确定谐振系统的质量、刚度、阻尼等参数。
这些参数可以通过实验或理论计算得到。
2. 设计PID 控制器:根据系统的参数和控制目标,设计PID 控制器的增益和时间常数。
PID 控制器的增益和时间常数可以通过实验或Ziegler-Nichols 方法等方法进行调整。
3. 调整谐振频率:通过调整PID 控制器的增益和时间常数,调整谐振系统的谐振频率。
具体来说,可以通过增加或减小控制器增益来调整谐振频率,或者通过增加或减小控制器时间常数来调整谐振频率。
4. 验证控制效果:通过实验或仿真验证PID 控制器的控制效果,确保控制目标得到满足。
在实际应用中,谐振系统的参数和控制目标可能会发生变化,因此需要对PID 控制器进行调整以保持控制效果。
《利用pid求谐振频率的方法》篇2PID(Proportional-Integral-Derivative,比例-积分-微分)控制是一种常用的控制算法,它在许多领域,如机械、化工、航空等都有广泛的应用。
在电子电路中,PID 控制可以用于谐振频率的测量和调节。
利用PID 求谐振频率的方法主要包括以下几个步骤:1. 搭建实验电路:设计一个包含谐振器的电路,并将其连接到示波器和PID 控制器上。
通过示波器观察谐振器的振荡波形,从而获取有关谐振频率的信息。
2. 确定PID 参数:根据电路的特性和实际需求,设置PID 控制器的参数。
比例(P)term 决定控制器的输出与误差之间的比例关系;积分(I)term 用于处理系统的累积误差,以消除稳态误差;微分(D)term 用于处理误差的高频分量,以抑制谐振器的振幅波动。
一、主动控制简介1.概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。
2.特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。
3.优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。
但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。
4.组成:传感器、控制器、作动器5.工作方式:开环、闭环、开闭环。
二、简单回顾主动控制的应用与MATLAB应用1.主动变刚度AVS控制装置工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。
锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度;打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。
示意图如下:2. 主动变阻尼AVD控制装置工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。
关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态;打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。
永磁无刷直流电机的比例谐振控制朱明祥;王鑫;孙红艳;慈文彦;姚伟星【摘要】针对永磁无刷直流电机(BLDCM)在运行过程中系统定子电流振荡和输出转矩抖动等问题,提出了一种基于比例谐振(PR)控制的无刷直流电机调速方案.该方案使用比例谐振控制器代替电流闭环控制中的PI控制器,利用比例谐振控制器在谐振频率处开环增益无穷大来抑制系统周期性干扰带来的不利影响,以此有效地削弱定子电流高次谐波的干扰并抑制定子电流振荡,从而提高控制系统的整体性能.Matlab仿真结果表明,基于比例谐振控制的永磁无刷直流电机调速方案有效地抑制了电机定子电流的振荡以及带负载时稳态输出转矩的抖动现象.【期刊名称】《电气传动》【年(卷),期】2019(049)007【总页数】6页(P14-19)【关键词】永磁无刷直流电机;比例谐振控制;谐振频率;电流闭环【作者】朱明祥;王鑫;孙红艳;慈文彦;姚伟星【作者单位】南京师范大学泰州学院电力工程学院,江苏泰州 225300;江苏理工学院机械工程学院,江苏常州 213001;南京师范大学泰州学院电力工程学院,江苏泰州 225300;南京师范大学泰州学院电力工程学院,江苏泰州 225300;南京师范大学泰州学院电力工程学院,江苏泰州 225300【正文语种】中文【中图分类】TM301.2永磁无刷直流电机(BLDCM)因其结构简单、运行可靠、功率因数高、调速性能和机械特性好等特点,被广泛应用于国防、航空航天、家用电器等各个领域[1]。
由于BLDCM是以自控方式运行,所以重载启动时无需另加启动绕组,同时负载突变时不会出现振荡和失步等问题。
理想的永磁BLDCM反电势为120°平顶的梯形波,输入方波电流后可产生恒定转矩。
由于电机在设计方面以及制造上的原因,实际的BLDCM反电势波形不是规则的梯形波,同样也不是正弦波,其转矩系数随转子位置角的变化而改变,通以方波电流时会产生低频转矩脉动;此外,BLDCM一般采用两相导通模式进行控制,换相时由于电流上升率和下降率不等,存在换相转矩脉动[2];同时,本文使用的SVPWM调制方式会产生高次谐波,引起电压、电流畸变,进而影响电机调速的整体性能。