高一数学必修综合测试试题及答案
- 格式:doc
- 大小:311.00 KB
- 文档页数:4
高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
高一数学必修一综合试卷及答案【导语】高一阶段是学习高中数学的关键时期.对于高一新生而言,在高一学好数学,不仅能为高考打好基础,同时也有助于物理、化学等学科的学习,这篇是由无忧考网—高一频道为大家整理的《高一数学必修一综合试卷及答案》希望对你有所帮助!一、选择题:(本大题共10题,每小题5分,共50分)1.设全集U={1,2,3,4,5,6,7},集合A={1,3,5},集合B={3,5},则(C)2.如果函数f(x)=x+2(a?1)x+2在区间(?∞,4]上是减函数,那么实数a的取值范围2A.U=A∪BB.U=(CUA)∪BCU=A∪(CUB)D.U=(CUA)∪(CUB)B、a≥?3C、a≤5是(A)A、a≤?3A.4x+2y=5D、a≥53.已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是(B)B.4x?2y=5C.x+2y=5D.x?2y=54。
设f(x)是(?∞,+∞)上的奇函数,且f(x+2)=?f(x),当0≤x≤1时,f(x)=x,则f(7。
5)等于(B)A.0.5yB.?0。
5yC.1。
5D。
?1。
55。
下列图像表示函数图像的是(Cy)yxxxxABCD6.在棱长均为2的正四面体A?BCD中,若以三角形ABC为视角正面的三视图中,其左视图的面积是(C).A.3C.2(B).A.m⊥α,m⊥β,则α//βC.m⊥α,m//β,则α⊥β22ADBC题中不正确的是...B.263D.227.设m、n表示直线,α、β表示平面,则下列命B.m//α,αIβ=n,则m//nD.m//n,m⊥α,则n⊥αD.2?28.圆:x+y?2x?2y?2=0上的点到直线x?y=2的距离最小值是(A).A.0B.1+2C.22?29.如果函数f(x)=ax2+ax+1的定义域为全体实数集R,那么实数a的取值范围是(A).A.[0,4]B.[0,4)C.[4,+∞)D.(0,4)10。
a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a—7平行且不重合的(。
高中必修一综合测试一.选择题:(本大题共12个小题,每小题5分,共60分)1、已知全集{}{}{}123456781567U M N ===、、、、、、、,、3、5、7,、、 则()U M N = ð(A ){5,7} (B ) {2,4} (C ){2.4.8} (D) {1,3,5,6,7}解析:画出韦恩图即可得答案C2.如图所示的韦恩图中,A 、B 是非空集合,定义A *B 表示阴影部分的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A *B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:A ={x |0≤x ≤2},B ={y |y >1},A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥0},由图可得A *B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2}.3.设集合A ={x |y =x 2-4},B ={y |y =x 2-4},C ={(x ,y )|y =x 2-4},则下列关系:①A ∩C =∅;②A =C ;③A =B ;④B =C .其中不.正确的共有( ) A .1个 B .2个 C .3个D .4个解析:②、③、④都不正确. 答案:C4.函数f (x )=ln(x +1)-2x(x >0)的零点所在的大致区间是( )A .(0,1)B .(1,2)C .(2,e )D .(3,4)[答案] B[解析] f (1)=ln2-2<0,f (2)=ln3-1>0,又y =ln(x +1)是增函数,y =-2x在(0,+∞)上也是增函数,∴f (x )在(0,+∞)上是增函数,∴f (x )在(1,2)上有且仅有一个零点. 5、若函数()y f x =是函数x y a =()0,1a a >≠的反函数,且()21f =,则()f x =( ) A.2log x B.12x C.12log x D.22x - 答案A 解析:函数x y a =()0,1a a >≠的反函数为()f x =log a x ,从而可得答案6、函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( ) A .0,1<>b a B .0,1>>b a C .0,10><<b aD .0,10<<<b a答案:D解析:因为函数单调递减,所以01a <<,再根据图像平移的特点可得答案7.已知函数f (x )=ln e x -e -x2,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减 [答案] A[解析] 由e x -e -x 2>0得e x >1ex ,∴x >0,故f (x )为非奇非偶函数,又e x 为增函数,e -x为减函数,∴e x -e -x2为增函数,∴f (x )为增函数,故选A.8.函数f (x )=x 2+ax (a ∈R),则下列结论正确的是( )A .存在a ∈R ,f (x )是偶函数B .存在a ∈R ,f (x )是奇函数C .对于任意的a ∈R ,f (x )在(0,+∞)上是增函数D .对于任意的a ∈R ,f (x )在(0,+∞)上是减函数 [答案] A[解析] 显然当a =0时,f (x )=x 2是偶函数,故选A.9、设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射的是[答案]D解析:由映射的定义排除A ,B ,CB.C.10.已知函数y =f (x )是偶函数,且函数y =f (x -2)在[0,2]上是单调减函数,则( )A .f (-1)<f (2)<f (0)B .f (-1)<f (0)<f (2)C .f (0)<f (-1)<f (2)D .f (2)<f (-1)<f (0)[答案] C[解析] y =f (x -2)是由函数y =f (x )的图象向右平移2个单位得到的,∵y =f (x -2)在[0,2]上是减函数,∴y =f (x )在[-2,0]上是减函数,∴f (-2)>f (-1)>f (0),∵f (x )为偶函数,∴f (0)<f (-1)<f (2).11.设323log ,log log a b c π=== A. a b c >>B. a c b >>C. b a c >>D. b c a >>解析 22log log log b c <>2233log log 2log 3log a b a b c π<=<∴>∴>>.12.函数f (x )=⎩⎪⎨⎪⎧ax 2+1,x ≥0(a 2-1)e ax,x <0在(-∞,+∞)上单调,则a 的取值范围是( ) A .(-∞,-2]∪(1,2] B .[-2,-1)∪[2,+∞) C .(1,2] D .[2,+∞)[答案] A[解析] 若a >0,则f (x )=ax 2+1在[0,+∞)上单调增,∴f (x )=(a 2-1)e ax 在(-∞,0)上单调增,∴⎩⎪⎨⎪⎧a 2-1>0a 2-1≤1,∴1<a ≤ 2. 同理,当a <0时,可求得a ≤-2,故选A.二、填空题:本大题共4小题,每小题5分,共20分。
一、选择题1.设A ,B 是全集I ={1,2,3,4}的子集,A ={1,2},则满足A ⊆B 的集合B 的个数是( )A .5B .4C .3D .22.若函数y =ax +1ax 2-4ax +2的定义域为R ,则实数a 的取值范围是( )A.⎝⎛⎦⎤0,12B.⎝⎛⎭⎫0,12 C.⎣⎡⎦⎤0,12 D.⎣⎡⎭⎫0,123.已知f (x )=⎩⎪⎨⎪⎧ (3a -1)x +4a ,x <1,log a x,x ≥1是(-∞,+∞)上的减函数,则a 的取值范围是( ) A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13 D.⎣⎡⎭⎫17,14.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C .-12 D.125.设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a 6.函数f (x )=sin x x 2+1的图象大致为( )7.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1 C.12 D .38.已知tan α=-34,则sin α·(sin α-cos α)等于( )A.2125B.2521C.45D.549.若函数y =sin(ωx -φ)⎝⎛⎭⎫ω>0,|φ|<π2在区间⎣⎡⎦⎤-π2,π上的图象如图所示,则ω,φ的值分别是()A .ω=2,φ=π3B .ω=2,φ=-2π3 C .ω=12,φ=π3 D .ω=12,φ=-2π310.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A .1B .2C .3D .411.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定12.若正数x ,y 满足3x +y =5xy ,则4x +3y 的最小值是( )A .2B .3C .4D .5二、填空题13.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,则f (x )=________.14.若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________.15.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为_____. 