旋转型全等模型知识讲解
- 格式:doc
- 大小:203.50 KB
- 文档页数:4
专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。
模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。
其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。
1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。
结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。
2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。
结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。
3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。
结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。
4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。
结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。
例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC+=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明CAP BAF ≌△△(SAS ),得CAP BAF Ð=Ð,AF AP =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明BAP CAF ≌△△(SAS ),得出CAF BAP Ð=Ð,AP AF =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC=+证明:在BP 上截取BF CP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC CAD DAE CAD Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AC =AB ,CP =BF , ∴CAP BAF ≌△△(SAS ),∴CAP BAF Ð=Ð,AF AP =,∴CAP CAF BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC BAE DAE BAE Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP Ð=Ð,AP AF =,∴BAF BAP BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt △ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE .(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长;(3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B 重合时,如图2,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论.【详解】解:(1)CD 2+DB 2=2DF 2证明:∵DF =EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF = 连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =,CF AB ^,即90CFB Ð=° ∴45FCB FBC Ð=Ð=°,90CFD DFB Ð+Ð=°又90DFB EFB Ð+Ð=° ∴CFD EFB Ð=Ð在CFD D 和BFE D 中CF BF CFD BFE DF EF =ìïÐ=Ðíï=î∴CFD D @BFED ∴CD BE =,45EBF FCB Ð=Ð=° ∴454590DBF EBF Ð+Ð=°+°=° ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2 证明:连接CF 、BE∵CF =BF ,DF =EF 又∵∠DFC +∠CFE =∠EFB +∠CFB=90°∴∠DFC =∠EFB ∴△DFC ≌△EFB ∴CD =BE ,∠DCF =∠EBF =135°∵∠EBD =∠EBF -∠FBD =135°-45°=90° 在Rt △DBE 中,BE 2+DB 2=DE 2∵ DE 2=2DF 2 ∴ CD 2+DB 2=2DF 2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE Ð=°;2AE AD DE BE CM=+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC V 和ADE V 是顶角相等的等腰三角形,∴AB AC =,AD AE =,BAC DAE Ð=Ð,∴BAC CAD DAE CAD Ð-Ð=Ð-Ð,∴BAD CAE Ð=Ð.在BAD V 和CAE V 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴()BAD CAE SAS ≌△△,∴BD CE =.(2)解:90AEB =°∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE =,ADC BEC ÐÐ=,∵CDE △是等腰直角三角形,∴45CDE CED Ð=Ð=°,∴180135ADC CDE Ð=°-Ð=°,∴135BEC ADC Ð=Ð=°,∴1354590AEB BEC CED Ð=Ð-Ð=°-°=°.∵CD CE =,CM DE ^,∴DM ME =.∵90DCE Ð=°,∴DM ME CM ==,∴2DE CM =.∴2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.3)15°模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④D AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。
初三数学旋转知识点归纳
初三数学旋转知识点归纳
1、概念:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
旋转三要素:旋转中心、旋转方面、旋转角
2、旋转的性质:
(1)旋转前后的两个图形是全等形;
(2)两个对应点到旋转中心的距离相等
(3)两个对应点与旋转中心的连线段的.夹角等于旋转角
3、中心对称:
把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
(2)关于中心对称的两个图形是全等图形.
