拉伸、压缩超静定问题
- 格式:pdf
- 大小:631.60 KB
- 文档页数:57
第2章拉伸压缩与剪切教学目的:了解材料的力学性质;掌握轴向拉伸、压缩、剪切和挤压的概念;掌握轴向拉压时构件的内力、应力、变形的计算;熟练掌握剪切应力及挤压应力的计算方法并进行强度校核;掌握拉压杆的超静定问题。
教学重点:建立弹性杆件横截面上内力、内力分量的概念;运用截面法画轴力图;掌握低碳钢的力学性质;掌握轴向拉伸和压缩时横截面上正应力计算公式及其适用条件;掌握拉压杆的强度计算;熟练掌握剪切和挤压的实用计算。
教学难点:低碳钢类塑性材料在拉伸过程中反映出的性质;许用应力的确定和使用安全系数的原因;强度计算问题;剪切面和挤压面的确定;剪切和挤压的实用计算;拉压杆超的静定计算。
教具:多媒体。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
举例掌握轴向拉伸、压缩和剪切变形概念,通过例题、作业,加强辅导熟练运用截面法,掌握轴力图的画法;建立变形、弹性变形、应变、胡克定律和抗拉压刚度的概念;教学内容:轴向拉伸和压缩的概念;强度计算;材料的力学性能及应力应变图;许用应力与安全系数;超静定的计算;剪切概念;剪切实用计算;挤压实用计算。
教学学时:8学时。
教学提纲:2.1 轴向拉伸与压缩的概念和实例1.实例(1)液压传动中的活塞杆(2)内燃机的连杆(3)起吊重物用的钢索(4)千斤顶的螺杆(5)桁架的杆件2.概念及简图这些杆件虽然外形各异,受力方式不同,但是它们有共同的特点:(1)受力特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。
(如果两个F 力是一对离开端截面的力,则将使杆发生纵向伸长,这样的力称为轴向拉力; 如果是一对指向端截面的力,则将使杆发生纵向缩短,称为轴向压力)。
(2)变形特点:主要变形是纵向伸长或缩短。
(3)拉(压)杆的受力简图:(4)说明:本章所讲的变形是指受压杆没有被压弯的情况下,不涉及稳定性问题。
2.2 轴向拉伸或压缩时横截面上的内力和应力1.截面法求内力(1)假想沿m-m 横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力(即轴力)的值。
《材料力学》课程教案2(二)拉伸、压缩的超静定问题设教学安排 ● 新课引入如图所示的两杆组成的桁架结构受力,由于是平面汇交力系,可由静力平衡方程求出两杆内力。
如果为了提高构件安全性,再加一个杆,三杆内力还能由静力平衡方程求出吗?● 新课讲授一、 静定结构(一)提出问题1和2两杆组成桁架结构受力如图所示,角度已知,两杆抗拉刚度相同,2211A E A E =,求两杆中内力的大小。
(二)分析:求内力⇒截面法(1截2代3列平衡方程)⇒=∑0x 021=-ααSin F Sin F N N ⇒=∑0y 0321=-++F F Cos F Cos F N N N αα 两个方程,两个未知数,可以求解。
引出静定结构:约束反力(轴力)可以由静力平衡方程完全求出。
二、 超静定结构和超静定次数(一)继续提问在现实中为了增加构件的安全性,往往可以多加一个杆,在问题一的基础上在中间再加一个3杆,抗拉刚度为33A E ,如图所示,求3杆中内力的大小。
(二)分析:求内力⇒截面法(1截2代3列平衡方程) ①静平衡方程:平面汇交力系,只能列两个平衡方程⇒=∑0x21=-ααSin F Sin F N N⇒=∑0y 0321=-++F F Cos F Cos F N N N αα 两个方程,三个未知数,解不出。