16.已知函数f (x )=⎩⎪⎨⎪⎧12log x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________.三、解答题17.已知-π<x <0,sin(π+x )-cos x =-15. ①求sin x -cos x 的值;②求sin 2x +2sin 2x 1-tan x的值.18.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.19.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n=-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.20.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12. (1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)求数列{a n }的通项公式.21.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n .22.(1)设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.(2)对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.23.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润ω(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?。
高中数学必修1检测题一、选择题: 1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( )①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x 与()g x ;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④6.根据表格中的数据,可以断定方程02=--x e x的一个根所在的区间是( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lgyx a y x 则 ( )A .a 3B .a 23 C .aD .2a 8、 若定义运算b a ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕的值域是( ) A[)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上的最大值与最小值的和为3,则=a ( )A .21 B .2 C .4 D .41 10. 下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B、2log y =C 、21log y x=D、2log (45)y x x =-+11.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高中数学必修一综合测试题第一章至第三章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U=,集合M=,N=,则M∩(N)等于( )UA. B.C. D.(A∪B)【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则U= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}2.函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)3.下列图形中,不是函数图象的是( )【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x35.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)6.函数f(x)=若f(x)=2,则x的值是( )A. B.± C.0或1 D.0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )7.已知a=log2A.b>c>aB.b>a>cC.a>b>cD.c>b>a【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( ) A.c<b<a B.b<c<aC.c<a<bD.a<b<c8.函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+10010.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【补偿训练】若函数f(x)=logm(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( ) A.3- B.3+C.2-D.2+11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=a x-1+1a>0,且a≠1一定过定点.14.= .15.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.16.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数).18.(12分)已知集合A=,B=.(1)分别求R (A B)∩,(RB)∪A.(2)已知C=,若C⊆B,求实数a的取值集合.19.(12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.20.(12分)已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【补偿训练】已知函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2).(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小). (注:总费用=途中费用+装卸费用+损耗费用)22.(12分)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.(3)当x∈(-3,4]时,求函数g(x)=log2f(x)+x2-6的值域.高中数学必修一(第一至第三章) (参考答案)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U=,集合M=,N=,则M∩(UN)等于( )A. B.C. D.【解析】选B.因为U N=,M=,所以M∩(UN)=.【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则U(A∪B)= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}【解析】选C.由题意知U={1,2,3,4,5},又A∪B={1,3,5},所以U(A∪B)={2,4}.2.(2015·淮南高一检测)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.要使函数y=有意义,必须解得,故函数的定义域为(1,2)∪(2,+∞).【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)【解析】选B.要使函数y=+有意义,必须,解得x≥-1且x≠2,故函数的定义域为[-1,2)∪(2,+∞).3.下列图形中,不是函数图象的是( )【解析】选B.由函数的定义可知:选项B中存在给定某一实数,有两个值与之对应.【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x【解析】选D.A定义域不同,故不是同一函数.B定义域不同,故不是同一函数.C对应法则不同,故不是同一函数.D定义域与对应法则均相同,所以是同一函数.4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x3【解析】选D.选项A中函数的定义域为x≥0,故不具备奇偶性;选项B是增函数但不是奇函数;选项C是偶函数;而选项D在R上是奇函数并且单调递增.5.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)【解析】选C.因为f(x)=,{x|x≠±1},所以f====-=-f(x),又因为f(-x)===f(x),所以f(x)为偶函数.【误区警示】解答本题在推导f与f(x)的关系时容易出现分式变形或符号变换错误.6.(2015·绍兴高一检测)函数f(x)=若f(x)=2,则x的值是( ) A. B.± C.0或1 D.【解析】选A.当x+2=2时,解得x=0,不满足x≤-1;当x2=2时,解得x=±,只有x=时才符合-1<x<2;当2x=2时,解得x=1,不符合x≥2.故x=.7.已知a=log0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )2A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解析】选A.由于a=log20.3<log21=0,0<0.30.2<0.30=1,20.3>20=1,故log20.3<0.30.2<20.3,即a<c<b.【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( ) A.c<b<a B.b<c<aC.c<a<bD.a<b<c【解题指南】作出函数f(x)=lo|x+2|的图象判断此函数的单调性,利用中间量0,1比较lo3,,ln3的大小,最后利用函数单调性比较a,b,c的大小.