量子力学思考题和讨论题
- 格式:pdf
- 大小:183.56 KB
- 文档页数:17
第一章量子力学基础例题与习题一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。
解:(C)。
2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。
解:(E)。
3.计算能量为100eV光子、自由电子、质量为300g小球的波长。
( )解:光子波长自由电子300g小球。
4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。
解:。
5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。
解:6.设体系处于状态中,角动量和有无定值。
其值是多少?若无,求其平均值。
解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。
(2s+1) (1)二维方势箱中的9个电子。
(2)二维势箱中的10个电子。
(3)三维方势箱中的11个电子。
解:(1)2,(2)3,(3)4。
9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。
当,几率P怎样变?解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。
求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。
取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。
解:13.在什么条件下?解:14.已知一维运动的薛定锷方程为:。
和是属于同一本征值得本征函数,证明常数。
习题22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。
解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式,222240E c p m c=+ 可得p ===h p λ==834-=131.210m -=⨯(2)对于质子,利用德布罗意波的计算公式即可得出:3415h 9.110m p λ--====⨯22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。
解:(1)用非相对论公式:mmeU h mE h 123193134108.71025106.1101.921063.622p h ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ(2)用相对论公式:420222c m c p +=EeU E E k ==-20c mm eU eU c m hmE h 12220107.722p h -⨯=+===)(λ22-3.一中子束通过晶体发生衍射。
已知晶面间距nm 1032.72-⨯=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角.解:先利用德布罗意波的计算公式即可得出波长:3411h 1.410m λ--====⨯再利用晶体衍射的公式,可得出:2sin d k ϕλ= 0,1,2k =…11111.410sin 0.095k λϕ--⨯=== , 5.48ϕ= 22-4.以速度m/s 1063⨯=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长A 1=λ,电子在此场中应该飞行多长的距离?解:3410h 110p m λ--====⨯ 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。
22-5.设电子的位置不确定度为A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。
《结构化学》课程作业题第一部分:《量子力学基础和原子结构》思考题与习题1. 经典物理学在研究微观物体的运动时遇到过哪些困难?举例说明之。
如何正确对待归量子论?2. 电子兼具有波动性的实验基础是什么?宏观物体有没有波动性?“任何微观粒子的运动都是量子化的,都不能在一定程度上满足经典力学的要求”,这样说确切吗?3. 怎样描述微观质点的运动状态?为什么?波函数具有哪些重要性质?为什么?4. 简述薛定谔方程得来的线索。
求解该方程时应注意什么?5. 通过一维和三维势箱的解,可以得出哪些重要結論和物理概念?6. 写出薛定谔方程的算符表达式。
你是怎样理解这个表达式的? *7. 量子力学中的算符和力學量的关系怎样?8. 求解氢原子和类氢离子基态和激发态波函数的思想方法是怎样的? 9. 通过氢原子薛定谔方程一般解的讨论明确四个量子数的物理意义。
10. 怎样根据波函数的形式讨论“轨道”和电子云图象?为什么不能说p +1和p -1就是分别代表p x 和p y ? 11. 样来研究多电子原子的结构?作过哪些近似?用过哪些模型?试简单说明之。
