整数指数幂的运算法则
- 格式:pdf
- 大小:36.99 KB
- 文档页数:3
指数的运算与指数函数4.1指数的运算【知识梳理】1. 整数指数幂1)定义:我们把n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数。
在上述定义中,n 为整数时,这样的幂叫做整数指数幂。
2)整数指数幂的运算法则:(1)n m a a = (2)=n m a )((3)=n maa (4)=m ab )(3)此外,我们作如下规定:零次幂:)0(10≠=a a ; 负整数指数幂:),0(1+-∈≠=N n a a a nn; 2. 根式:1)n 次方根:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *。
注:①当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数,分别表示为n a -,n a ;负数的偶次方根在实数范围内不存在;②当n 是奇数时,正数的n 次方根是一个正数;负数的n 次方根是一个负数,都表示为na ;③0的任何次方根都是0,记作00=n。
2)正数a 的正n 次方根叫做a 的n 次算数根。
当na 有意义时,n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.注:当n 是奇数时,a a nn =;当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn ;3. 有理指数幂1)我们进行如下规定: n na a=1 (0>a )那么,我们就将整数指数幂推广到分数指数幂。
此外,下面定义也成立: )1,,,0(*>∈>=n N n m a a a n m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm注:0的正分数指数幂等于0,0的负分数指数幂没有意义。
2)规定了分数指数幂的意义后,指数的概念就从整数指数幂推广到了有理数指数幂。
3)有理指数幂的运算性质:(1)r a ·sr r aa +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>;(3)s r r a a ab =)(),0,0(Q r b a ∈>> 题型一 根式与幂的化简与求值 【例1】.求下列各式的值:(1)223223-++ (2)347246625-+--+【例2】.计算下列各式的值: (1)()[]75.0343031162)87(064.0---+-+-- (2)()()()012132232510002.0833-+--+⎪⎭⎫⎝⎛----【例3】.化简下列各式:(1)()0,0332>>b a b a ab ba (2)212121211111a a a a a ++------【过关练习】1.求值:(1)335252-++ (2)3332332313421248a a b a ab b ba a ⋅⎪⎪⎭⎫ ⎝⎛-÷++-2.化简:(1)111113131313132---+++++-x xx x x x x x(2)()()14214214433332)1()1(1))((----------++-++-++-+a a a a a a a a a a a a a a a a3.下列关系式中,根式与分数指数幂的互化正确的是_____.())0()4)(0()1()3();0()2();0()1(434334316221>=>=<=>-=--a a a a x xxy y y x x x题型二 含附加条件的求值问题 【例1】(1)若3193=⋅ba,则下列等式正确的是( ) A. 1-=+b a B. 1=+b a C. 12-=+b a D.12=+b a(2)若,123-=++x x x 则2827211227281x x x x x x x x ++⋅⋅⋅++++++⋅⋅⋅++----的值是_____.【例2】(1)已知,32,21==y x 求yx y x y x y x +---+的值; (2)已知b a ,是方程0462=+-x x 的两个根,且0>>b a ,求ba ba +-的值.【过关练习】 1.已知.88(22的值常数),求x x xxa --+=+2.已知32121=+-a a ,求21212323----aa a a 的值.3. 