数字信号的载波传输
- 格式:ppt
- 大小:2.19 MB
- 文档页数:2
2ASK抗噪声性能分析2ASK抗噪声性能分析⽅向:视听模式分析学号:83320081002034 姓名:徐丽丽摘要:2ASK(⼆进制幅度键控)是⼀种最简单的数字信号的载波传输,本⽂通过对数字信号的2ASK调制,解调在不同信噪⽐的情况下误码率分析,得出不同信噪⽐下的误码率。
通过对2ASK的仿真更好的理解了数字调制系统的组成以及各模块的功能。
关键词:⼆进制幅度键控(2ASK),调制,解调,信噪⽐,误码率Abstract:2ASK (2 Amplitude Shift Keying) is the simplest digital signal carrier transmission technique. This paper researches 2ASK, demodulates the BER analysis in with different noise ratioes and arrives at a BER under different noise.Through the simulation of 2ASK, a better understanding of the digital modulation system, as well as the function of each module are acquired.Key words:binary amplitude shift keying (2ASK), modulation, demodulation, SNR, bit error rate(BER)1引⾔:数字基带信号的功率谱从零频开始⽽且集中在低频段,因此只适合在低通型信道中传输。
但常见的实际信道是带通型的,不能直接传送基带信号,因此必须⽤数字基带信号对载波进⾏调制,使基带信号的功率谱搬移到较⾼的载波频率上。
从原理上来说,受调载波的波形可以是任意的,只要已调信号适合于信道传输就可以了。
数字通信系统的分类数字通信系统是指利用数字信号来传输信息的通信系统。
它可以分为两大类:1. 基带数字通信系统基带数字通信系统是指数字信号直接传输的通信系统。
这种系统通常用于短距离通信,因为数字信号在远距离传输时容易受到噪声和干扰的影响。
基带数字通信系统的优点是实现简单,成本低廉。
其缺点是传输距离有限,抗噪声和干扰能力较差。
2. 载波数字通信系统载波数字通信系统是指数字信号经过调制后,再通过载波进行传输的通信系统。
这种系统通常用于远距离通信,因为调制后的数字信号在远距离传输时受到噪声和干扰的影响较小。
载波数字通信系统的优点是传输距离远,抗噪声和干扰能力强。
其缺点是实现复杂,成本较高。
基带数字通信系统基带数字通信系统可以进一步分为两类:1. 不归零制数字通信系统不归零制数字通信系统是指数字信号在传输过程中,不改变其极性的通信系统。
这种系统通常用于短距离通信,因为数字信号在远距离传输时容易受到噪声和干扰的影响。
不归零制数字通信系统的优点是实现简单,成本低廉。
其缺点是传输距离有限,抗噪声和干扰能力较差。
2. 归零制数字通信系统归零制数字通信系统是指数字信号在传输过程中,在每个比特结束时都要归零的通信系统。
这种系统通常用于远距离通信,因为数字信号在远距离传输时受到噪声和干扰的影响较小。
归零制数字通信系统的优点是传输距离远,抗噪声和干扰能力强。
其缺点是实现复杂,成本较高。
载波数字通信系统载波数字通信系统可以进一步分为两类:1. 调幅数字通信系统调幅数字通信系统是指数字信号调制载波的幅度后进行传输的通信系统。
这种系统通常用于短距离通信,因为调幅数字信号在远距离传输时容易受到噪声和干扰的影响。
调幅数字通信系统的优点是实现简单,成本低廉。
其缺点是传输距离有限,抗噪声和干扰能力较差。
2. 调相数字通信系统调相数字通信系统是指数字信号调制载波的相位后进行传输的通信系统。
这种系统通常用于远距离通信,因为调相数字信号在远距离传输时受到噪声和干扰的影响较小。
数字信号数据的传输方式(1)基带传输。
基带传输是最基本的数据传输方式,即按数据波的原样,不包含任何调制,在数字通信的信道上直接传送数据。
基带传输不适于传输语言、图像等信息。
目前大部分微机局域网,包括控制局域网,都是采用基带传输方式的基带网。
