逻辑关联词1(新编201912)
- 格式:pptx
- 大小:169.02 KB
- 文档页数:12
p或q联结起来,就得到一个新命题,记作=∈B x x{|(加以否定,得到一个新的命题,记作在全集U中的补集:答案 B解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N ”是“a ∈M ”的必要而不充分条件.故选B.6.若命题p :对于任意x ∈[-1,1],有f (x )≥0,则对命题p 的否定是________.答案 存在x 0∈[-1,1],使f (x 0)<07.已知命题p :x 2+2x -3>0;命题q :13-x>1,若“⌝q 且p ”为真,则x 的取值范围是____________________. 答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“綈q 且p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,得2<x <3,所以q 假时有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,解得x <-3或1<x ≤2或x ≥3, 所以x 的取值范围是x <-3或1<x ≤2或x ≥3.8.下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧(⌝q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③命题“若x 2-3x +2=0,则x =1”的逆否命题:“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧(綈q )为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确.所以正确结论的序号为①③.9.已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围.解 ∵函数y =c x 在R 上单调递减,∴0<c <1.即p :0<c <1,∵c >0且c ≠1,∴綈p :c >1.又∵f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,∴c ≤12. 即q :0<c ≤12,∵c >0且c ≠1,∴綈q :c >12且c ≠1. 又∵“p 或q ”为真,“p 且q ”为假,∴p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1. ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅. 综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1. 能力提升训练。
简单的逻辑联结词、全称量词与存在量词讲义一、知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3)綈p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则綈q”,否命题是“若綈p,则綈q”.二、基础检验题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.()(2)命题p和綈p不可能都是真命题.()(3)若命题p,q中至少有一个是真命题,则p∨q是真命题.()(4)“全等三角形的面积相等”是特称命题.()(5)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.()题组二:教材改编2.已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为()A.1 B.2 C.3 D.43.命题“正方形都是矩形”的否定是____________________.题组三易错自纠4.已知命题p,q,“綈p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列命题中的假命题是()A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>06.已知命题p:∀x∈R,x2-a≥0;命题p:∃x0∈R,x20+2ax0+2-a=0.若命题“p∧q”是真命题,则实数a的取值范围为__________.三、典型例题题型一:含有逻辑联结词的命题的真假判断1.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中的真命题是()A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∨(綈q)2.已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)3.已知命题p:若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q:在空间中,对于三条不同的直线a,b,c,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p∧q为真;②p∨q为假;③p∨q为真;④(綈p)∨(綈q)为假.其中,正确的是________.(填序号)思维升华:“p∨q”“p∧q”“綈p”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“p∧q”“p∨q”“綈p”等形式命题的真假.题型二:含有一个量词的命题命题点1:全称命题、特称命题的真假典例下列四个命题:p 1:∃x 0∈(0,+∞),0011()()23x x <; p 2:∃x 0∈(0,1),101023log log x x >;p 3:∀x ∈(0,+∞),x )21(>12log x ; p 4:∀x ∈)310(,,x)21(<13log x .其中真命题是( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4命题点2 含一个量词的命题的否定典例 (1)命题“∀x ∈R ,x)31(>0”的否定是( ) A .∃x 0∈R ,01()3x <0 B .∀x ∈R ,x)31(≤0 C .∀x ∈R ,x)31(<0D .∃x 0∈R ,01()3x ≤0.(2)命题“∃x 0∈R ,1<f (x 0)≤2”的否定形式是( )A .∀x ∈R ,1<f (x )≤2B .∃x 0∈R ,1<f (x 0)≤2C .∃x 0∈R ,f (x 0)≤1或f (x 0)>2D .∀x ∈R ,f (x )≤1或f (x )>2思维升华:(1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立. (2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; ②对原命题的结论进行否定.跟踪训练 (1)下列命题是假命题的是( ) A .∃α,β∈R ,使cos(α+β)=cos α+cos β B .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,使x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=ln 2x +ln x -a 有零点(2)已知命题p :“∃x 0∈R ,0e x -x 0-1≤0”,则綈p 为( ) A .∃x 0∈R ,0e x -x 0-1≥0 B .∃x 0∈R ,0e x -x 0-1>0 C .∀x ∈R ,e x -x -1>0 D .∀x ∈R ,e x -x -1≥0 题型三 含参命题中参数的取值范围典例 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________.