华师大版全等三角形复习
- 格式:ppt
- 大小:479.50 KB
- 文档页数:27
第13章基础复习知识点1命题、定理与证明1.一般地,判断某一件事情的语句叫做命题.命题一般由条件和结构两部分组成,可以写成“如果……,那么……”的形式.2.基本事实是在继续学习过程中用来判断其他命题真假的原始依据.3.定理:有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.4.根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.1.下列命题中,是真命题的是()A.无限小数是无理数B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.平行于同一条直线的两条直线平行D.过一点有且只有一条直线与已知直线垂直2.判断命题“如果n<1,那么W−1<0”是假命题,只需举出一个反例.反例中的n可以为()A.-2u−12 C.0D123.把命题“对顶角相等”改写成“如果⋯⋯,那么⋯⋯”的形式:.4.填写下列证明过程中的推理根据:已知:如图所示,AC、BD相交于点O,DF平分∠CDO与AC相交于点F,BE平分∠ABO与AC相交于点E,∠A=∠C.求证:∠1=∠2.证明:∵∠A=∠C(),∴AB∥CD(),∴∠ABO=∠CDO(),又∵DF平分∠CDO,BE平分∠ABO,∴∠1=12∠Cs∠2=12∠B(),∴∠1=∠2().知识点2三角形全等的判定1.能够完全重合的两个三角形是全等三角形,相互重合的顶点是对应顶点,相互重合的边是对应边,相互重合的角是对应角,全等三角形的对应边相等,对应角相等.2.全等三角形的判定条件:①两边及其夹角分别相等的两个三角形全等.简写为S. A.S.(或边角边).②两角及其夹边分别相等的两个三角形全等.简写为A.S. A.(或角边角).③两角分别相等且其中一组等角的对边相等的两个三角形全等.简写为A. A.S.(或角角边).④三边分别相等的两个三角形全等.简写为S.S.S.(或边边边).⑤斜边和一条直角边分别相等的两个直角三角形全等.简写为H.L.(或“斜边直角边”).5.如图,AB=AD,CB=CD,∠B=32°,∠BAD=72°,则∠ACD的度数是()A.102°B.112°C.114°D.1226.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠DB.AC=DFC.AB=EDD.BF=EC7.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.28.图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A.点DB.点CC.点BD.点A9.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙10.如图所示,在Rt△ACD和Rt△BCE中,若AD=BE,DC=EC,则不正确的结论是()A.Rt△ACD≌Rt△BCEB.OA=OBC.E是AC的中点D.AE=BD11.如图,点D在线段BC上,若BC=DE,AC=DC,AB=EC,且∠ACE=180°-∠ABC-2x°,则下列角中,大小为x°的角是()A.∠EFCB.∠ABCC.∠FDCD.∠DFC12.如图,在等腰△ABC中,AB=AC,AB>BC,点D在边BC上,且C B=14,点E、F在线段AD上,满足∠BED=∠CFD=∠BAC,若△B=20,则.△B+△C=()A.18B.15C.12D.913.如图,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个14.如图,AC=DC,BC=EC,请你添加一个适当的条件:,使得△ABC≌△DEC.15.如图,∠1=∠2,∠3=∠4,,则全等三角形有对.16.如图,已知△ABC中,F是高AD和BE的交点,且AD=BD,CD=4,则线段DF的长度为.17.(南通中考)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连结AC并延长到点D,使CD=CA.连结BC并延长到点E,使CE= CB.连结DE,那么量出DE的长就是A、B的距离.为什么?18.如图,在△ABC中,AC=5,中线AD=7,求边AB的取值范围.19.如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC.(2)若∠ADO=35°,求∠DOC的度数.20.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB.(2)求两堵木墙之间的距离.21.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE.(2)求∠FAE的度数.(3)求证:CD=2BF+DE.。
《全等三角形》全章复习与巩固(基础)知识讲解【学习目标】1. 掌握常见的五种基本尺规作图;理解命题与逆命题、定理与逆定理的意义,并能判断命题的真假;2.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法;4.理解并能应用直角三角形的性质解题;理解并能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法“斜边,直角边”(即“HL”)判定两个直角三角形全等;5.理解并掌握角平分线、线段垂直平分线的性质定理及其逆定理,能用它们解决作图题、几何计算及证明题.【知识网络】【要点梳理】要点一、全等三角形的性质和判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定2——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).全等三角形判定3——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).全等三角形判定4——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等.(2)可以从已知出发,看已知条件确定证哪两个三角形全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等.(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.3.判定直角三角形全等的特殊方法——斜边直角边定理斜边直角边定理(或简记为HL):斜边和一条直角边分别相等的两个直角三角形全等.