已知122+=xa ,求xx xx aa a a --++33的值题型三 解含幂的方程与等式的证明 【例1】解下列方程 (1)x x )41(212=+ (2)03241=-++x x【例2】已知433cz by ax ==,且1111=++zy x ,求证31313131222)(c b a cz by ax ++=++【过关练习】 1. 解下列方程(1)2291381+⎪⎭⎫⎝⎛=⨯x x (2)0123222=-⨯++x x2.设c b a ,,都是正数,且cb a 643==,求证ba c 122+=.4.2 指数函数及其性质【知识梳理】1. 指数函数 函数 )1,0(≠>=a a a y x叫做指数函数. 2. 指数函数的性质(1)定义域 :实数集合R ; (2)值域 :0>y ;(3) 奇偶性:指数函数是非奇非偶函数(4)单调性:1>a 时,函数 )1,0(≠>=a a a y x在),(+∞-∞上为增函数;10<<a 时,函数)1,0(≠>=a a a y x 在),(+∞-∞上为减函数;(5)函数值:0=x 时,1=y ,图象恒过点(0,1);(6)当0,1>>x a 时1>y ;0,1<>x a 时,10<<y .当10<<a ,0>x 时,10<<y ;0,10<<<x a 时,1>y .题型一 指数函数的概念例1 .已知指数函数)3)(2(--+=a a a y x的图像经过点(2,4),求a 的值.【过关练习】.若指数函数)(x f 的图像经过点(2,9),求)(x f 的解析式及)1(-f 的值.题型二 指数型复合函数的定义域和值域 【例1】.求下列函数的定义域和值域 (1) xy 31-= (2)412-=x y(3)xy -=)32( (4)32221--⎪⎭⎫ ⎝⎛=x x y【例2】.求函数[]2,2,221341-∈+⎪⎭⎫⎝⎛⨯-⎪⎭⎫ ⎝⎛=x y xx 的值域.【例3】.如果函数[]1,1-)1,0(122在且≠>-+=a a a a y x x上有最大值14,试求a 的值.【过关练习】1.求函数xy ⎪⎭⎫⎝⎛-=211的定义域和值域.2.已知集合⎭⎬⎫⎩⎨⎧∈==+R x y y A x,)21(12,则满足B B A =⋂的集合B 可以是( )A. ⎭⎬⎫⎩⎨⎧21,0 B. ⎭⎬⎫⎩⎨⎧<<210x x C.{}11≤≤-x x D.{}0>x x 3.函数22212+-=+x xy 的定义域为M ,值域[]2,1P ,则下列结论一定正确的个数是( )。
湘教版数学八年级上册1.3.3《整数指数幂的运算法则》说课稿1一. 教材分析湘教版数学八年级上册1.3.3《整数指数幂的运算法则》这一节主要介绍了整数指数幂的运算法则。
这部分内容是初中学段数学知识的重要组成部分,对于学生来说,掌握这部分内容对于提高他们的数学素养和解决实际问题具有重要意义。
本节内容主要包括整数指数幂的乘法、除法和幂的乘方等运算法则。
这些法则不仅为学生提供了解决相关问题的方法,而且也为进一步学习指数幂的性质和运用打下了基础。
二. 学情分析学生在学习这一节内容之前,已经学习了有理数的乘方、负整数指数幂等知识,对于幂的运算已经有了一定的了解。
但是,整数指数幂的运算法则较为抽象,学生可能难以理解。
因此,在教学过程中,需要结合学生的实际情况,采用生动形象的教学手段,帮助学生理解和掌握这部分内容。
三. 说教学目标1.知识与技能:让学生掌握整数指数幂的运算法则,能够运用这些法则解决实际问题。
2.过程与方法:通过自主学习、合作交流等方法,培养学生探究问题和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心和克服困难的勇气。
四. 说教学重难点1.教学重点:整数指数幂的运算法则。
2.教学难点:整数指数幂的运算法则的应用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解等教学方法,引导学生主动探究和解决问题。
2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,生动形象地展示教学内容。
六. 说教学过程1.导入:通过复习有理数的乘方、负整数指数幂等知识,引出整数指数幂的运算法则。
2.自主学习:让学生自主探究整数指数幂的运算法则,引导学生发现规律。
3.合作交流:学生分组讨论,分享各自的学习心得和解决问题的方法。
4.教师讲解:针对学生的讨论,教师进行讲解和总结,引导学生掌握整数指数幂的运算法则。
