第3章 振动系统的运动微分方程题解
- 格式:doc
- 大小:306.50 KB
- 文档页数:12
45 / 2045习 题3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。
解:系统具有一个自由度,选复摆转角ϕ为广义坐标,原点及正方向如如题4-1图所示。
复摆在任意位置下,根据刚体绕定轴转动微分方程O O M J =ϕ其中)(22a gP J C O +=ρ 得到复摆运动微分方程为ϕϕρcos )(22Pa a gP C =+ 或0cos )(22=-+ϕϕρga a C3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为固定R ,质量为m ,对质心的回转半径为C ρ,在平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。
解:系统具有一个自由度,选θ为广义坐标。
半圆柱体在任意位置的动能为:222121ωC C J mv T +=题3-1图题3-2图46 / 2046用瞬心法求C v :2222*2)cos 2()(θθθ Re R e CC v C -+== θω = 2CC m J ρ= 故2222221)cos 2(21θρθθ Cm Re R e m T +-+=系统具有理想约束,重力的元功为 θθδd mge W sin -=应用动能定理的微分形式W dT δ=θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=⎥⎦⎤⎢⎣⎡+-+ θθθθθθθθθθρd mge d mRe d mRe d R e m C sin sin cos 2)(2222-=+-++ 等式两边同除dt ,θθθθθθθθθθρ sin sin cos 2)(2222mge mRe mRe R e m C -=+-++ 0≠θ ,等式两边同除θ故微分方程为0sin sin )cos 2(2222=+++-+θθθθρθmge mRe Re R e m C ① 若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为0])[(22=++-θθρge r R C要点及讨论(1)本题也可以用平面运动微分方程求解。
习题33-1.原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。
(g 取9.8)解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =; ∴ω===。
取竖直向下为x 正向,弹簧伸长为0.1m 时为物体的平衡位置,所以如果使弹簧的初状态为原长,那么:A =0.1m ,当t =0时,x =-A ,那么就可以知道物体的初相位为π。
所以:0.1cos x π=+)即:)x =-。
3-2.有一单摆,摆长m 0.1=l ,小球质量g 10=m ,0=t 时,小球正好经过rad 06.0-=θ处,并以角速度0.2rad/s θ= 向平衡位置运动。
设小球的运动可看作简谐振动,试求:(1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。
(g 取9.8)解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了。
(1)角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s ===; (2)振动方程可表示为:cos 3.13A t θϕ=+(),∴ 3.13sin 3.13A t θϕ=-+ () 根据初始条件,0t =时:cos A θϕ=,0(12sin 0(343.13Aθϕ>=-< ,象限),象限)可解得:2008.810227133 2.32A m ϕ-=⨯==-=-,, 所以得到振动方程:28.810cos 3.13 2.32t m θ-=⨯-() 。
3-3.一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
当0=t 时,位移为cm 6,且向x 轴正方向运动。
求:(1)振动表达式;(2)s 5.0=t 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于cm 6-=x ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
习 题3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。
解:系统具有一个自由度,选复摆转角ϕ为广义坐标,原点及正方向如如题4-1图所示。
复摆在任意位置下,根据刚体绕定轴转动微分方程 O O M J =ϕ其中)(22a gP J C O +=ρ 得到复摆运动微分方程为 ϕϕρcos )(22Pa a gP C =+ 或0cos )(22=-+ϕϕρga a C3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为R ,质量为m ,对质心的回转半径为C ρ,在固定平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。
解:系统具有一个自由度,选θ为广义坐标。
半圆柱体在任意位置的动能为:222121ωC C J mv T +=用瞬心法求C v : 2222*2)cos 2()(θθθ Re R e CC v C -+== θω =2C C m J ρ=故2222221)cos 2(21θρθθ Cm Re R e m T +-+=系统具有理想约束,重力的元功为题3-1图题3-2图θθδd mge W sin -= 应用动能定理的微分形式W dT δ=θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=⎥⎦⎤⎢⎣⎡+-+ θθθθθθθθθθρd mge d mRe d mRe d R e m C sin sin cos 2)(2222-=+-++ 等式两边同除dt ,θθθθθθθθθθρ sin sin cos 2)(2222mge mRe mRe R e m C -=+-++ 0≠θ ,等式两边同除θ故微分方程为0sin sin )cos 2(2222=+++-+θθθθρθmge mRe Re R e m C ①若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为0])[(22=++-θθρge r R C要点及讨论(1)本题也可以用平面运动微分方程求解。