要点诠释:判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.要点二、等腰三角形1.等腰三角形的性质及其作用性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质1用之证明同一个三角形中的两角相等,是证明角相等的一个重要依据.性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).性质2用来证明线段相等,角相等,垂直关系等.2.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.3.等边三角形的性质和判定:性质:等边三角形三个内角都相等,并且每一个内角都等于60°.判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点诠释:由等边三角形的“三线合一”可得:在直角三角形中,30°所对的直角边等于斜边的一半.要点三、尺规作图、命题、定理与逆命题、逆定理1.尺规作图只能使用圆规和没有刻度的直尺这两种工具作几何图形的方法称为尺规作图.要点诠释:(1)要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.(2)掌握五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;经过一已知点作已知直线的垂线;作已知线段的垂直平分线.并能利用本章的知识理解这些基本作图的方法.2.命题与逆命题判断一件事件的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.要点诠释:(1)对于命题的定义要正确理解,也即是通过这句话可以确定一件事是发生了还是没发生,如果这句话不能对于结果给予肯定或者否定的回答,那它就不是命题.(2)每一个命题都可以写成“如果…,那么…”的形式,“如果”后面为题设部分,“那么”后面为结论部分.(3)所有的命题都有逆命题.原命题正确,它的逆命题不一定正确.3.定理与逆定理数学中,有些命题可以从基本事实或者其他真命题出发,用逻用推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.如果一个定理的逆命题也是真命题,那就称它为原定理的逆定理.要点诠释:(1)定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.(2)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理.要点四、角平分线、线段垂直平分线的性质定理及其逆定理1.角平分线性质定理及其逆定理角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边的距离相等的点在角的平分线上.要点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.2.线段垂直平分线(也称中垂线)的性质定理及其逆定理线段的垂直平分线上的点到线段两端的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.要点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理则是在结论中确定线段被垂直平分,一定要注意着两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.【典型例题】类型二、全等三角形的性质和判定1、已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E 三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【思路点拨】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【答案与解析】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE 特殊位置关系为BD⊥CE.【总结升华】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.举一反三:【变式】如图,已知:AE ⊥AB ,AD ⊥AC ,AB =AC ,∠B =∠C ,求证:BD =CE.【答案】证明:∵AE ⊥AB ,AD ⊥AC ,∴∠EAB =∠DAC =90° ∴∠EAB +∠DAE =∠DAC +∠DAE ,即∠DAB =∠EAC.在△DAB 与△EAC 中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.2、(2016秋•诸暨市期中)如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC . 求证:∠PCB+∠BAP=180°.【思路点拨】过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.【答案与解析】证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F ,∴PE=PF ,∠PEA=∠PFB=90°,在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL ),∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==, ∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90°即ED ⊥AC .类型二、等腰三角形3、如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.【思路点拨】要判断△AFC 的形状,可通过判断角的关系来得出结论,那么就要看∠FAC 和 ∠FCA 的关系.因为∠BAD =∠BCE ,因此我们只比较∠BAC 和∠BCA 的关系即可.【答案与解析】解:△AFC 是等腰三角形.理由如下:在△BAD 与△BCE 中,∵∠B =∠B ,∠BAD =∠BCE ,BD =BE ,∴△BAD≌△BCE,∴BA=BC,∠BAC=∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA.∴AF=CF,∴△AFC是等腰三角形.【总结升华】利用全等三角形来得出角相等是本题解题的关键.