12. 电子的自旋是怎样提出的?有何实验依据?在研究原子内电子运动时,我们是怎样考虑电子自旋的?*13. 哈特里-福克SCF 模型考虑了一些什么问题?交换能有何意义?14. 怎样表示原子的整体状态?光谱项、光谱支项各代表什么含义?洪特规则、选择定则又是讲的什么内容?15. 原子核外电子排布的规律是什么?现在哪些问题你比过去理解得更加深入了?通过本部分的学习,你对微观体系的运动规律和特点掌握了多少?在思想方法上有何收获?16. 巴尔末起初分析氢原子光谱是用波长)(422-=n n c λ,其中c 为常数,n 为大于2的正整数,试用里德伯常数H R ~求出c 值。
17. 试计算氢原子中电子处于波尔轨道n = 1和n = 4时的动能(单位:J )和速度(单位:m·s -1)。
18. 已知电磁波中电场强度ε服从波动方程222221t c x ∂∂⋅=∂∂εε,试说明如下函数⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=t x t x y νλπεε2c o s 0),(是这个方程的解。
量子力学 第一章 习题一、填空题1. 普朗克(Planck )常数h 的数值是 ,普朗克(Planck )常数ħ和h 之间的关系是 ,普朗克(Planck )常数ħ的数值是 。
2. 索末菲(Sommerfeld )的量子化条件是 。
3. 德布罗意(de Broglie )公式是 。
二、问答题1.什么是黑体(或绝对黑体)?根据普朗克(Planck )黑体辐射规律(教材第二页1.2.1式),试讨论辐射频率很高(趋于无穷大)和很低(趋于零)时的黑体辐射规律,并与维恩公式、瑞利——金斯公式相比较。
请给出波长在λ到λ+d λ之间的辐射能量密度规律。
2.什么是光电效应?光电效应的实验特点是什么?经典物理在解释光电效应时的困难是什么?采用爱因斯坦(Einstein )的光量子假设后,光电效应是如何解释的?3.光子有什么特点?爱因斯坦关于光子能量、动量和光子频率、波长之间的关系是什么?这个关系反映出光子的什么特征?4.什么是康普顿效应?试由Einstein 的光量子说,利用能量动量守恒,解释Compton 效应。
康普顿效应说明了什么?和光电效应相比,入射光子能量哪个大,并说明理由。
5.玻尔的氢原子模型内容是什么?试根据玻尔的氢原子模型给出里德堡(Rydberg )常数和氢原子第一玻尔半径的表达式和数值结果。
并说明为什么玻尔的量子论是半经典的半量子的?三、多项选择题1.说明微观粒子具有波动性的现象有 说明电磁波具有粒子性的现象有(a)以太漂移说 (b)黑体辐射 (c)光电效应(d)康普顿(Compton )效应 (e)原子结构和线性光谱 (f)电子的双缝衍射 (g)戴维逊(Davisson )——革末(Germer )实验(h)迈克尔逊(Michelson )——莫雷(Monley )实验四、计算题1. 教材习题(1.1)(1.2)(1.3)(1.4)(1.5)2. 设粒子限制在长、宽、高分别为a,b,c 的箱内运动,试用量子化条件求粒子能量的可能取值。
量子力学思考题1、以下说法就是否正确:(1)量子力学适用于微观体系,而经典力学适用于宏观体系;(2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。
解答:(1)量子力学就是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。
(2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而就是量子力学实际上已经过渡到经典力学,二者相吻合了。
2、微观粒子的状态用波函数完全描述,这里“完全”的含义就是什么?解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。
如已知单粒子(不考虑自旋)波函数)(r ϖψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其她力学量的概率分布也均可通过)(r ϖψ而完全确定。
由于量子理论与经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。
从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。
3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。
解答:设1ψ与2ψ就是分别打开左边与右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ与2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不就是概率相加,而就是波函数的叠加,屏上粒子位置的概率分布由222112ψψψc c +=确定,2ψ中出现有1ψ与2ψ的干涉项]Re[2*21*21ψψc c ,1c 与2c 的模对相对相位对概率分布具有重要作用。