【解析】选A.函数y=lo|x|的图象如图(1),把y=lo|x|的图象向左平移2个单位得到y=lo|x+2|的图象如图(2),由图象可知函数y=lo|x+2|在(-2,+∞)上是减函数,因为lo3=-log23<-log22=-1,0<<=1,ln3>lne=1.所以-2<lo3<<ln3,所以f(lo3)>f>f(ln3),即c<b<a.8.函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选 C.利用根的存在性定理进行判断,由于f(2)=2+2-5=-1,f(3)=4+3-5=2,所以f(2)·f(3)<0,又f(x)为单调递增函数,所以函数f(x)=2x-1+x-5的零点所在的区间为(2,3). 【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.由题意知x>0,且f(x)在其定义域内为增函数,f(1)=ln1+13-9=-8<0,f(2)=ln2+23-9=ln2-1<0,f(3)=ln3+33-9=ln3+18>0,f(4)=ln4+43-9>0,所以f(2)f(3)<0,说明函数在区间(2,3)内有零点.9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.10.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【解析】选A.由于x1≠x2,都有<0成立,即函数在定义域内任意两点的连线的斜率都小于零,故函数在定义域内为减函数,所以有解得0<a≤.【补偿训练】若函数f(x)=logm(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( )A.3-B.3+C.2-D.2+【解析】选 B.由题意知m>5,所以f(x)=log m(m-x)在[3,5]上为减函数,所以log m(m-3)-log m(m-5)=1,log m=1,即=m,m2-6m+3=0,解得m=3+或m=3-(舍去).所以m=3+.11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)【解题指南】当x<0时,-x>0,由题意可知f(-x),再利用f(-x)=-f(x),可求f(x).【解析】选A.设x<0,则-x>0,f(-x)=(1-x)=-(1-x),又因为f(x)为奇函数,所以f(-x)=-f(x),所以-f(x)=-(1-x),所以f(x)=(1-x).12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9【解析】选D.当y=2x2-1=1时,解得x=±1,当y=2x2-1=7时,解得x=±2,由题意可知是“孪生函数”的函数的定义域应为,,,,,,,,共9个.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=a x-1+1a>0,且a≠1一定过定点.【解析】当x-1=0时,y=a x-1+1=a0+1=2,由此解得x=1,即函数恒过定点(1,2).答案:(1,2)14.= .【解析】===1.答案:115.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【解析】由于函数f(x)=x2-ax+1仅有一个零点,即方程x2-ax+1=0仅有一个根,故Δ=a2-4=0,解得a=±2.答案:±2【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.【解析】由于函数f(x)=x2+ax-4在(0,1)内只有一个零点,且f(0)=-4<0,函数f(x)的图象开口向上,则必有f(1)>0,即1+a-4>0,所以a>3.答案:a>316.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).【解析】例如函数f(x)=x2,f(0)=0,但此函数不是奇函数,故①错误;若函数为偶函数,则在其定义域内的所有的x,都有f(-x)=f(x),若f(-4)≠f(4),则该函数一定不是偶函数,故②正确;对于函数f(x)=x2,f(0)<f(4),但该函数不是R上的增函数,故③错误;由于f(0)<f(4),则该函数一定不是减函数,故④正确.答案:②④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数).【解析】原式=÷×=××=×a×=a2.18.(12分)已知集合A=,B=.(1)分别求R (A B)∩,(RB)∪A.(2)已知C=,若C⊆B,求实数a的取值集合. 【解析】(1)因为A∩B=,所以R (A B)∩=或,因为RB=,所以(RB)∪A=x<6或.(2)因为C⊆B,所以解之得3≤a≤8,所以a∈.19.(12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.【解析】(1)由已知得所以可得-1<x<1,故函数的定义域为.(2)f(-x)=lg(1-x)-lg(1+x)=-lg(1+x)+lg(1-x)=-=-f(x).所以f(x)=lg(1+x)-lg(1-x)为奇函数.20.(12分)已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【解析】(1)当x>0时,-x<0,因为函数是偶函数,故f(-x)=f(x),所以f(x)=f(-x)=(-x)2+4(-x)=x2-4x,所以f(x)=(2)图象如图所示:函数的值域为[-4,+∞).(ax+b)的图象经过点A(2,1),B(5,2). 【补偿训练】已知函数f(x)=log3(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.【解析】(1)因为函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2),所以即所以解得所以f(x)=log3(2x-1),定义域为.(2)f(14)÷f=log327÷log 3=3÷=6.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【解析】(1)由题意可知,用汽车运输的总费用为:f(x)=8x+1000+·300=14x+1600(x>0),用火车运输的总费用为:g(x)=4x+2000+·300=7x+3200(x>0).(2)由f(x)<g(x)得x<.由f(x)=g(x)得x=.由f(x)>g(x)得x>.所以,当A,B两地距离小于km时,采用汽车运输好;当A,B两地距离等于km时,采用汽车或火车都一样;当A,B两地距离大于km时,采用火车运输好.【拓展延伸】选择数学模型分析解决实际问题(1)特点:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题.(2)三种常用方法:①直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;②列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;③描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.22.(12分)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.f(x)+x2-6的值域.(3)当x∈(-3,4]时,求函数g(x)=log2【解析】(1)由题知所以或(舍去),所以f(x)=4x.(2)因为4x>,所以22x>,所以2x>x2-3,所以x2-2x-3<0,所以-1<x<3,所以不等式的解集为(-1,3).(3)g(x)=log24x+x2-6=log222x+x2-6=2x+x2-6=(x+1)2-7,因为-1∈(-3,4],所以g(x)min=-7,当x=4时,g(x)max=18,所以值域为[-7,18].。
高一数学必修1综合测试题1.集合EMBED Equation.3 ,EMBED Equation.DSMT4 则EMBED Equation.DSMT4 为()A. EMBED Equation.3 B.{0,1} C.{1,2} D. EMBED Equation.32.已知集合 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 则 EMBED Equation.DSMT4 ()A.EMBED Equation.DSMT4 B.EMBED Equation.DSMT4 C. EMBED Equation.DSMT4 D. EMBED Equation.DSMT43.设EMBED Equation.DSMT4 ,EMBED Equation.DSMT4 ,EMBEDEquation.DSMT4 ,则().A EMBED Equation.DSMT4B EMBED Equation.DSMT4C EMBED Equation.DSMT4 D EMBED Equation.DSMT44.已知函数EMBED Equation.DSMT4 是定义在R上的奇函数,且当EMBED Equation.3 时, EMBED Equation.3 ,则 EMBED Equation.DSMT4 在R上的解析式为()A. EMBED Equation.3 B. EMBED Equation.3C. EMBED Equation.3 D. EMBED Equation.35.要使EMBED Equation.DSMT4 的图象不经过第二象限,则t的取值范围为()A. EMBED Equation.DSMT4B. EMBED Equation.DSMT4C. EMBED Equation.DSMT4D. EMBED Equation.DSMT46.