基带网的特点是:信号按位流形式传输,整个系统不用调制解调器,降低了价格;传输介质较宽带网便宜;可以达到较高的数据传输速率(目前一般为10~100Mb/s ),但其传输距离一般不超过25km ,传输距离越长,质量越低;基带网中线路工作方式只能为半双工方式或单工方式。
基带传输时,通常对数字信号进行一定的编码,数据编码常用3种方法:非归零码NRZ 、曼彻斯特编码和差动曼彻斯特编码。
后两种编码不含直流分量,包含时钟脉冲,便于双方自同步,因此,得到了广泛的应用。
(2)频带传输。
频带传输是一种采用调制、解调技术的传输形式。
在发送端,采用调制手段,对数字信号进行某种变换,将代表数据的二进制“1”和“0”,变换成具有一定频带范围的模拟信号,以适应在模拟信道上传输;在接收端,通过解调手段进行相反变换,把模拟的调制信号复原为“1”或“0”。
常用的调制方法有:频率调制、振幅调制和相位调制。
具有调制、解调功能的装置称为调制解调器,即Modem 。
频带传输较复杂,传送距离较远,若通过市话系统配各Modem ,则传送距离可不受限制。
PLC 网一般范围有限,故PLC 网多采用基带传输。
(3)载波传输。
通信的最终目的是远距离传递信息。
虽然基带数字信号可以在传输距离不远的情况下直接传送,但如果要远距离传输时,特别是在无线或光纤信道上传输时,则必须经过调制将信号频谱搬移到高频处才能在信道中传输。
为了使数字信号在有限带宽的高频信道中传输,必须对数字信号进行载波调制。
如同传输模拟信号时一样,传输数字信号时也有3种基本的调制方式:幅度键控、频移键控和相移键控。
它们分别对应于用载波(正弦波)的幅度、频率和相位来传递数字基带信号,可以看成是模拟线性调制和角度调制的特殊情况。
通信原理ICommunication Theory安建伟北京科技大学通信工程系第六章 数字信号的频带传输6.1 引言 6.2 二进制数字信号正弦型载波调制 6.3 四相移相键控 6.4 M进制数字调制 6.5 恒包络连续相位调制第6章数字信号的频带传输6.1 引言1.数字信号的正弦型载波调制数字信号 d(t) 调制 频带信号 带通信道s ( t ) = A c o s ( 2 π ft + ϕ ) = F ( d ( t ))用数字基带信号去控制正弦型载波的某参量: ¾ 控制载波的幅度,称为振幅键控(ASK); ¾ 控制载波的频率,称为频率键控(FSK); ¾ 控制载波的相位,称为相位键控(PSK)。
3北京科技大学通信系第6章数字信号的频带传输2. 数字信号的分类 (1)二进制及M进制(M>2); (2)按是否满足叠加原理分类: 线性调制及非线性调制; (3)按已调符号约束关系分类 无记忆调制及有记忆调制。
4北京科技大学通信系第6章数字信号的频带传输6.2 二进制数字信号的正弦载波调制1. 二进制通断键控(OOK或2ASK) 2. 二进制移频键控(2FSK) 3. 二进制移相键控(2PSK或BPSK) 4. 2PSK的载波同步 5. 差分移相键控(DPSK)5北京科技大学通信系第6章数字信号的频带传输 (OOK) 6.2.1 二进制通断键控二进制通断键控(OOK: On-Off Keying) 又名二进制振幅键(2ASK),它是以单极性 不归零码序列来控制正弦载波的导通与关 闭。
即正弦载波的幅度随数字基带信号而 变化。
6北京科技大学通信系第6章数字信号的频带传输1. OOK信号的产生a) 模拟法n = −∞∑+∞a nδ ( t − nTb )b (t ) =a n = 0 或1脉冲成形 滤波器 冲激响应 g T ( t )n = −∞∑+∞a n g T ( t − nTb )sO O K (t ) A cos(2π f c t )b) 键控法载波 cosωct开关电路1 0KSOOK(t)b(t)7北京科技大学通信系第6章数字信号的频带传输¾时域表示b( t ) =n = −∞∑a∞ngT ( t − nTb )其中b(t)为单极性矩形不归零脉冲序列。
主载波和副载波
主载波和副载波是在数字通信系统中使用的信号调制技术。
数字通信
系统通常使用正交幅度调制(QAM)技术将数字信号转换为模拟信号。
该过程涉及使用主载波和副载波来传输数字信号,这些信号以不同的
频率和相位进行调制。
主载波通常是指最高频率的载波,它包含原始数字信号的大部分信息
并与信道相互作用。