4、量子态的叠加原理常被表述为:“如果1ψ与2ψ就是体系的可能态,则它们的线性叠加2211ψψψc c +=也就是体系的一个可能态”。
(1)就是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=;(2)对其中的1c 与2c 就是任意与r ϖ无关的复数,但可能就是时间t 的函数。
思考题18-1 把一块表面的一半涂了烟煤的白瓷砖放到火炉内烧,高温下瓷砖的哪一半显得更亮些?参考答案实验表明:一个良好的吸收体也是一个良好的发射体。
也就是说,一个物体吸收辐射的能量越强,那么它的热辐射能力也越强。
辐射本领越强的物体,单位时间内从表面辐射出来的能力越多,它的表面就显得越亮。
瓷砖涂了烟煤的一半在正常情况下更黑,说明比起未涂烟煤的一半,它吸收辐射的能力也更强,相应地,它的辐出度更高,所以在火炉内烧热后应该显得更亮一些。
18-2 刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。
为什么?参考答案从窗口进入的光线在屋里经过多次反射后极少能再从窗口反射出来,所以看起来窗口总是黑的。
这样的窗口就可看作是一个黑体。
18-3 为什么几乎没有黑色的花?参考答案如果花是黑颜色的,表明花对于可见光没有反射,也就是花将可见光波段的能力都吸收了,与其他颜色的花相比,黑色花的温度将更高,这样的花很可能会由于没有及时将能量从其他途径释放掉的机制而枯死。
另外,对于虫媒花来说,黑色是昆虫的视觉盲点,因而无法授粉。
18-4 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?参考答案光电效应方程为2012m c mv eU h A h eU νν==-=- (1)入射光强度的概念:单位时间内单位面积上的光子数乘以每个光子的能量。
如果频率不变,每个光子的能量就不变。
入射光强度增加一倍,意味着入射的光子数增加一倍,从而饱和电流强度将增加一倍。
截止电压不变(设频率不变)。
(2)入射光的频率增加一倍,h ν就增加一倍,每个光子的能量从h ν增加到2h ν。
从光电效应方程可以看出截止电压c U 相应地增加h e ν。
饱和电流的数值不变(因为单位时间入射的光子数密度未变)。
18-5 用一定波长的光照射金属表面产生光电效应时,为什么逸出金属表面的光电子的速度大小不同?参考答案金属中的电子是运动着的,它与金属中的离子有相互作用,不断与离子发生碰撞,导致它的动量发生变化。
第⼗⼋章量⼦物理基础-思考题和习题解答思考题18-1 把⼀块表⾯的⼀半涂了烟煤的⽩瓷砖放到⽕炉内烧,⾼温下瓷砖的哪⼀半显得更亮些?参考答案实验表明:⼀个良好的吸收体也是⼀个良好的发射体。
也就是说,⼀个物体吸收辐射的能量越强,那么它的热辐射能⼒也越强。
辐射本领越强的物体,单位时间内从表⾯辐射出来的能⼒越多,它的表⾯就显得越亮。
瓷砖涂了烟煤的⼀半在正常情况下更⿊,说明⽐起未涂烟煤的⼀半,它吸收辐射的能⼒也更强,相应地,它的辐出度更⾼,所以在⽕炉内烧热后应该显得更亮⼀些。
18-2 刚粉刷完的房间从房外远处看,即使在⽩天,它的开着的窗⼝也是⿊的。
为什么?参考答案从窗⼝进⼊的光线在屋⾥经过多次反射后极少能再从窗⼝反射出来,所以看起来窗⼝总是⿊的。
这样的窗⼝就可看作是⼀个⿊体。
18-3 为什么⼏乎没有⿊⾊的花?参考答案如果花是⿊颜⾊的,表明花对于可见光没有反射,也就是花将可见光波段的能⼒都吸收了,与其他颜⾊的花相⽐,⿊⾊花的温度将更⾼,这样的花很可能会由于没有及时将能量从其他途径释放掉的机制⽽枯死。
另外,对于⾍媒花来说,⿊⾊是昆⾍的视觉盲点,因⽽⽆法授粉。
18-4 在光电效应实验中,如果(1)⼊射光强度增加⼀倍;(2)⼊射光频率增加⼀倍,各对实验结果有什么影响?参考答案光电效应⽅程为2012m c mv eU h A h eU νν==-=- (1)⼊射光强度的概念:单位时间内单位⾯积上的光⼦数乘以每个光⼦的能量。
如果频率不变,每个光⼦的能量就不变。
⼊射光强度增加⼀倍,意味着⼊射的光⼦数增加⼀倍,从⽽饱和电流强度将增加⼀倍。
截⽌电压不变(设频率不变)。
(2)⼊射光的频率增加⼀倍,h ν就增加⼀倍,每个光⼦的能量从h ν增加到2h ν。
从光电效应⽅程可以看出截⽌电压c U 相应地增加h e ν。
饱和电流的数值不变(因为单位时间⼊射的光⼦数密度未变)。
18-5 ⽤⼀定波长的光照射⾦属表⾯产⽣光电效应时,为什么逸出⾦属表⾯的光电⼦的速度⼤⼩不同?参考答案⾦属中的电⼦是运动着的,它与⾦属中的离⼦有相互作⽤,不断与离⼦发⽣碰撞,导致它的动量发⽣变化。
第一章第一章黑体辐射,光的波粒二象性1.什么是黑体?(1 )黑颜色的物体。
(2)完全吸收任何波长的外来辐射而无反射的物体。
(3)完全吸收任何波长的外来辐射而无任何辐射的物体。
(4 )吸收比为1的物体。
(5)在任何温度下,对入射的任何波长的辐射全部吸收的物体。