已知函数 EMBED Equation.DSMT4 在区间 EMBED Equation.DSMT4 上是EMBED Equation.DSMT4 的减函数,则 EMBED Equation.DSMT4 的取值范围是()A.EMBED Equation.DSMT4 B.EMBED Equation.DSMT4 C.EMBED Equation.DSMT4 D. EMBED Equation.DSMT47.已知 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 上的减函数,那么 EMBED Equation.DSMT4 的取值范围是()A EMBED Equation.DSMT4B EMBED Equation.DSMT4C EMBED Equation.DSMT4 D EMBED Equation.DSMT48.设EMBED Equation.DSMT4 ,函数EMBED Equation.DSMT4 在区间EMBED Equation.DSMT4 上的最大值与最小值之差为EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 ()A.EMBED Equation.DSMT4 B.2 C.EMBED Equation.DSMT4 D.49. 函数 EMBED Equation.3 与 EMBED Equation.3 在同一直角坐标系下的图象大致是(C)10.定义在R上的偶函数 EMBED Equation.3 满足 EMBED Equation.3 ,且当EMBED Equation.DSMT4 EMBED Equation.3 时EMBEDEquation.DSMT4 ,则 EMBED Equation.DSMT4 等于()A. EMBED Equation.DSMT4 B. EMBED Equation.DSMT4 C.EMBED Equation.DSMT4 D. EMBED Equation.DSMT411.根据表格中的数据,可以断定方程 EMBED Equation.3 的一个根所在的区间是(). EMBED Equation.3 -10123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)-10123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)0123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)23 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)3 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)12.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)2.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)7.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)20.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)12345(-1,0)B.(0,1)C.(1,2)D.(2,3)2345(-1,0)B.(0,1)C.(1,2)D.(2,3)345(-1,0)B.(0,1)C.(1,2)D.(2,3)45(-1,0)B.(0,1)C.(1,2)D.(2,3)5(-1,0)B.(0,1)C.(1,2)D.(2,3)(-1,0)B.(0,1)C.(1,2)D.(2,3)A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12.下表显示出函数值 EMBED Equation.3 随自变量 EMBED Equation.3 变化的一组数据,由此判断它最可能的函数模型是().x45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型5678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型78910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型8910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型10y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型1921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型21232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型2527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型27A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型13.若 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 .14. EMBED Equation.3 =15.已知函数 EMBED Equation.3 同时满足:(1)定义域为 EMBED Equation.DSMT4 且EMBED Equation.DSMT4 恒成立;(2)对任意正实数EMBED Equation.3 ,若 EMBED Equation.3 有 EMBED Equation.3 ,且 EMBED Equation.3 .试写出符合条件的函数 EMBED Equation.DSMT4 的一个解析式16.给出下面四个条件:① EMBED Equation.DSMT4 ,② EMBED Equation.DSMT4 ,③ EMBED Equation.DSMT4 ,④ EMBED Equation.DSMT4 ,能使函数 EMBED Equation.DSMT4 为单调减函数的是 .17. 已知函数 EMBED Equation.DSMT4 的定义域为 EMBED Equation.DSMT4,且同时满足下列条件:(1) EMBED Equation.DSMT4 是奇函数;(2) EMBED Equation.DSMT4在定义域上单调递减;(3) EMBED Equation.DSMT4求 EMBED Equation.DSMT4 的取值范围HYPERLINK"/"18.函数 EMBED Equation.DSMT4 在区间 EMBED Equation.DSMT4 上有最大值 EMBED Equation.DSMT4 ,求实数 EMBED Equation.DSMT4 的值HYPERLINK "/"19.已知函数 EMBED Equation.3 ,求函数 EMBED Equation.3 的定义域与值域.20.集合A是由适合以下性质的函数f(x)组成的,对于任意的x≥0,f(x)∈ EMBED Equation.3 且f(x)在(0,+∞)上是增函数.(1)试判断 EMBED Equation.DSMT4 (x≥0)是否在集合A中,若不在集合A中,试说明理由;(2)对于(1)中你认为是集合A中的函数f(x),证明不等式f(x)+f(x+2)<2f(x+1)对于任意x≥0总成立.高一数学必修1综合测试题(一)参考答案:1----5 DCACA 6----10BCDCD 11.C 12.A13. 3 14. EMBED Equation.DSMT4 15. EMBED Equation.DSMT4等16. ①④17解: EMBED Equation.DSMT4EMBED Equation.DSMT4 , EMBED Equation.DSMT4 EMBED Equation.DSMT4 .18解:对称轴 EMBED Equation.DSMT4 ,当 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 的递减区间,EMBED Equation.DSMT4 ;6分当 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 的递增区间,EMBED Equation.DSMT4 ;9分当 EMBED Equation.DSMT4 时 EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 矛盾;所以 EMBED Equation.DSMT4 或 EMBED Equation.DSMT4 HYPERLINK "/"19 解:由 EMBED Equation.3 ,得 EMBED Equation.3 . 解得 EMBED Equation.DSMT4 EMBED Equation.DSMT4 定义域为 EMBEDEquation.DSMT4令 EMBED Equation.3 ,则 EMBED Equation.3 .∵ EMBED Equation.3 ,∴ EMBED Equation.3 ∴值域为 EMBED Equation.3 .20.解:(1) EMBED Equation.3 EMBED Equation.3 EMBED Equation.3不在集合A中又 EMBED Equation.3 的值域 EMBED Equation.3 , EMBED Equation.3当 EMBED Equation.3 时 EMBED Equation.3 为增函数 EMBED Equation.3 在集合A中(2) EMBED Equation.3 EMBED Equation.3EMBED Equation.3EMBED Equation.3 对任意 EMBED Equation.3 ,不等式 EMBED Equation.3 总成.