5.巩固练习:布置一些相关的练习题,让学生运用所学的知识解决问题。
6.课堂小结:教师引导学生总结本节课所学的内容,帮助学生巩固记忆。
整数指数幂的运算法则(含答案)【知识点】 同底数幂的乘法m n m n a a a +⋅=(m 、n 都是正整数) 幂的乘方()m n mn a a =(m 、n 都是正整数) 积的乘方()n n n ab a b =(n 都是正整数) 同底数幂的除法m n m n a a a -÷=(m 、n 都是正整数) 商的乘方n n n a a b b ⎛⎫= ⎪⎝⎭(m 、n 都是正整数) 零次幂()010a a =≠【练习题】1. 根据整数指数幂的运算法则,下列各式正确的有 ① 1221-÷=-② ()021-=-③ 239-=-④ 2193-⎛⎫-= ⎪⎝⎭⑤ ()101 3.1423π-⎛⎫-+-+=- ⎪⎝⎭2. 根据整数指数幂的运算法则,下列各式正确的有① ()32626x x ---=② ()()31333x x x y x y --+=+ ③ 341242x x x--÷=④ 00002+= ⑤ 111x y y x --⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭ 3. 根据整数指数幂的运算法则,下列各式正确的有① ()10a b ab b a -⎛⎫=≠ ⎪⎝⎭ ② 6421b b b -⋅=③ ()()4222bc bc b c -÷-=-④ 132a a a ---÷=⑤ 2222bc a bc a -= 4. 根据整数指数幂的运算法则,下列各式错误的有① ()22nn ---=-② 4216422m n m n -÷÷=③ 222m n m n --÷=④ 133m m a a -= ⑤ 12233m m n n --⎛⎫= ⎪⎝⎭5. 若m 、n 为正整数,则下列各式错误的有① ()63226a a b b---= ② 22342a b a b ab --⋅=③ ()22124c c -= ④ 33331b c b c --÷=⑤ 2222b a b a-= ⑥ ()()21124c ac a c a ---÷= 6. 若m 、n 为正整数,则下列各式正确的有① m n m n a a a a -÷=⋅② nn n a a b b -⎛⎫=⋅ ⎪⎝⎭ ③ ()nm mn a a --= ④ 1n nam am -=⑤ 221(3)9m m -=答案1.4;52.2;53.1;2;54.1;2;4;65.1;2;3;46.1;2;3;5。
整数指数幂的运算法则整数指数幂是数学中常见的运算形式,它可以表示为a^n,其中a为底数,n为指数。
在进行整数指数幂的运算时,有一些基本的法则和规则需要遵循,下面将详细介绍整数指数幂的运算法则。
1. 同底数幂相乘:当两个幂的底数相同,指数分别为m和n时,它们的乘积可以表示为a^m * a^n = a^(m+n)。
这条规则也被称为幂的乘法法则,即相同底数的幂相乘时,可以将指数相加得到新的指数。
例如,2^3 * 2^4 = 2^(3+4) = 2^7 = 128。
2. 同底数幂相除:当两个幂的底数相同,指数分别为m和n时,它们的商可以表示为a^m / a^n = a^(m-n)。
这条规则也被称为幂的除法法则,即相同底数的幂相除时,可以将指数相减得到新的指数。
例如,3^5 / 3^2 = 3^(5-2) = 3^3 = 27。
3. 幂的幂:当一个幂的指数再次进行幂运算时,可以将指数相乘得到新的指数。
即(a^m)^n = a^(m*n)。
例如,(4^2)^3 = 4^(2*3) = 4^6 = 4096。
4. 幂的零次方:任何非零数的零次方都等于1,即a^0 = 1(a≠0)。
例如,5^0 = 1。
5. 幂的一次方:任何数的一次方都等于它本身,即a^1 = a。
例如,6^1 = 6。
以上是整数指数幂的基本运算法则,通过这些法则我们可以对整数指数幂进行简化和计算。
除了这些基本法则之外,还有一些特殊情况需要注意:1. 负指数幂:当幂的指数为负数时,可以将其转化为倒数的形式。
即a^(-n) = 1 / a^n。
例如,2^(-3) = 1 / 2^3 = 1 / 8。
2. 零的零次幂:零的零次幂是没有意义的,因为任何数的零次幂都等于1,但是零的零次幂等于零。
所以0^0通常被视为一个未定义的值。