主载波的频率和幅度被调制为与输入数字信号相关。
为了保证信道传输的稳定性,主载波通常采用高频率,并且可以
通过信道的线性响应来传输。
副载波是指低于主载波频率的额外载波,通常与主载波正交。
副载波
频率的选择通常取决于特定的数字通信系统。
副载波可以用于在频率
上多路复用,因此在数字通信系统中非常有用。
此外,副载波还可以
被用于传输错误校验数据或处理其他错误纠错功能。
在数字通信系统中,主载波和副载波通常与其他数字信号一起传输,
如同步和控制信息。
这些数据在接收端解调,将它们还原回对应的原
始数据。
在数字通信系统的各个阶段中,主载波和副载波都扮演了至
关重要的角色,从而实现了高效的数字信号传输。
总之,主载波和副载波是数字信号传输过程中使用的重要信号调制技术。
通过使用这些技术,数字通信系统可以有效地传输数字信号,同时充分利用频带资源。
在今天日益发展的数字通信系统中,主载波和副载波的重要性将继续增长,为人们创造出更快、更安全和更可靠的数字通信体验。
载波和调制波
载波和调制波是信号传输领域最常用的一种高效率表达方式。
在
这种表达方式下,一个功率较小的高频调制波载波上传输的,再经过
作用使其变得更加复杂,可以在信道中传输大量的数据,实现超高速率、超高容量的数据传输。
首先说一下载波,它是一种高频正弦波,一般表示为
Amcos(2πmf),其中A为正弦波的幅值,m为正弦波的频率,f为正弦
波的频率。
载波媒介上传输信号,常用于电视广播和传真通信等领域。
载波具有条件可传输性、传输距离长、信号可靠性高等优点,在国家
通信管理部门对某一电波频段的专有占用的情况下,具备了安全高效
的传输能力。
再来说一下调制波,它是依靠载波而建立成的一种调制信号,是
将被传输的信号调制到载波上,以提高单位带宽内的信息传输率。
调
制波的时域波形由拖尾波、闭合尾波和调制深度等参数综合来决定;
调制波的频域波形由调制频率、调制端频率和调制带宽等参数来决定。
调制波是当今数字信号传输领域最常用的一种表达形式,可以大大提
高信息效率,实现超高速率、超高容量的数据传输。
载波和调制波是传输信号技术中相当重要的技术,也是建立电子
信号通信系统前提的基本元素。
近年来,随着信号处理技术的飞速发展,它在数据传输中得到越来越广泛的应用,为满足当前多媒体通信、网络通信和宽带通信等多种应用场合提供了技术支持,助力信息社会
的发展。
ofdm载波传输原理OFDM(正交频分复用)是一种用于无线通信的调制技术,它将高速数据流分成多个低速子流进行传输。
OFDM的基本原理是将原始数据流分成多个小数据流,并将这些小数据流分配到不同的子载波上进行传输。
每个子载波都具有不同的频率和相位,使得它们之间互相正交,从而避免了频率干扰和串扰。
OFDM的载波传输原理可以通过以下几个步骤来描述。
首先,原始数据流被分成多个小数据流。
这个过程称为并行-串行转换(P/S转换)。
然后,每个小数据流被调制到一个子载波上。
这个过程称为调制。
调制将数字数据转换成模拟信号,以便能够在无线信道上传输。
接下来,将所有的子载波合并成一个OFDM信号。
这个过程称为并行-串行转换(S/P转换)。
最后,OFDM信号通过天线传输到接收端。
在接收端,OFDM信号经过串行-并行转换(S/P转换)后,可以将子载波分离出来。
然后,每个子载波上的数据被解调,将模拟信号转换回数字信号。
这个过程称为解调。
解调后的数据通过并行-串行转换(P/S转换)后,恢复成原始数据流。
OFDM的载波传输原理的关键在于子载波之间的正交性。
子载波之间的正交性使得它们之间的干扰最小化,从而提高了系统的传输效率和抗干扰能力。
此外,OFDM还具有频谱利用率高、抗多径衰落和抗频率选择性衰落等优点,使其成为现代无线通信系统中广泛采用的调制技术之一。
OFDM的载波传输原理在实际应用中有广泛的应用。
例如,OFDM 被用于Wi-Fi、LTE和5G等无线通信系统中。
在Wi-Fi系统中,OFDM被用于将数据传输到无线设备,以提供高速的互联网接入。
在LTE和5G系统中,OFDM被用于将数据传输到移动设备,以提供高速的移动通信服务。
总的来说,OFDM的载波传输原理是一种高效的无线通信调制技术,通过将原始数据流分成多个子载波进行传输,提高了系统的传输效率和抗干扰能力。
OFDM在现代无线通信系统中有广泛的应用,成为实现高速无线通信的重要技术之一。