高一数学必修1综合测试题(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I={0,1,2},且满足C I (A∪B)={2}的A、B共有组数A.5B.7C.9D.112.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则A.A EMBED PBrush BB.B EMBED PBrush AC.A=BD.A∩B= EMBED Equation.33.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是A.5B.4C.3D.24.若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q EMBED Equation.3 (P∩Q)成立的所有实数a的取值范围为A.(1,9)B.[1,9]C.[6,9 EMBED Equation.3D.(6,9]5.已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,则19在f作用下的象为A.18B.30C. eq \f(27,2)D.286.函数f(x)= eq \f(3x-1,2-x) (x∈R且x≠2)的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元素是A.2B.-2C.-1D.-37.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为A.3x-2B.3x+2C.2x+3D.2x-38.下列各组函数中,表示同一函数的是A.f(x)=1,g(x)=x0B.f(x)=x+2,g(x)= eq \f(x2-4,x-2)C.f(x)=|x|,g(x)= eq \b\lc\{(\a\al(x x≥0,-x x<0))D.f(x)=x,g(x)=( eq \r(x) )29. f(x)= eq \b\lc\{(\a\al(x2x>0,πx=0,0 x<0)) ,则f{f[f(-3)]}等于A.0B.πC.π2D.910.已知2lg(x-2y)=lg x+lg y,则 eq \f(x,y) 的值为A.1B.4C.1或4D. eq \f(1,4) 或411.设x∈R,若a<lg(|x-3|+|x+7|)恒成立,则A.a≥1B.a>1C.0<a≤1D.a<112.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是A.(0, eq \f(1,2) )B.(0, EMBED Equation.3C.( eq\f(1,2) ,+∞) D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)13.若不等式x2+ax+a-2>0的解集为R,则a可取值的集合为__________.14.函数y= eq \r(x2+x+1) 的定义域是______,值域为__ ____.15.若不等式3 EMBED Equation.3 >( eq \f(1,3) )x+1对一切实数x恒成立,则实数a 的取值范围为___ ___.16. f(x)= EMBED Equation.3 ,则f(x)值域为_____ _.17.函数y= eq \f(1,2x+1) 的值域是__________.18.方程log2(2-2x)+x+99=0的两个解的和是______.三、解答题19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f(x)=log EMBED Equation.3 2x-log EMBED Equation.3 x+5,x∈[2,4],求f(x)的最大值及最小值.23.已知函数f(x)= eq \f(a,a2-2) (a x-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.高一数学必修1综合测试题(二)参考答案一、选择题题号123456789101112答案C B C D B D A C C B D A二、填空题123456789101112答案C B C D B D A C C B D A二、填空题23456789101112答案C B C D B D A C C B D A二、填空题3456789101112答案C B C D B D A C C B D A二、填空题456789101112答案C B C D B D A C C B D A二、填空题56789101112答案C B C D B D A C C B D A二、填空题6789101112答案C B C D B D A C C B D A二、填空题789101112答案C B C D B D A C C B D A二、填空题89101112答案C B C D B D A C C B D A二、填空题9101112答案C B C D B D A C C B D A二、填空题101112答案C B C D B D A C C B D A二、填空题1112答案C B C D B D A C C B D A二、填空题12答案C B C D B D A C C B D A二、填空题答案C B C D B D A C C B D A二、填空题答案C B C D B D A C C B D A二、填空题C B CD B D A C C B D A二、填空题B C D B D A C C B D A二、填空题C D B D A C C B D A二、填空题D B D A C C B D A二、填空题B D AC C BD A二、填空题D A C C B D A二、填空题A C CB D A二、填空题C C BD A二、填空题C BD A二、填空题B D A二、填空题D A二、填空题A二、填空题二、填空题二、填空题13. EMBED Equation.3 14. R [ eq \f(\r(3),2),+∞) 15. - eq \f(1,2) < a < eq \f(3,2)16. (-2,-1]17. (0,1) 18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).(C U A)∩(C U B)={x|-1<x<1}20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.考查函数对应法则及单调性的应用.(1)【证明】由题意得f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=f(2)+f(2)+f(2)=3f(2)又∵f(2)=1 ∴f(8)=3(2)【解】不等式化为f(x)>f(x-2)+3∵f(8)=3 ∴f(x)>f(x-2)+f(8)=f(8x-16)∵f(x)是(0,+∞)上的增函数∴ EMBED Equation.3 解得2<x< eq \f(16,7)21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.【解】(1)当每辆车月租金为3600元时,未租出的车辆数为 eq \f(3600-3000,50) =12,所以这时租出了88辆.(2)设每辆车的月租金定为x元,则公司月收益为f(x)=(100- eq \f(x-3000,50) )(x-150)- eq \f(x-3000,50) ×50整理得:f(x)=- eq \f(x2,50) +162x-2100=- eq \f(1,50) (x-4050)2+307050 ∴当x=4050时,f(x)最大,最大值为f(4050)=307050 元22.已知函数f(x)=log EMBED Equation.3 2x-log EMBED Equation.3 x+5,x∈[2,4],求f(x)的最大值及最小值.考查函数最值及对数函数性质.【解】令t=log EMBED Equation.3 x∵x∈[2,4],t=log EMBED Equation.3 x在定义域递减有log EMBED Equation.3 4<log EMBED Equation.3 x<log EMBED Equation.3 2,∴t∈[-1,- eq \f(1,2) ]∴f(t)=t2-t+5=(t- eq \f(1,2) )2+ eq \f(19,4) ,t∈[-1,- eq \f(1,2) ]∴当t=- eq \f(1,2) 时,f(x)取最小值 eq \f(23,4)当t=-1时,f(x)取最大值7.23.已知函数f(x)= eq \f(a,a2-2) (a x-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.考查指数函数性质.【解】f(x)的定义域为R,设x1、x2∈R,且x1<x2则f(x2)-f(x1)= eq \f(a,a2-2) (a EMBED Equation.3 -a EMBED Equation.3 -a EMBED Equation.3 +a EMBED Equation.3 )=eq \f(a,a2-2) (a EMBED Equation.3 -a EMBED Equation.3 )(1+ EMBED Equation.3 )由于a>0,且a≠1,∴1+ EMBED Equation.3 >0∵f(x)为增函数,则(a2-2)( a EMBED Equation.3 -a EMBED Equation.3 )>0 于是有 EMBED Equation.3 ,解得a> eq \r(2) 或0<a<1。