引出超静定结构:约束反力(轴力)不能由静力平衡方程完全求出。
超静定次数:约束反力(轴力)多余平衡方程的个数。
上述问题属于一次超静定问题。
三、超静定结构的求解方法(一)继续提问,引导学生深入思考:超静定到底能不能求解?实际上F 一定,作用于每个杆上的力都是确定的。
还需再找一个补充方程,材料力学是变形体,受力会引起变形,力和力的关系看不出, 先把变形关系找到,再转化成力的关系。
(重点)②几何方程——变形协调方程:要找变形关系,关键是画变形图(难点)。
节点在中间杆上,左右两杆抗拉刚度相同,角度相同,即对称,因此中间杆仅沿竖直方向产生伸长,确定最终位置。
第2章 杆件的拉伸与压缩提要:轴向拉压是构件的基本受力形式之一,要对其进行分析,首先需要计算内力,在本章介绍了计算内力的基本方法——截面法。
为了判断材料是否会发生破坏,还必须了解内力在截面上的分布状况,即应力。
由试验观察得到的现象做出平面假设,进而得出横截面上的正应力计算公式。
根据有些构件受轴力作用后破坏形式是沿斜截面断裂,进一步讨论斜截面上的应力计算公式。
为了保证构件的安全工作,需要满足强度条件,根据强度条件可以进行强度校核,也可以选择截面尺寸或者计算容许荷载。
本章还研究了轴向拉压杆的变形计算,一个目的是分析拉压杆的刚度问题,另一个目的就是为解决超静定问题做准备,因为超静定结构必须借助于结构的变形协调关系所建立的补充方程,才能求出全部未知力。
在超静定问题中还介绍了温度应力和装配应力的概念及计算。
不同的材料具有不同的力学性能,本章介绍了塑性材料和脆性材料的典型代表低碳钢和铸铁在拉伸和压缩时的力学性能。
2.1 轴向拉伸和压缩的概念在实际工程中,承受轴向拉伸或压缩的构件是相当多的,例如起吊重物的钢索、桁架第2章 杆件的拉伸与压缩 ·9··9·2.2 拉(压)杆的内力计算2.2.1 轴力的概念为了进行拉(压)杆的强度计算,必须首先研究杆件横截面上的内力,然后分析横截面上的应力。
下面讨论杆件横截面上内力的计算。
取一直杆,在它两端施加一对大小相等、方向相反、作用线与直杆轴线相重合的外力,使其产生轴向拉伸变形,如图2.2(a)所示。
为了显示拉杆横截面上的内力,取横截面把m m −拉杆分成两段。
杆件横截面上的内力是一个分布力系,其合力为N F ,如图2.2(b)和2.2(c)所示。
由于外力P 的作用线与杆轴线相重合,所以N F 的作用线也与杆轴线相重合,故称N F 为轴力(axial force)。
由左段的静力平衡条件0X =∑有:()0+−=N F P ,得=N F P 。
一、实验目的1. 了解工程力学实验的基本方法和步骤。
2. 通过实验,掌握力学基本理论在工程实际中的应用。
3. 培养实验操作技能,提高实验数据分析能力。
二、实验内容1. 材料力学实验:拉伸试验、压缩试验、弯曲试验。
2. 建筑力学实验:静力平衡实验、超静定结构受力分析实验。
三、实验步骤1. 实验一:拉伸试验(1)将试样固定在拉伸试验机上,调整试验机至预定位置。
(2)缓慢加载,记录加载过程中的力值和位移值。
(3)观察试样变形情况,记录断裂位置。
(4)分析试验数据,绘制拉伸曲线,计算弹性模量、屈服强度等指标。
2. 实验二:压缩试验(1)将试样固定在压缩试验机上,调整试验机至预定位置。
(2)缓慢加载,记录加载过程中的力值和位移值。
(3)观察试样变形情况,记录断裂位置。
(4)分析试验数据,绘制压缩曲线,计算抗压强度、弹性模量等指标。
3. 实验三:弯曲试验(1)将试样固定在弯曲试验机上,调整试验机至预定位置。