(2)已知f (x )=ln(x 2+1),g (x )=x)21(-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.引申探究本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是___________. 思维升华:(1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练 (1)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)(2)(2017·洛阳模拟)已知p :∀x ∈]2141[,,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p且q ”为真命题,则实数m 的取值范围是__________..四、高频考点一、命题的真假判断典例1(1)(已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.(2)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,则下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )二、充要条件的判断典例2 (1)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 (2)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件三、求参数的取值范围典例3(1)已知命题p :∀x ∈[0,1],a ≥e x ,命题q :∃x 0∈R ,x 20+4x 0+a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是__________.(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈]3,21[,∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是________.五、反馈练习1.命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧(綈q ) C .(綈p )∧qD .p ∧(綈q )2.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为假D .p ∨q 为真3.下列命题中为假命题的是( ) A .∀x ∈)2,0(,x >sin x B .∃x 0∈R ,sin x 0+cos x 0=2C .∀x ∈R ,3x >0D .∃x 0∈R ,lg x 0=04.若定义域为R 的函数f (x )不是偶函数,则下列命题中一定为真命题的是( ) A .∀x ∈R ,f (-x )≠f (x ) B .∀x ∈R ,f (-x )=-f (x ) C .∃x 0∈R ,f (-x 0)≠f (x 0) D .∃x 0∈R ,f (-x 0)=-f (x 0)5.设命题p :∃x 0∈(0,+∞),x 0+1x 0>3;命题q :∀x ∈(2,+∞),x 2>2x ,则下列命题为真的是( )A .p ∧(綈q )B .(綈p )∧qC .p ∧qD .(綈p )∨q6.已知命题p :∃x 0∈R ,cos x 0=54;命题q :∀x ∈R ,x 2-x +1>0.则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧(綈q )是真命题C .命题(綈p )∧q 是真命题D .命题(綈p )∨(綈q )是假命题 7.下列命题中,真命题是( )A .∃x 0∈R ,0e x ≤0B .∀x ∈R ,2x >x 2C .a +b =0的充要条件是ab =-1 D .“a >1,b >1”是“ab >1”的充分条件8.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)9.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为____________________.10.已知函数f (x )的定义域为(a ,b ),若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则f (a +b )=________. 11.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x 0∈Q ,x 20=2;③∃x 0∈R ,x 20+1=0;④∀x ∈R,4x 2>2x -1+3x 2.其中真命题的个数为________.12.已知命题p :∃x 0∈R ,(m +1)·(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为____________.13.已知命题p :x 2+2x -3>0;命题q :13-x >1,若“(綈q )∧p ”为真,则x 的取值范围是___.14.下列结论:①若命题p :∃x 0∈R ,tan x 0=1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(綈q )”是假命题; ②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________.15.已知命题p :∃x 0∈R ,0e x-mx 0=0,命题q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是____.16.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2).(1)若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为________________;(2)若∀x 1∈[2,+∞),∃x 2∈[2, +∞),使得f (x 1)=g (x 2),则实数a 的取值范围为________________.。
1.表递进,强调除了,此外,而且(句首常用,句中,句尾均可)e.g. The house was out of our price range and too big anyway. Besides, I'd grownfond of our little rented house.(反正这个房子超出了我们的预算范围,而且也太大了。
再说,我已经渐渐喜欢上我们租的小房子了)You get to sample lots of baked things and take home masses of cookies besides.(你可以品尝许多烘烤食品,此外还能带许多饼干回家)I think she has many good qualities besides being very beautiful.(我觉得她除了非常漂亮之外,还有许多好的品质)另外(句首常用)e.g.All teachers are qualified to teach their native language. Additionally, weselect our teachers for their engaging personalities.(所有教师都具备教授其母语的资格。
另外,我们还根据富有魅力的个性来选择我们的教师)此外,而且(句首常用)e.g.Furthermore, they claim that any such interference is completelyineffective.(此外,他们声称任何此类干涉都是完全无效的)此外,而且(句首常用,较正式)e.g. She saw that there was indeed a man immediately behind her. Moreover, hewas observing her strangely.(她看到的确有个男人紧跟在她身后。