举一反三:【变式】如图,∠1=∠2,AB=AD,∠B=∠D=90°,请判断△AEC的形状,并说明理由.【答案】解:△AEC是等腰三角形.理由如下:∵∠1=∠2,∴∠1+∠3=∠2+∠3,即∠BAC=∠DAE,又∵AB=AD,∠B=∠D,∴△ABC≌△ADE(ASA),∴AC=AE.即△AEC是等腰三角形.4、数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.【思路点拨】(1)根据等边对等角,及角平分线定义,易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,可得AD=BD=CB,∴△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.(2)解:如下图所示:(3)解:如图所示:5、已知角α和线段c如图所示,求作等腰三角形ABC,使其底角∠B=α,腰长AB=c.要求仅用直尺和圆规作图,写出作法,并保留作图痕迹.已知:求作:【思路点拨】作射线BP,再作∠PBQ=∠α;在射线BQ上截取BA=c;以点A为圆心,线段c 为半径作弧交BP于点C;连接AC.则△ABC为所求.【答案与解析】解:作法:(1)作射线BP,再作∠PBQ=∠α;(2)在射线BQ上截取BA=c;(3)以点A为圆心,线段c为半径作弧交BP于点C;(4)连接AC.则△ABC为所求.△ABC就是所求作的三角形.【总结升华】此题主要考查三角形的作法,是一些基本作图的综合应用.举一反三:【变式】已知△ABC,按下列要求作图:(保留作图痕迹,不写作法)(1)作BC边上的高AD;(2)作△ABC的平分线BE.(尺规作图)【答案】解:如图:类型四、角平分线、线段垂直平分线性质定理与逆定理6、如图,AD是△ABC的角平分线,EF是AD的垂直平分线.求证:(1)∠EAD=∠EDA.(2)DF∥AC.(3)∠EAC=∠B.【思路点拨】(1)根据垂直平分线上任意一点,到线段两端点的距离相等可得到AE=DE,再根据等角对等边可得到∠EAD=∠EDA;(2)根据线段垂直平分线的性质证明AF=DF,进而得到∠BAD=∠ADF,再利用角平分线的性质可得到∠BAD=∠CAD,利用等量代换可得∠ADF=∠CAD,再根据平行线的判定即可得到DF∥AC;(3)根据三角形内角与外角的关系可得到结论.【答案与解析】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠BAD=∠ADF,∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∴∠ADF=∠CAD,∴DF∥AC;(3)由(1)∠EAD=∠EDA,即∠ADE=∠CAD+∠EAC,∵∠ADE=∠BAD+∠B,∠BAD=∠CAD,∴∠EAC=∠B.【总结升华】此题主要考查了线段的垂直平分线的性质,等腰三角形的性质,平行线的判定以及三角形内角与外角的关系,题目综合性较强,但是难度不大,需要同学们掌握好基础知识.举一反三:【变式1】如图,BP是△ABC的外角平分线,点P在∠BAC的角平分线上.求证:CP是△ABC的外角平分线.【答案】证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥AD,PE⊥AE,∴PD=PE(角平分线上的点到角两边的距离相等),∴PF=PE,PF⊥BC,PE⊥AE,∴CP是△ABC的外角平分线(在角的内部,到角两边距离相等的点在角的平分线上).【变式2】如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。
本章复习【基本目标】1。
理解命题与定理,逆命题与逆定理。
2.掌握全等三角形的判定方法。
3.掌握等腰三角形(含等边三角形)的性质与判定.4。
掌握五种基本作图。
5。
理解线段的垂直平分线的性质定理及逆定理.6。
理解角平分线的性质定理及逆定理。
【教学重点】通过复习回顾掌握本章重要知识,能够用本章知识熟练解决相关问题。
【教学难点】灵活用全等三角形证明几何问题.一、知识框图,整体建构二、知识梳理,快乐晋级填空比赛1。
命题的结构包括_____和_____,将一个命题的_____与_____颠倒就转化成了它的逆命题,定理的逆命题也正确,二者互为_____。
2.判断全等三角形的方法有_____。
直角三角形除了上述方法外还可用_____来判断。
3.全等三角形的性质是对应边_____,对应角_____。
全等三角形常见的变换方式有_____、_____和_____三种.4。
线段垂直平分线上的点到线段两端的_____,到线段两端_____的点在线段的垂直平分线上;角平分线上的点到角两边的_____,在角的内部到角两边距离相等的点在角的_____。
三角形的_____交点到三边距离相等,三角形_____交点到三个顶点的距离相等.5.等腰三角形的两底角_____,顶角的_____,底边上的,底边上的_____互相重合;有_____的三角形是等腰三角形,等边三角形的三个角都_____,并且都为_____.三个角_____的三角形是等边三角形,有一个角_____是的等腰三角形是等边三角形.【教学说明】以填空比赛的形式激发了学生的复习热情,提高了复习知识的效率。
三、典例精析,升华旧知例1(1)下列命题中正确的有()①只有真命题才有逆命题;②假命题的逆命题是真命题;③有两边及其中一边对角对应相等的两个三角形全等;④一边一角分别相等的两个直角三角形全等。
A。
0个 B.1个 C.2个 D.3个(2)等腰△ABC的两边长是4和8,则它的第三边的边长是_____.(3)等腰△ABC的一个外角为150°,则它的顶角是_____.(4)等边三角形两条中线所成锐角是_____。