(2)缓慢加载,记录加载过程中的力值和位移值。
(3)观察试样变形情况,记录断裂位置。
(4)分析试验数据,绘制弯曲曲线,计算抗弯强度、弹性模量等指标。
4. 实验四:静力平衡实验(1)搭建静力平衡实验装置,调整实验参数。
(2)观察实验现象,记录实验数据。
(3)分析实验数据,验证静力平衡原理。
5. 实验五:超静定结构受力分析实验(1)搭建超静定结构实验装置,调整实验参数。
(2)观察实验现象,记录实验数据。
(3)分析实验数据,验证超静定结构受力分析原理。
四、实验结果与分析1. 拉伸试验根据实验数据,绘制拉伸曲线,计算弹性模量E=...(单位:MPa),屈服强度σs=...(单位:MPa),抗拉强度σb=...(单位:MPa)。
2. 压缩试验根据实验数据,绘制压缩曲线,计算抗压强度σc=...(单位:MPa),弹性模量E=...(单位:MPa)。
3. 弯曲试验根据实验数据,绘制弯曲曲线,计算抗弯强度σb=...(单位:MPa),弹性模量E=...(单位:MPa)。
拉伸与压缩试题————————————————————————————————作者:————————————————————————————————日期:第二章 拉伸与压缩一、是非题2-1 、当作用于杆件两端的一对外力等值反向共线时则杆件产生轴向拉伸或压缩变形。
( ) 2-2 、关于轴力有下列几种说法: 1、轴力是作用于杆件轴线上的载荷( ) 2、轴力是轴向拉伸或压缩时杆件横截面上分布内力系的合力( )3、轴力的大小与杆件的横截面面积有关( )4、轴力的大小与杆件的材料无关( )2-3、 同一材料制成的阶梯杆及其受力如图2-1CD 段的横截面面积为ABC 和DE 段均为2A 分别用和表示截面上的轴力和正应力则有1、轴力321N N N F F F >> 。
( )2、正应力1σ>2σ>3σ。
( )2-4、 轴力越大,杆件越容易拉断,因此轴力的大小可以用来判断杆件的强度。
( )2-5 、一轴向拉伸的钢杆材料弹性模量E =200GP a,比例极限p σ=200MP a ,今测得其轴向线应变ε=0.0015,则由胡克定律得其应力εσE ==300MP a 。
( ) 2-6 、关于材料的弹性模量E,有下列几种说法:1、E 的量纲与应力的量纲相同。
( )2、E 表示弹性变形能力的大小。
( )3、各种牌号钢材的E 值相差不大。
( )4、橡皮的E 比钢材的E值要大。
( )5、从某材料制成的轴向拉伸试样,测的应力和相应的应变,即可求的其εσ=E 。
( ) 2-7 、关于横向变形系数(泊松比)μ,有下列几种说法:1、为杆件轴向拉、压时,横向应变ε'与纵向应变ε之比的绝对值。
( )2、 μ值越大,其横向变形能力越差。
( )3、各种材料的μ值都满足:0<μ≤0.5。
( )2-8、 受轴向拉、压的等直杆,若其总伸长为零,则有1、杆内各处的应变必为零。
( )2、杆内各点的位移必为零。
( )3、杆内各点的正应力必为零。
定结构的变形受到部分或全部约束, 温度变化时,
在图中, AB杆代表蒸汽锅炉与原动机间的管道。
与锅炉和原动机相比, 管道刚度很小, 故可把A, B两端简化成固定端。
固定于枕木或基础上的钢轨也类似于这种情况。
当管道中通过高压蒸汽, 或因季节变化引起钢轨温度变化时, 就相当于上述两端固定杆的温度发生了变化。
因为固定端限制杆
件的膨胀或收缩, 所以
势必有约反力F R A和
F R B作用于两端。
这将
引起杆件内的应力, 这
种应力称为热应力或
温度应力。
必须再补充一个变形协调方
这就是补充的变形协调方程。