简谐振动一、基本要求1、掌握简谐振动的定义,描述简谐振动的各物理量及其相互关系,会根据定义来判断一各物体的运动是不是简谐振动。
2、掌握简谐振动的旋转矢量表示法。
3、掌握简谐振动的基本特征,能根据一定的初始条件写出简谐振动的运动方程。
4、掌握同方向频率的两个简谐振动的合成,了解相互垂直同频率的简谐振动的合成。
二、主要内容1、简谐振动的表达式(运动方程) cos()x A t ωϕ=+三个特征量:振幅A ,决定与振动的能量;角频率ω,决定于振动系统的固有属性; 初相位ϕ,决定于振动系统初始时刻的状态。
简谐运动可以用旋转矢量来表示。
2、振动的相位:()t ωϕ+两个振动的相差:同相2k ϕπ∆=,反相(21)k ϕπ∆=+3、简谐振动的运动微粉方程:2220d x x dtω+=4、简谐振动的实例弹簧振子:220,2d x k x T dt m π+==单摆小角度振动:220,2d g T dt l θθ+==LC振荡:2210,2d q q T dt LCπ+== 5、简谐振动的能量:222111()222k P dx E E E m kx kA dt =+=+= 6、两个简谐振动的能量(1)同方向同频率的简谐振动的合成合振动是简谐振动,合振动的振幅和初相位由下式决定A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+(2)相互垂直的两个同频率的简谐振动的合成合运动的轨迹一般为椭圆,其具体形状决定于两个分振动的相差和振幅。
当2k ϕπ∆=或(21)k π+时,合运动的轨迹为直线,这时质点在做简谐振动。
三、习题与解答1、两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为)cos(1ϕω+=t A x 。
某时刻当第一个质点正在平衡位置向负方向运动时,第二个质点正在最大位移处。
则第二个质点的振动方程为:( B )(A ))2cos(2πϕω++=t A x (B ))2cos(2πϕω-+=t A x(C ))23cos(2πϕω-+=t A x (D ))cos(2πϕω++=t A x 2、一物体做简谐振动,振幅为A ,在起始时刻质点的位移为2A-且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为:( D )3、一质点作简谐振动,振动方程)cos(ϕω+=t A x ,当时间 t =T/4 时,质点的速度为:( C )(A ) ϕωsin A - (B) ϕωsin A (C )ϕωcos A - (D )ϕωcos A4、一质点作谐振动,周期为T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( A )(A )T /6(B )T /12 (C)T /4 (D )T /85、有两个沿x 轴做简谐运动的质点,其频率、振幅皆相同,当第一个质点自平衡位置向负方向运动时,第二个质点在处(A 为振幅)也向负方向运动,则两者的相位差(12ϕϕ-)为:( C )2Ax -=(A )2π (B )32π (C )6π (D )65π6、质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求:(1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==ma F mJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t7、一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是:(1)x 0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos ϕωϕA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππϕ+==t T A x)232cos(232πππϕ+==t T A x)32cos(33πππϕ+==t T A x)452cos(454πππϕ+==t T A x8、一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求:(1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=ϕA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=ϕ,t t =时 3,0,20πϕ=<+=t v A x 故且 ∴ s 322/3==∆=ππωϕt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E9、有一轻弹簧,下面悬挂质量为1.0 g 的物体时,伸长为4.9 cm.用这个弹簧和一个质量为8.0 g 的小球构成弹簧振子,将小球由平衡位置向下拉开1.0 cm 后,给予向上的初速度v 0=5.0 cm·s -1,求振动周期和振动表达式. 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT m k 即 m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωϕ==⨯⨯⨯=-=--即x v ∴ m )455cos(1022π+⨯=-t x10、图为两个谐振动的x -t 曲线,试分别写出其谐振动方程.题10图解:由题10图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题10图(b)∵0=t 时,35,0,2000πϕ=∴>=v A x 01=t 时,35,0,2000πϕ=∴>=v A x又 ππωϕ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=11、有两个同方向、同频率的简谐振动,其合成振动的振幅为0.20 m ,位相与第一振动的位相差为6π,已知第一振动的振幅为0.173 m ,求第二个振动的振幅以及第一、第二两振动的位相差.解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A ∴ m 1.02=A 设角θ为O AA 1,则θcos 22122212A A A A A -+=即 01.