整数指数幂的运算法则在数学中有着广泛的应用,它可以帮助我们简化复杂的幂运算,解决各种数学问题。
掌握这些法则对于提高数学运算能力和解题效率都有着重要的意义。
湘教版数学八年级上册1.3.3《整数指数幂的运算法则》教学设计2一. 教材分析湘教版数学八年级上册1.3.3《整数指数幂的运算法则》是学生在学习了有理数的乘方、实数的乘方的基础上进行学习的。
本节课主要让学生掌握整数指数幂的运算法则,包括同底数幂的乘法、除法、乘方以及幂的乘方与积的乘方。
这些知识是初中数学中的重要内容,对于学生后续学习代数、几何等知识有着重要的作用。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方、实数的乘方,对于乘方的概念和运算法则有一定的了解。
但是,对于整数指数幂的运算法则,特别是幂的乘方与积的乘方,可能还存在一定的困惑。
因此,在教学过程中,需要引导学生通过观察、思考、归纳等方法,自主探索并掌握整数指数幂的运算法则。
三. 教学目标1.理解整数指数幂的运算法则,包括同底数幂的乘法、除法、乘方以及幂的乘方与积的乘方。
2.能够运用整数指数幂的运算法则进行计算和解决问题。
3.培养学生的观察能力、思考能力、归纳能力以及运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:整数指数幂的运算法则的掌握和运用。
2.教学难点:幂的乘方与积的乘方的理解和运用。
五. 教学方法1.启发式教学:通过提问、引导学生观察、思考、归纳等方法,激发学生的学习兴趣,培养学生的自主学习能力。
2.小组合作学习:学生进行小组讨论、交流,培养学生的合作能力和团队精神。
3.案例教学:通过具体的例子,让学生理解和掌握整数指数幂的运算法则。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过提问方式复习实数和有理数的乘方,引导学生思考整数指数幂的运算法则。
2.呈现(15分钟)呈现整数指数幂的运算法则,包括同底数幂的乘法、除法、乘方以及幂的乘方与积的乘方。
通过具体的例子,让学生观察和思考,引导学生自主探索并归纳出运算法则。
3.操练(15分钟)让学生进行相关的计算练习,巩固所学的整数指数幂的运算法则。
整数指数幂的运算法则整数指数幂的运算法则是指在进行整数指数幂运算时可以遵循的一些规则和方法。
这些法则可以帮助我们简化计算,加快运算速度,并且还可以利用特定的规则来化简指数和幂的运算式。
下面将介绍一些常见的整数指数幂运算法则。
1.幂的幂法则(a^m)^n=a^(m*n):当幂的底数再次进行幂运算,幂的指数相乘。
例如:(2^3)^2=2^(3*2)=2^6=642.幂数的乘方法则a^m*a^n=a^(m+n):当两个幂数相乘时,幂的指数相加。
例如:2^3*2^4=2^(3+4)=2^7=1283.幂数的除方法则a^m/a^n=a^(m-n):当两个幂数相除时,幂的指数相减。
例如:3^4/3^2=3^(4-2)=3^2=94.幂的乘方法则(a*b)^n=a^n*b^n:当括号内有一个乘法运算并且整体进行幂运算时,可以先分别将底数进行幂运算,再将结果相乘。
例如:(2*3)^4=2^4*3^4=16*81=12965.平方、立方和四次方的特殊运算法则:a^2=a*a:一个数的平方等于这个数乘以它自己。
a^3=a*a*a:一个数的立方等于这个数乘以它自己再乘以它自己。
a^4=a*a*a*a:一个数的四次方等于这个数乘以它自己再乘以它自己再乘以它自己。
6.负指数的运算法则:a^(-n)=1/a^n:一个数的负指数等于1除以这个数的正指数。
例如:2^(-3)=1/2^3=1/8=0.1257.零指数的运算法则:a^0=1:任何非零数的零指数等于1例如:5^0=1这些整数指数幂的运算法则可以帮助我们在进行复杂的指数运算时快速计算结果。
通过运用这些法则,我们可以简化运算过程,减少计算错误,并提高计算效率。
因此,熟练掌握和运用这些整数指数幂的运算法则对于数学和科学的学习是非常重要的。
1.3.3 整数指数幂的运算法则
(第9课时)
教学目标
1 通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则;
2 会用整数指数幂的运算法则熟练进行计算。
重点、难点
重点:用整数指数幂的运算法则进行计算。
难点:指数指数幂的运算法则的理解。
教学过程
一创设情境,导入新课
1 正整数指数幂有哪些运算法则?