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、对于下列各组条件,不能判定的一组是()A. ∠A=∠A′,∠B=∠B′,AB=A′B′B. ∠A=∠A′,AB=A′B′,AC=A′C′C. ∠A=∠A′,AB=A′B′,BC=B′C′ D. AB=A′B′,AC=A′C′,BC=B′C′2、如图,OP平分∠BOA,∠BOA=45°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4B.2C.2D.23、下列命题中,真命题的个数有()①如果直线a∥b,b∥c,那么a∥c;②相等的角是对顶角;③两条直线被第三条直线所截,同位角相等;④比正实数小的一定是负实数;⑤两条直线平行,同旁内角相等;⑥立方根等于它本身的数是﹣1,0,1.A.1个B.2个C.3个D.4个4、如图,是的直径,,是上的两点,且平分,分别与,相交于点,,则下列结论不一定成立的是()A. B. C. D.5、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S=7,DE=2,△ABCAB=4,则AC长是()A.3B.4C.6D.56、如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE为8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为()A.6.5cmB.5cmC.9.5cmD.11cm7、下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1B.2C.3D.48、如图所示,在△ABC中,∠BAC=130°,AB的垂直平分线ME交BC于点M,交AB于点E,AC的垂直平分线NF交BC于点N,交AC于点F,则∠MAN为()A.80°B.70°C.60°D.50°9、如图,在四边形ABCD中,∠A=90°,AD=4,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.10B.12C.20D.无法确定10、如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是()A.7B.8C.9D.1011、如图,OD平分∠AOB,DE⊥AO于点E,DE=4,点F是射线OB上的任意一点,则DF的长度不可能是()A.3B.4C.5D.612、如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0B.C.D.113、用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°14、下列命题中,是真命题的是()A.长度相等的两条弧是等弧B.顺次连结平行四边形四边中点所组成的图形是菱形C.正八边形既是轴对称图形又是中心对称图形D.三角形的内心到这个三角形三个顶点的距离相等15、如图,已知,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A. B. C. D.二、填空题(共10题,共计30分)16、以下四个命题:①如果三角形一边的中点到其他两边距离相等,那么这个三角形一定是等腰三角形:②两条对角线互相垂直且相等的四边形是正方形:③一组数据2,4,6.4的方差是2;④△OAB与△OCD是以O为位似中心的位似图形,且位似比为1:4,已知∠OCD=90°,OC=CD.点A、C在第一象限.若点D坐标为(2, 0),则点A坐标为(,),其中正确命题有________ (填正确命题的序号即可)17、如图,正方形ABCD中,∠EAF=45°,连接对角线BD交AE于M,交AF于N,若DN=1,BM=2,那么MN=________.证明:DN2+BM2=MN2.18、如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=________.19、已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=60° ,AB=16cm,则∠C′=________ °,A′B′=________cm.20、在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1, S2,S 3, S4,则S1+S2+S3+S4=________.21、已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=________22、如图,线段AC与BD交于点O,且OA=OC, 请添加一个条件,使△OAB△OCD,这个条件是________.23、如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是________.24、如图,两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ________度。
第13章 全等三角形一、命题与定理1、判断一件事情的语句叫做命题.正确的命题称为真命题,错误的命题称为假命题。
如:(1)如果两个角是对顶角,那么这两个角相等;(真命题) (2)三角形的内角和是180°;(真命题) (3)同位角相等;(假命题)(4)平行四边形的对角线相等;(假命题) (5)菱形的对角线相互垂直(真命题)2、把一个命题改写成“如果……那么……”的形式.其中,用“如果”开始的部分是条件,用“那么”开始的部分是结论.3、从公理或其他真命题出发,用逻辑推理的方法判断是正确的命题,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.二、全等三角形1、全等三角形的概念及其性质1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形 。
2)全等三角形性质:(1)对应边相等 (2)对应角相等(3)周长相等 (4)面积相等例1.已知如图(1),ABC ∆≌DCB ∆,其中的对应边:____与____,____与____,____与____,对应角:______与_______,______与_______,______与_______.例2.如图(2),若BOD ∆≌C B COE ∠=∠∆,.指出这两个全等三角形的对应边;若ADO ∆≌AEO ∆,指出这两个三角形的对应角。
(图1) (图2) ( 图3)例3.如图(3), ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于G ,105=∠=∠AED ACB , 25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.2.全等三角形的判定方法1)、两边和夹角对应相等的两个三角形全等( SAS )例1.已知:如图,在ABC ∆中,BE 、CF 分别是AC 、AB 两条边上的高,在BE 上截取BD=AC,在CF 的延长线上截取CG=AB ,连接AD 、AG 。
求证:AG=AD.例2.如图,AD 与BC 相交于O,OC=OD,OA=OB,求证:DBA CAB ∠=∠例3.如图,在ABC Rt ∆中,AB=AC,90=∠A ,点D 为BC 上任一点,DF ⊥AB 于F ,DE ⊥AC 于E ,M 是BC 中点,试判断EMF ∆是什么形状的三角形,并证明你的结论.例4.如图,在梯形ABCD 中,AD//BC ,AB=CD ,延长CB 至E ,使EB=AD ,连接AE 。