2•康普顿效应中入射光子的能量只有部分被电子吸收,这是否意味着光子在相互作用过程中是可分的?3•可以观察到可见光的康普顿效应吗?光电效应对入射光有截止频率的限制,康普顿效应对入射光有没有类似限制?4•光电效应中,对入射光有截止频率(红限)的限制是否必需?因为当一个电子同时吸收两个或几个频率低于截止频率的光子或电子可积累多次吸收光子的能量,则在任何频率光入射时都能形成光电流。
5•康普顿效应中作为散射体的电子是否一定是自由电子?光子被束缚电子散射时结果如何?6•光电效应的爱因斯坦方程,在什么温度下才准确成立?第二章微观粒子的波粒二象性1•德布罗意关系式是仅适用与基本粒子如电子、中子之类还是同样适用于具有内部结构的复合体系?2.粒子的德布罗意波长是否可以比其本身线度长或短?二者之间是否有必然联系?3•关于粒子的波动性,某种看法认为:粒子运行轨迹是波动曲线,或其速度呈波动式变化,这种看法对不对?4.在电子衍射实验中,单个电子的落点是无规律的,而大量电子的散落则形成了衍射图样,这是否意味着单个粒子呈现粒子性,大量粒子集合呈现波动性?5.有人认为德布罗意波是粒子的疏密波,如同声波一样?这种看法对不对?6•波动性与粒子性是如何统一于同一客体之中的?物资在运动过程中是如何表现波粒二象性的?7.电子是粒子,又是波”,电子不是粒子,又是波”,电子是粒子,不是波”,电子是波,不是粒子”,以上哪一种说法是正确的?8.以下说法是否正确?(1)量子力学适用于微观体系,而经典力学适用于宏观体系。
(2 )量子力学适用于h不能忽视的体系,而经典力学适用于h可以忽略的体系。
第三章波函数态叠加原理波动方程1.判断下列说法是否确切、完整。
试题整理-量子力学篇(简述题)1.简述什么是态叠加原理?2.简述测不准原理和波函数的统计诠释。
波函数统计诠释对波函数提出哪些要求?3.简述玻尔量子论的主要思想以及对应原理?4.举例简述量子系统的对称性与守恒量的关系?5.举例说明什么是量子态的表象?大连理工大学2002年一.玻尔量子论的核心思想有哪两条?二.波函数为ψ=exp(ikx-iωt)的平面波的群速度和相速度。
三.简述定态的概念和和处于定态下的粒子具有什么样的特征?中山大学2001年简述态叠加原理和它对态函数所服从的波动方程的限制。
中山大学2002年1.什么叫做定态,定态应该具有什么样的形式?2.假设力学量F不显含时间t,那么在任意定态下的平均值与时间无关。
河南师范大学1996年假设一维谐振子处于的态中,求(1)势能的平均值(2)在何处找到粒子的几率最大。
河南师范大学1998年1.假设一维粒子出于的状态,求(1)粒子动量的平均值(2)几率的最大位置。
2.河南师范大学1999年1.写出德布罗意关系式,并且比较1000eV的质子和10000eV的电子谁的德布罗意波长长(只要求数量级正确)。
2.氢原子处于基态,(a0为玻尔半径)求(1)势能的平均值(2)最可几半径。
河南师范大学2000年已经知道粒子的状态用ψ(x,y,z)表示,求粒子处于z1 ----- zz 范围内的几率。
河南师范大学2002年1.为什么说微观粒子的状态可以用波函数来完全描述?2.量子态叠加原理和经典的态叠加原理有什么本质的区别?河南师范大学2002年1.什么是光电效应,光电效应有什么特点。
2.经典波和几率波有什么区别?3.原子的轨道半径在量子力学中如何解释?中国科学院-----中国科学技术大学1994年(1998)年1,自由粒子的能量为E=p2/2m,写出物质波包的色散关系,并证明物质波包必然色散。
中国科学院-----中国科学技术大学1995年1,简要的说明量子力学的态叠加原理和经典力学的叠加原理的本质区别。
量子力学中的常见问题解答与思考近几十年来,量子力学已经成为了物理学的基石之一。
它的发现和发展为我们解释了微观世界的奇妙现象,包括粒子的叠加态、量子纠缠和测量问题等。
然而,尽管量子力学已经广泛应用于科学和技术领域,仍然存在着一些常见问题和困惑。
本文将解答一些常见的问题,并提供一些对量子力学的思考。
问:什么是量子力学?答:量子力学是一门研究微观领域的物理学理论,它描述了微观粒子的行为和性质。
与经典力学不同,量子力学认为微观粒子的性质具有波粒二象性,即既可以表现为粒子也可以表现为波动。
量子力学的公式和理论描述了微观粒子的能量、动量、角动量等物理量的本质和变化规律。
问:什么是粒子的叠加态?答:在量子力学中,粒子的叠加态是指它可以同时处于多个状态的线性叠加态。
例如,一个电子可以同时处于自旋向上和自旋向下的状态。
直到我们对其进行测量时,它才会选择其中的一个状态。
这种叠加态的存在引起了许多哲学上的争议和思考,例如著名的薛定谔猫思想实验。
问:什么是量子纠缠?答:量子纠缠是指两个或多个微观粒子之间存在一种特殊的关联关系。
这种关联关系是非局域的,即它不受空间距离的限制。
当两个粒子处于纠缠态时,它们的状态是相互关联的。
当我们对一个粒子进行测量,另一个粒子的状态也会立即发生变化,即使它们之间的距离很远。
这一现象被爱因斯坦称为“鬼魅般的遥远作用”。
问:量子力学中的测量问题指的是什么?答:量子力学中的测量问题是指当我们对粒子进行测量时,其状态会发生怎样的变化。
根据量子力学的原理,测量结果是不确定的,只能给出一定的概率。