新教材必修第一册综合测试数学试题(含答案)高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.(1)集合2{|20}A x x x =--,{|10}B x x =-<,则()A B ⋂=A.{|1}x xB.{|11}x x -<C.{|1}x x <-D.{|21}x x -<(2)函数为()f x =的定义域( ) A.1,2⎛⎫-+∞ ⎪⎝⎭ B.1,2⎡⎫-+∞⎪⎢⎣⎭C.()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ D.()1,00,2⎡⎫-⋃+∞⎪⎢⎣⎭(3)“0lgx <”是“2x <”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)已已知知512x log =,1012y ⎛⎫= ⎪⎝⎭,132z =,则( )A.x y z <<B.x z y <<C.y x z <<D.z x y <<(5)下列函数中,既是偶函数又在区间()0,+∞上单调递增的函数是( ) A. 1||y lnx = B.||2x y =C.y cosx =D.3y x =(6)已知定义在R 上的函数()f x 的图象是连续不断的且有如下对应值表:那么函数()()2g x f x x =-一定存在零点的区间是( ) A.((),1-∞B.()1,2C.()2,3D.()3,4(7)将函数23y sin x π⎛⎫=-⎪⎝⎭的图象向右平移6π个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为( ) A. 23y sin x π⎛⎫=-⎪⎝⎭ B.243y sin x π⎛⎫=-⎪⎝⎭C.2y sin x π⎛⎫=- ⎪⎝⎭D.42y sin x π⎛⎫=-⎪⎝⎭ (8)中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式: 21S C Wlog N ⎛⎫=+⎪⎝⎭它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小。其中SN叫做信噪比,当信噪比较大时,公式中真数中的1可以忽略不计。按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至8000,则C 大约增加了(20.3010lg ≈,30.4771lg ≈)( ) A.10%B.30%C.60%D.90%二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑. (9)在下列四组函数中,()f x 与()g x 表示同一函数的是( )A.()1f x x =-,()2g x =B.()|3|,|f x x g =-(),g x =C.()f x x =,()10xg x lg =D.()f x =()g x =(10)幂函数223a a y x --=是奇函数,且在()0,+∞是减函数,则整数a 的值是( )A.0B.1C.2D.3(11)下列结论正确的是( )A.当1x 时,2B.当54x <时, 14245x x -+-的最小值是5C.当0x ≠时, 1x x+的最小值是2D.设0x >,0y >,且2x y +=,则14x y+的最小值是92(12)已知函数()()f x Asin x ωϕ=+,0,0,||2A πωϕ⎛⎫>><⎪⎝⎭部分图象如图所示,下列说法不正确是( )A.()f x 的图象关于直线23x π=对称B.()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称 C.将函数22y x cos x =-的图象向左平移2π个单位得到函数()f x 的图象 D.若方程()f x m =在,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m的取值范围是(2,- 三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. (13)18427242cos cos cos sin ︒︒︒︒⋅-⋅=____. (14)已知3cos sin cos sin αααα+=-,则4tan πα⎛⎫+= ⎪⎝⎭____.(15)已知函数32,1()log (1),1x x f x x x ⎧≤=⎨->⎩,且()01f x =,则0x =____.(16)已知关于x 的不等式20ax bx c -+的解集为{|12}x x ,则20cx bx a ++的解集为____.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. (17)(本小题满分10分) 已知02πα<<,且513sin α=.(I)求tan α的值;(II)求2sin 22sin()sin 2cos ()sin 22απααπαα--++的值.已知函数()11xf x lnx-=+. (I)判断并证明函数()f x 的奇偶性; (Ⅱ)若()()2f m f m --=,求实数m 的值.(19)(本小题满分12分)已知函数()()2f x Asin x ϕ=+(A,ϕ是常数,0A >,0,x R ϕπ<<∈)在8x π=时取得最大值3.(1)求()f x 的最小正周期; (Ⅱ)求()f x 的解析式; (Ⅲ)若18f πα⎛⎫+=- ⎪⎝⎭,求sin α.(20)(本小题满分12分)某种商品在30天内每件的销售价格P(元)与时间t(天)的函数关系**20025,1002530,t t t N P t t t N⎧+<<∈=⎨-+≤≤∈⎩,该商品在30天内日销售量Q(件)与时间t(天)之间满足一次函数关系,具体数据如下表:(I)根据表中提供的数据,求出日销售量关于时间t 的函数表达式; (Ⅱ)求该商品在这30天中的第几天的日销售金额最大,最大值是多少?设函数()2f x cos x a =++ (I)写出函数()f x 的最小正周期及单调递减区间; (Ⅱ)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最大值与最小值的和32,求不等式()1f x >的解集.(22)(本小题满分12分)已知函数()313xxa f x +=+是R 上的奇函数(I)求a;(Ⅱ)用定义法讨论()f x 在R 上的单调性; (III)若21121042xx f k k f -⎛⎫⎛⎫-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立,求k 的取值范围.新教材必修第一册综合测试数学试题答案高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.(1)B (2)D (3)A (4)A (5)B (6)B(7)A(8)B二、多项选择题:本大题共4小题,每小题5分,共20分.(9)BC (10)AC (11)AD (12)ABC三、填空题:本大题共4小题,每小题5分,共20分.(13)21(14)3(15)0或4(16)1{|1,}2x x x ≤-≥-或四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.(17)解:(Ⅰ)因为135sin =α,20πα<<,所以12cos 13α===,……………………………………4分故125cos sin tan ==ααα.……………………………………5分(Ⅱ)222sin 22sin()sin 2sin cos 2sin 2sin 2sin cos 2cos ()sin 22απαααααπααααα---=+++…………………7分cos sin 1tan sin cos 1tan αααααα--==++…………………9分51712517112-==+.…………………10分(18)(Ⅰ)解:()1ln 1xf x x-=+是奇函数.证明:要10,1xx->+等价于()()110,x x +->即11,x -<<故()1ln1xf x x-=+的定义域为()1,1,-关于原点对称又因为()()1111ln ln ln .111x x x f x f x x x x -+--⎛⎫-===-=- ⎪-++⎝⎭所以()1ln1xf x x-=+是奇函数.…………6分(Ⅱ)由(1)知,()f x 是奇函数,则()()0f m f m +-=,联立()()()()02f m f m f m f m +-=--=⎧⎪⎨⎪⎩得()=1f m ,即1ln 1,1m m -=+解得1.1em e-=+…………12分(19)(Ⅰ))(x f 的最小正周期ππ==22T ………………2分(列式1分,计算1分)(Ⅱ)依题意3=A ………………………………………4分3)82sin(3=+⨯ϕπ…………………………………5分因为4544πϕππ<+<且1)4sin(=+ϕπ…………………6分所以24πϕπ=+,4πϕ=…………………………………7分)42sin(3)(π+=x x f ……………………………………8分(Ⅲ)由18(-=+παf 得122sin(3-=+πα…………………9分即312cos -=α……………………………………………10分所以31sin 212-=-α……………………………………11分36sin ±=α………………………………………………12分.(20)(Ⅰ)设日销售量Q 关于时间t 的函数表达式为Q kt b =+,依题意得:3551030k b k b =+⎧⎨=+⎩,解之得:140k b =-⎧⎨=⎩,所以日销售量Q 关于时间t 的函数表达式为40Q t =-+((0,30]t ∈,t N *∈,).(Ⅱ)设商品的日销售金额为y (元),依题意:y PQ =,所以(20)(40)025,,(100)(40)2530,.t t t t N y t t t t N **⎧+-+<<∈=⎨-+-+≤≤∈⎩,即:2220800025,,14040002530,.t t t t N y t t t t N **⎧-++<<∈=⎨-+≤≤∈⎩.当(0,25)t ∈,t N *∈时,2(10)900y t =--+,当10t =时,max 900y =;当[25,30]t ∈,t N *∈时,2(70)900y t =--,当25t =时,max 1125y =;所以该商品在这30天中的第25天的日销售金额最大,为1125元.