(1)m n m n
a a a(m、n都是正整数);(2)()m n mn
a a(m、n都是正整数)
(3)n n n
a b a b,(4)
m
m n
n
a
a
a
(m、n都是正整数,
a0)
(5) ()
n n
n
a a
b b
(m、n都是正整数,b0)
这些公式中的m、n都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题.
板书课题:整数指数幂的运算法则
二合作交流,探究新知
1 公式的内在联系
做一做(1) 用不同的方法计算:
3
4
2
(1)
2
,
3
2
2
3
解:
3
341
4
21
(1)23
23
;
3
343(4)1
4
21
(1)2223
23 33
3
228
2
3327,
3
3
133
218
23238
32727
通过上面计算你发现了什么?
幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进
行运算。
()
m m
n
m n m n
n
a
a
a
a
a
a
,
11n
n
n
n
a a a b
a
b
a
b
b
b
因此上面5个幂的运算法则只需要3个就够了:1)m
n
m n
a
a
a
(m 、n 都是正整数);(2)()
m n
mn
a a (m 、n 都是正整数)
(3)n
n
n
a b a b ,
2 正整数指数幂是否可以推广到整数指数幂做一做计算:3
3
32
122,23,
解:(1)3
33
3
33
3
3
3(3)
331
22
2
2
2
2
1222
2
1
2
2
,(2)3
3
2
2
6
113
3
3
,3
2(2)3
6
6
13
3
2
3
3
3
3
3
111
1323
2
3
827
216
23
3
3
3
3
3
1111123
2
3
2
3
8
27
216
通过上面计算,你发现了什么?幂的运算公式中的指数
m 、n 也可以是负数。
也就是说,幂的运算公式中的指数
m 、n 可以是整数,二不局限于正整数。
我们把这些公式叫整数指数幂的运算法则。
三应用迁移,巩固提高例1 设a
0,b
0,计算下列各式:
3
2
2
7
3
3
31
21;2;34
a a
a a a
b a b
b
例2计算下列各式:
2
3
2
2
2
1
2
2
221
,2
3x y
x xy y
x y
x
y
四课堂练习,巩固提高1P20 练习 1,2 2
补充:
(1)下列各式正确的有(
)
1
1
11
(1)1,(2)(0),3(),4(0)
m
m
n
n m n m
n a a
a
a a
a a a
a
a
A 1个,
B 2
个 C 3个 D 4个
2计算2
3
1
x y x y
的结果为(
)
5
555
2
2
,,,x
y y x A
B
C
D
y
x
x
y
3
当x=
14
,y=8时,求式子
25
2
2x
y
x y
的值。
五反思小结,拓展提高这节课你有什么收获?
(1)知道了整数指数幂的运算法则只需要三个就可以了。
(2)正整数指数幂的运算法则可以推广到整数指数幂。
六、作业P 22 A 组 6 ,7 B 8。