测量问题涉及到波函数坍缩的概念,即在测量之后,粒子的状态会突然塌缩到一个确定的状态。
这一概念引发了一系列的哲学和解释上的争论,例如哥本哈根解释和多世界诠释。
问:量子力学对我们日常生活有什么影响?答:尽管量子力学是一门微观物理学理论,它却在许多科学和技术领域产生了深远的影响。
例如,量子力学在电子学、计算机科学和通信技术中的应用已经变得不可或缺。
量子力学思考题1、以下说法是否正确:(1)量子力学适用于微观体系,而经典力学适用于宏观体系;(2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。
解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。
(2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已经过渡到经典力学,二者相吻合了。
2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么?解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。
如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(rψ而完全确定。
由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。
从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。
3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。
解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112ψψψc c +=确定,2ψ中出现有1ψ和2ψ的干涉项]Re[2*21*21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。
4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加2211ψψψc c +=也是体系的一个可能态”。
(1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=;(2)对其中的1c 与2c 是任意与r无关的复数,但可能是时间t 的函数。
这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。
现代物理(量⼦⼒学习题)思考题(程守诛江之永《普通物理学》)1两个相同的物体A 和B,具有相同的温度,如A 物体周围的温度低于A ,⽽B物休周围的温度⾼于B.试问:A 和B 两物体在温度相同的那⼀瞬间.单位时间内辐射的能量是否相等?单位时间内吸收的能量是否相等?2绝对⿊体和平常所说的⿊⾊物体有何区别?绝对⿊体在任何温度下,是否都是⿊⾊的?在同温度下,绝对⿊体和⼀般⿊⾊物休的辐出度是否⼀样? 3你能否估计⼈体热辐射的各种波长中,哪个波长的单⾊辐出度最⼤?4有两个同样的物体,⼀个是⿊⾊的,⼀个是⽩⾊的且温度相同.把它们放在⾼温的环境中,哪⼀个物体温度升⾼较快?如果把它们放在低温环境中.哪⼀个物体温度降得较快?5 若⼀物体的温度(绝对温度数值)增加⼀倍.它的总辐射能增加到多少倍? 6在光电效应的实验中,如果:(1)⼊射光强度增加1倍;(2)⼊射光频率增加1倍,按光⼦理论,这两种情况的结果有何不同?;7已知⼀些材料的逸出功如下:钽4.12eV ,钨4.50eV ,铝 4.20eV ,钡2. 50eV ,锂2. 30eV .试问:如果制造在可见光下⼯作的光电管,应取哪种材料?8在彩⾊电视研制过程中.曾⾯临⼀个技术问题:⽤于红⾊部分的摄像管的设计技术要⽐绿、蓝部分困难,你能说明其原因吗?·9光⼦在哪些⽅⾯与其他粒⼦(譬如电⼦)相似?在哪些⽅⾯不同? 10⽤频率为v 1的单⾊光照射某光电管阴极时,测得饱和电流为I 1,⽤频率为v 2的单⾊光以与v1的单⾊光相等强度照射时,测得饱和电流为I2,:若I2>I1,v 1和v 2的关系如何?11⽤频率为v1的单⾊光照射某光电管阴极时,测得光电⼦的最⼤动能为E K1 ;⽤频率为v 2的单⾊光照射时,测得光电⼦的最⼤动能为E k2 ,若E k1 >E k2,v 1和v 2哪⼀个⼤?12⽤可见光能否观察到康普顿散射现象?13光电效应和康普倾效应都包含有电⼦与光⼦的相互作⽤,这两过程有什么不同?14在康普顿效应中,什么条件下才可以把散射物质中的电⼦近似看成静⽌的⾃由电⼦?15在康普顿效应中,反冲电⼦获得的能量总是⼩于⼊射光⼦的能量这是否意味着⼊射光的光⼦分成两部分,其中的⼀部分被电⼦吸收.这与光⼦的粒⼦性是否⽭盾?16 (1) 氢原⼦光谱中.同⼀谱系的各相邻谱线的间隔是否相等?(2) 试根据氢原⼦的能级公式说明当量⼦数n 增⼤时能级的变化情况以及能级间的间距变化情况.17了由氢原⼦理论可知.当氢原⼦处于 n=4的激发态时,可发射⼏种波长的光?18如图所⽰.被激发的氢原⼦跃迁到低能级时,可发射波长为λ1、λ2、λ3的辐射.问三个波长之间的关系如何?19设实物粒⼦的质量为m, 速度为v, 由德布罗意公式mV h mc hv /,2==λ得 V c v /2=λλ根据Vv=得Vc=显然以上的结论是错误的,试问错误的根源何在?8-20为什么说不确定度关系与实验技术或仪器的改进⽆关?习题1、估测星球表⾯温度的⽅法之⼀是:将星球看成⿊体,测量它的辐射峰值波长。