(21)解:(Ⅰ)31cos 2()sin 222xf x x a +=++……1分1sin(262x a π=+++,……3分T π∴=,……4分令3222262k x k πππππ+≤+≤+,Z k ∈,∴263k x k ππππ+≤≤+,Z k ∈,∴函数)(x f 的递减区间为:2[,],63k k k Z ππππ++∈.……6分(Ⅱ)由[,63x ππ∈-得:52666x πππ-≤+≤,max min 3(),()2f x a f x a ∴=+=,……8分33022a a a ∴++=⇒=,……9分∴1()1sin(2)62f x x π>⇒+>,52226663k x k k x k ππππππππ∴+<+<+⇒<<+,Z k ∈,……11分又⎦⎤⎢⎣⎡-∈3,6ππx ,∴不等式1)(>x f 的解集为{|0}3x x π<<.……12分(22)(Ⅰ) 函数()313xxa f x +=+是R 上的奇函数()()331313x xx x a a f x f x --++∴-==-=-++即3133113x xx xa a +--=++即()()3131xxa +=-+解得1a =-;(Ⅱ)由(1)知()3131-=+x xf x ()()12121231313131x x x x f x f x ---=-++()()()()()()122112313131313131x x x x x x -+--+=++()()()12122333131x x x x -=++设12x x <,则12033x x <<故12330x x -<,1310x +>,2310x +>故()()120f x f x -<即()()12f x f x <()f x ∴是R 上的增函数.(Ⅲ)()f x 是R 上的奇函数,()f x 是R 上的增函数21121042x x f k k f -⎛⎫⎛⎫∴-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立等价于2111122244x x xf f k k f k k -⎛⎫⎛⎫⎛⎫+>--⋅=⋅-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴等价于2112142x x k k -⋅-<+在x ∈R 上恒成立即()2212420xx k k +⋅+⋅->在x ∈R 上恒成立“*”令20x t =>则“*”式等价于()22140k t t k ++->对0t >时恒成立“**”①当210k +=,即12k =-时“**”为1402t +>对0t >时恒成立②当210k +≠,即12k ≠时,“**”对0t >时恒成立须()210164210k k k +>⎧⎨∆=++<⎩或2102021k k k +>⎧⎪⎪-≤⎨+⎪-≥⎪⎩解得102k -<≤综上,k 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.。
高中数学必修1测试题第I 卷(选择题)满分150分 考试时间:120分钟一、选择题(一共12道小题,每小题5分,共60分,每道小题只有一个正确答案,请把你认为对的选项填在相应的位置) 1.设集合{}3,2ln A x =,{},B x y =,若{}0AB =,则2x y +的值是( )A. 1B. 2C. 0D.1e2.设1232,2().((2))log (1)2x e x f x f f x x -⎧<⎪=⎨-≥⎪⎩,则的值为,( ) A .0 B .1 C .2 D .33.若01x y <<<,则( ) A .33y x <B .log 3log 3x y <C .44log log x y < D4.函数y =)A .[1,2]B .[1,2)C .1(,1]2D .1[,1]25.已知函数⎩⎨⎧>≤=+.0,log ,0,3)(21x x x x f x 若()30>x f ,则0x 的取值范围是( )A .80>xB .00<x 或80>xC .800<<xD .00<x 或800<<x . 6. 已知集合{}R x x x M ∈>-=,02|,则M ∪N 等于( ). A .{x|x≥1} B .{x|1≤x<2} C .{x|x >2} D .{x|x >2或x <0} 7)A. C.1) D.(1,2) 8.记函数13x y -=+的反函数为()y g x =,则(10)g =( ) A.2.B.2-.C.3.D.1-. 9.下列四组中的f(x),g(x),表示同一个函数的是( )A .f(x)=1,g(x)=x 0B .f(x)=x -1,g(x)1C .f(x)=x 2,g(x)=4D .f(x)=x 3,g(x)10.函数243,[0,3]y x x x =-+∈的值域为 ( )A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]11.下列函数中,满足“对任意的时,都有”的是( ) A. C .D 12.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( )A.(0,1) B .1(0,)3C .11[,)73D .1[,1)7第II 卷(非选择题)二、填空题(一共4道小题,每小题5分,共20分)13. 计算:不等式1)12(log 3≤-x 的解集为 . 14.的值是____________. 15.已知幂函数()a f x x =的图象过点 16.设函数()f x 是定义在R 上的偶函数,当0x ≥时,()21xf x =+.若()3f a =,则实数a 的值为 .三、解答题(一共7道小题,共70分,解答题应写出必要的文字说明、演算过程与步骤) 17.(一共10分,每小题5分)求下列各式的值. (1)355log +-145log ;(2)3948(log 2log 2)(log 3log 3)+⋅+;()f x ()1212,0,,x x x x ∈+∞<当()()12f x f x <()244f x x x =-+()2xf x =2lg 50lg 4lg -+18. (本题满分12分)已知函数()lg(3)lg(3)f x x x =++-. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由.19. (本小题满分12分)已知函数)10()0()0(1)(≠>⎩⎨⎧<≥+=a a x x x a x f x 且;(1)若2)1(=f ,求a 的值,并作出)(x f 的图象; (2)当R x ∈时,恒有)0()(f x f ≤求a 的取值范围。
高一数学必修1综合测试题(三)一、 选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.方程062=+-px x 的解集为M ,方程062=-+q x x 的解集为N ,且{},2=N M 那么=+q p ( )A .21B .8C .6D .72.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,则[(2)]f f -的值为( ).A .1B .2C .4D .53.、函数x x x f 3log 3)(+-= 的零点所在的区间是( ) A .(0,1) B .(1,3) C .(3,4) D .(4,+∞)4.设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射的是5.下列函数在其定义域内既是奇函数又是增函数的是( ) ∈(0,+∞)) B.y = 3x (x ∈R)∈R) D.y = lg|x| (x ≠0)6.函数12-=xy 的值域是( )A 、(),1-∞B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞7.已知二次函数),0()(2R x a c bx ax x f ∈≠++=的部分对应值如下表.则不等式0)(<x f 的解集为 ( ).A )0,(-∞ .B ),3()1,(+∞--∞ .C )1,(--∞ .D ),3(+∞8.若奇函数...()x f 在[]3,1上为增函数...,且有最小值7,则它在[]1,3--上( ) A.是减函数,有最小值-7 B.是增函数,有最小值-7 C.是减函数,有最大值-7 D.是增函数,有最大值-7二、填空题:本大题共6小题,每小题5分,共30分,9.已知幂函数αx x f =)(的图象经过点(9,3)10.设240.3log 3,log 4,0.3a b c -===, 则a ,b ,c 的大小关系是 (按从小到大的顺序).11.若函数2()2(1)2f x x a x =+-+在[4,)+∞上是增函数,则实数a 的取值范围是 . 12.已知定义在R 上的函数()y f x =是偶函数,且0x ≥时,()()2ln 22f x x x =-+,当0x <时,()f x 解析式是 .13.已知集合A ={x ∈R |ax 2-3x +2=0, a ∈R },若A 中元素至多有1个,则a 的取值范围是 .14.深圳市的一家报刊摊点,从报社买进《深圳特区报》的价格是每份0.60元,卖出的价格是每份1元,卖不掉的报纸可以以每份0.1元的价格退回报社。
高一必修1测试
1、设全集,Z U =集合{}{},2,1,0,1,2,1,1-=-=B A 从A 到B 的一个映射为
|
|)(x x x f y x =
=→,其中
{},
)(|,,x f y y P B y A x ==∈∈则
=⋂)(P C B U _________________。
2、已知1x 是方程3lg =+x x 的根,2x 是方程310=+x x 的根,则21x x +值为______________。
3、已知函数)(x f y =的图象关于直线1-=x 对称,且当0>x 时,1)(x
x f =则当
2-<x 时=)(x f
________________。
4、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如图所示),则
方程()0f x =在[1,4]上的根是x =
5、设1
2
32,2()((2))log (1) 2.