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ 即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.12、试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1)125cos(3),375cos(3);3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩(2)125cos(3),345cos(3).3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩解: (1)∵ ,233712πππϕϕϕ=-=-=∆ ∴合振幅 cm 1021=+=A A A (2)∵ ,334πππϕ=-=∆∴合振幅 0=A13、一质点同时参与两个在同一直线上的简谐振动,振动方程为120.4cos(2),650.3cos(2).6x t m x t m ππ⎧=+⎪⎪⎨⎪=-⎪⎩试分别用旋转矢量法和振动合成法求合振动的振幅和初相,并写出谐振动方程. 解:∵ πππϕ=--=∆)65(6 ∴ m 1.021=-=A A A 合3365cos 3.06cos 4.065sin3.06sin4.0cos cos sin sin tan 22122211=+-⨯=++=ππππϕϕϕϕφA A A A ∴ 6πϕ=其振动方程为m )62cos(1.0π+=t x14、若简谐运动方程为0.10cos(200.25)()x t m ππ=+,求:(1)振幅、频率、角频率、周期和初相;(2)2t s =时的位移、速度和加速度。
3.1 如图所示扭转系统。
设12122;t t I I k k ==1.写出系统的刚度矩阵和质量矩阵;2.写出系统的频率方程并求出固有频率和振型,画出振型图。
解:1)以静平衡位置为原点,设12,I I 的转角12,θθ为广义坐标,画出12,I I 隔离体,根据牛顿第二定律得到运动微分方程:111121222221()0()0t t t I k k I k θθθθθθθ⎧++-=⎪⎨+-=⎪⎩ ,即:1112122222122()00t t t t t I k k k I k k θθθθθθ⎧++-=⎪⎨-+=⎪⎩所以:[][]12212220,0t t t t t k k k I M K k k I +-⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦系统运动微分方程可写为:[][]11220M K θθθθ⎧⎫⎧⎫⎪⎪+=⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭………… (a)或者采用能量法:系统的动能和势能分别为θθ=+2211221122T E I I θθθθθθθ=+-=++-222211212121221121111()()2222t t t t t t U k k k k k k求偏导也可以得到[][],M K由于12122;t t I I k k ==,所以[][]212021,0111t M I K k -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦2)设系统固有振动的解为: 1122cos u t u θωθ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭,代入(a )可得:[][]122()0u K M u ω⎧⎫-=⎨⎬⎩⎭………… (b)得到频率方程:22121211222()0t t t t k I k k k I ωωω--==--即:224222121()240t t I k I k ωωω=-+=解得:21,222ω==所以:1ω=2ω= ………… (c)将(c )代入(b )可得:112121211122(22220(22t t t t t t k k I k I u u k k k I I ⎡⎤±--⎢⎥⎧⎫⎢⎥=⎨⎬⎢⎥⎩⎭⎢⎥--⎢⎥⎣⎦解得:11212u u =-;12222u u =令21u ,得到系统的振型为:-0.70710.70713.2 求图所示系统的固有频率和振型。
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
简谐振动微分方程求解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!简谐振动是物理学中一个非常重要且常见的现象,它能够描述许多物理系统的运动规律。
§2-3 运动(yùndòng)微分方程的求解1.求解步骤1)确定分析对象(隔离体)2)作受力分析(施力物、超距力、接触力),画隔离体图3)建立合适坐标系,写出方程解析式并给出初始位置、速度4)给出二阶常微分方程组的数字解5)阐明结果的物理含意与实质作用力为时间、位置、速度的函数;若力只是其中某一项的函数,则问题可加以简化。
2.常力作用下质点的运动〖例2-1〗求质点m在常力作用下的运动。
已知t=0时初位置和初速度分别为。
解:3.力只是时间的函数〖例2-2〗求自由电子-e在沿x轴的电场中的运动。
已知t=0时。
解:4.力只是速度的函数〖例2-3〗求在阻力正比于速度即的介质中抛物体的运动。
已知t=0时。
解:消去t得轨道方程为若阻力很小或距离很短(开始运动),即时,有轨道开始时接近抛物线,x趋于时y趋于无穷大,即为竖直直线。
5.力只是坐标的函数〖例2-4〗求做一维振动的弹性系数为k的弹簧振子的运动。
解:二维振动与利萨如图形。
6.复杂情况力为时间、坐标、速度的函数一维:(受迫振动)如LRC电路:为二阶常系数线性常微分方程,可用数值计算。
7.例题〖例2-5〗P39例1〖例2-6〗P41例3§2-4 加速(jiā sù)平动非惯性系动力学1.问题的提出在惯性系S中成立,在动系S’中是否成立?作加速平动的参照系为非惯性系。
2.改进的牛顿定律引入惯性力后牛顿定律仍成立。
3.讨论?为什么选择非惯性系:方便?惯性力与普通力的差别惯性力只是一种记号,它无施力物体,也无反作用力4.例题〖例2-7〗P44例质点运动(yùndòng)微分方程小结1.运动微分方程2.运动微分方程的解析式或3.理想光滑线约束力的求解4.平动加速非惯性系的加上惯性力后牛顿定律仍然成立处理5.例题〖例2-8〗P98补例1.4〖例2-9〗P99补例1.56.习题三〖P105习题1.21,1.27,1.32,1.33〗§2-5 质点的能量(néngliàng)积分1.第一积分直接求解运动微分方程是研究动力学问题的基本方法,但对具体问题解出微分方程有时比较困难。