习题22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。
解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式,222240E c p m c =+ 可得(2)对于质子,利用德布罗意波的计算公式即可得出:22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。
解:(1)用非相对论公式:m meU h mE h 123193134108.71025106.1101.921063.622p h ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ(2)用相对论公式:22-3.一中子束通过晶体发生衍射。
已知晶面间距nm 1032.72-⨯=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角.解:先利用德布罗意波的计算公式即可得出波长:再利用晶体衍射的公式,可得出:2sin d k ϕλ= 0,1,2k =…22-4.以速度m/s 1063⨯=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长 A 1=λ,电子在此场中应该飞行多长的距离? 解:3410h 110p m λ--====⨯ 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。
22-5.设电子的位置不确定度为A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。
解:由测不准关系: 3424101.0510 5.2510220.110h p x ---⨯∆===⨯∆⨯⨯ 由波长关系式:Ec h =λ 可推出: E E c h ∆=∆λ 22-6.氢原子的吸收谱线 A 5.4340=λ的谱线宽度为A 102-,计算原子处在被激发态上的平均寿命。
解:能量hcE h νλ==,由于激发能级有一定的宽度ΔE ,造成谱线也有一定宽度Δλ,两者之间的关系为:2hcE λλ∆=∆由测不准关系,/2,E t ∆∆≥平均寿命τ=Δt ,则22-7.若红宝石发出中心波长m 103.67-⨯=λ的短脉冲信号,时距为)s 10(ns 19-,计算该信号的波长宽度λ∆。
习题2222-1.计算下列物体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。
解:(1)具有MeV 10动能的电子,可以试算一下它的速度:212k mv E =⇒v c ==>光速,所以要考虑相对论效应。
设电子的静能量为20m c ,总能量可写为:20k E E m c =+,用相对论公式:222240E c p m c =+,可得:p ==hp λ==348-=131.210m -=⨯;(2)对于具有MeV 10动能的质子,可以试算一下它的速度:74.410/v m s ===⨯,所以不需要考虑相对论效应。
利用德布罗意波的计算公式即可得出:34159.110h m p λ--====⨯。
22-2.计算在彩色电视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。
解:(1)用非相对论公式:34127.7610h m p λ--====⨯;(2)用相对论公式:设电子的静能为20m c ,动能为:k E eU =,由20222240E eU m c E c p m c=+=+⎧⎪⎨⎪⎩,有:127.6710m λ-==⨯。
22-3.求出实物粒子德布罗意波长与粒子动能E K 和静止质量m 0的关系,并得出: E K << m 0c 2时, K E m h 02/≈λ; E K >> m 0c 2时,K E hc /≈λ.解:由202c m mc E K -=20220])/(1/[c m c c m --=v解出:220/)(c c m E m K +=)/(220202c m E c m E E c K K K ++=v ,根据德布罗意波:)/(/v m h p h ==λ把上面m ,v 代入得:2022cm E E hc K K+=λ,当20c m E K <<时,上式分母中,2022c m E E K K <<,2KE 可略去. 得202/cm E hc K =λ02/m E h K≈当20c m E K >>时,上式分母中,2022c m E E K K >>,202c m E K 可略去.得K E hc /≈λ22-4.一中子束通过晶体发生衍射。