x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,
则的值为, A 、0 B 、1 C 、2 D 、3
6、从甲城市到乙城市m 分钟的电话费由函数)4
7][4
3(06.1)(+⨯=m m f 给出,其中0>m ,][m 表示不大于m 的最大整数(如3]1,3[,3]9.3[,3]3[===),则从甲城市到乙城市8.5分钟的电话费为______________。
7、函数2
1
)(++=
x ax x f 在区间),2(+∞-上为增函数,则a 的取值范围是______________。
8、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--)
,2(,22]
2,(,2211x x y x x 的值域为______________。
A 、),23(+∞-
B 、]0,(-∞
C 、)2
3,(--∞ D 、]0,2(- 9、若2)5(12-=-x f x ,则=)125(f __________
10、已知映射B A f →:,其中A =B =R ,对应法则为32:2++=→x x y x f 若对实数B k ∈,在集合中A 不存在原象,则k 的取值范围是______________
11、偶函数)(x f 在0-,(∞)上是减函数,若)(lg -1)(x f f <,则实数x 的取值范围是______________.
12、关于x 的方程0|34|2=-+-a x x 有三个不相等的实数根,则实数a 的值是_________________。
13、关于x 的方程a
x lg 11
)2
1
(-=
有正根,则实数a 的取值范围是______________ 14、已知函数f(x)=5log )(log 4
12
4
1
+-x x ,∈x []42,,则当x = , )(x f 有最大值 ;当x = 时,f(x)有最小值 .
15、已知集合=A {}m ,3,2,1,集合{}a a a B 3,,7,424+=,其中
.,,,**B y A x N a N m ∈∈∈∈13:+=→x y x f 是从集合A 到集合B 的函数,求
B A a m ,,,
16、已知函数3)(2++=ax x x f ,当]2,2[-∈x 时,a x f ≥)(恒成立,求a 的最小值. 17、已知函数12)(+=x x f ,将函数)(1x f y -=的图象向左平移2个单位,再向上平移1个单位,就得到)(x g y =的图象. (1)写出)(x g y =的解析式; (2)求)()()(12x f x g x F --=的最小值.
18、一片森林面积为a ,计划每年砍伐一批木材,每年砍伐面积的百分比相等,则砍伐到面积的一半时,所用时间是T 年.为保护生态环境,森林面积至少要保留原面积的4
1.已知到今年为止,森林剩余面积为原来的2
2
. (1)到今年为止,该森林已砍伐了多少年? (2)今后最多还能砍伐多少年?
参考答案
一、选择题
1、{}2,0
2、1
3、
21--x 4、3 5、2 6、83.5元 7、2
1
>a 8、D ]0,2(- 9、0 10、)2,(-∞ 11、),10()10
1
,0(+∞⋃ 12、a =1 13、
(0,1)
14.4,7 ;2 , 5.75
三、解答题:
15、由函数的定义可知,函数是从定义域到值域的映射,因此,值域中的每一个元素,在定义域中一定能有原象与之对应.
由对应法则,1对应4,2对应7,3对应10,m 对应13+m .
2,103,10,,24**==+≠∴∈∈a a a a N a N m (5-=a 舍去)
又,2134=+m ,5=∴m 故{
}{}.16,10,7,4,5,3,2,1==B A 16、设)(x f 在]2,2[-上的最小值为)(a g ,则满足a a g ≥)(的a 的最小值即为所求.
配方得)2|(|4
3)2()(2
2≤-++=x a a x x f
(1)当22
2≤-≤-a
时,43)(2a a g -=,由a a ≥-432解得,26≤≤-a 24≤≤-∴a ;
(2)当22
≥-a
时,27)2()(a f a g +==由a a ≥+27得7-≥a 47-≤≤-∴a
(3) 当22-≤-a 时,,27)2()(a f a g -=-=由a a ≥-27得3
7≤a ,这与4≥a 矛盾,此种情形不存在.
综上讨论,得27≤≤-a 7min -=∴a
17、 (1)1log )(21-=-x x f ,向左平移2个单位,向上平移1个单位,得到
1)2(log 12-+=-x y ,)2(log 2+=∴x y ,即)2)(2(log )(2->+=x x x g . (2)2
5
122log 12log )1(log )2(log )(222
22
2=+⋅≥++=--+=x x x x x x x F 当且仅当x x 2=即)0(2>=x x 时,2
5)(min =x F 18、设每年降低的百分比为x (10<<x )
(1)设经过M 年剩余面积为原来的22.则2
1lg )1lg(21)1(=-⇒=-x T a x a T . 又22lg )1lg(22)1(=-⇒=
-x M a x a M .2
221log 2
2
T M M
T
=⇒==∴ ∴到今年为止,已砍伐了
2
T
年. (2)设从今年开始,以后砍了N 年,则再砍伐N 年后剩余面积为N x a )1(2
2
-. 由题意,有
,41)1(22a x a N ≥-即4
1)1(22≥-N x 由(1)知T T x x 1
)21(121)1(=-⇒=-.4
1
)21(22≥⋅∴T N
.
化为23
)21
(2
21)21(=≥T N T N T N 2323≤⇒≤∴
故今后最多还能砍伐T 2
3年.。