5、中心对称图形:
把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
6、坐标系中的中心对称
两个点关于原点对称时,它们的坐标符号相反,
即点P(x,y)关于原点O的对称点P(-x,-y)。
初中必会几何模型(口诀突破):手拉手模型(或旋转型)教材知识:三角形全等知识中,教材对全等三角形的图形变换概括为三种:平移型、翻折型、旋转型。
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.归纳模型:三种变换中以旋转型为考试的热点和难点,这种变换我们往往也称为手拉手模型。
因为这种图形变换都是以等腰三角形的顶点为旋转点,进行适当旋转而成。
然后,连接对应点构造新的三角形,证明三角形全等即可解决。
划重点,上口诀:等腰图形有旋转,辨清共点旋转边。
关注三边旋转角,全等思考边角边。
模型变换:如图,△ABC是等腰三角形、△ADE是等腰三角形,AB=AC,AD=AE,∠BAC=∠DAE=a。
结论:连接BD、CE,则有△BAD≌△CAE。
模型证明:图②图③同理可证。
模型分析:(1)这个图形是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形。
(2)如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,所以把这个模型称为手拉手模型。
(3)手拉手模型常和旋转结合,在考试中作为几何综合题目出现。
模型实例:如图,△ADC与△EDG都为等腰直角三角形,连接AG、CE,相交于点H,问:(1)AG与CE是否相等?(2)AG与CE之间的夹角为多少度?问题解答:模型实练:如图,在直线AB的同一侧作△ABD和△BCE,△ABD和△BCE都是等边三角形、连接AE、CD,二者交点为H.求证:(1)△ABE≌△DBC;(2)AE=DC;(3)∠DHA=60°;(4)△AGB≌△DFB;(5)△EGB≌△CFB(6)连接GF,GF∥AC;(7)连接HB,HB平分∠AHC.。
旋转类全等中考剖析课程结构一、几何变换——共顶点旋转等边三角形共顶点共顶点等腰直角三角形以上给出了各种图形连续变化图形,图中出现的两个阴影部分的三角形是全等三角形,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化。
证明的基本思想“SAS”。
二、旋转变换的性质:(1)对应线段相等,对应角相等(2)对应点位置的排列次序相同(3)任意两条对应线段所在直线的夹角都等于旋转角θ.三、利用旋转思想构造辅助线(1)根据相等的边先找出被旋转的三角形(2)根据对应边找出旋转角度,画出旋转三角模块一简单类旋转与全等【例1】D是等腰Rt ABC∆内一点,BC是斜边,如果将ABD∆绕点A逆时针方向旋转到'ACD∆的位置,旋转的度数是( )A.25︒B.30︒C.35︒D.90︒D'DCBA例题精讲【巩固】如图,P 是正ABC ∆内的一点,若将PBC ∆绕点B 旋转到P BA '∆,则PBP '∠的度数是( ) A .45︒ B .60︒ C .90︒ D .120︒P 'ABCP【巩固】ABC ∆中,108ACB ∠=︒,将它绕着C 逆时针旋转30︒后得到''A B C ∆,则'ACB ∠的度数是多少?B'A'CBA【例2】 如图,将矩形ABCD 绕点A 顺时针旋转90︒后,得到矩形'''AB C D ,如果22CD DA ==,那么'CC =_________.D'C'B'D CB A【巩固】如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC ∆绕点A 顺时针旋转后,得到'P AB ∆,则点P 与点'P 之间的距离为______,APB ∠= .P'PCB A模块二 旋转中的基本模型【例3】 如图,四边形ABCD 是正方形,F 是BA 延长线上的点,ADF ∆旋转一定角度后得到ABE ∆,如果4AF =,7AB =. ⑴指出旋转中心和旋转角度; ⑵求DE 的长度.A BCD EF【巩固】⑴如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求AEB ∠的大小.⑵如图2,OAB ∆固定不动,保持COD ∆的形状和大小不变,将COD ∆绕着点O 逆时针旋转15︒,求AEB ∠的大小.图1ABCDEO 图2ABCDEO【例4】 在等腰Rt ABC △的斜边AB 上取两点M N 、,使45MCN ∠=︒,若3AM =,4BN =,求ABC △的面积.NMCBA【例5】 等腰直角三角形ABC ,902ABC AB O ∠=︒=,,为AC 中点,45EOF ∠=︒,求△B E F的周长. OFE CBA【巩固】如图,将ABC △绕顶点B 按顺时针方向旋转60︒,得到DBE △,连接AD DC 、,若30DCB ∠=︒,123AB BC CD ===,,,求ACEDCBA【例6】 如图,ABC ∆和ADE ∆都是等腰直角三角形,点M 为EC 的中点,求证:BMD ∆为等腰直角三角形.MDECBA【巩固】已知:在Rt △ABC 中,AB =BC ,在Rt △ADE 中,AD =DE ,连结EC ,取EC 的中点M ,连结DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图①,探索BM 、DM 的关系并给予证明;(2)如果将图①中的△ADE 绕点A 逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.【巩固】取一副三角板按图①拼,固定三角板ADC ,将三角板ABC 绕点A 依顺时针方向旋转一个大小为α的角()045α︒<︒≤得到ABC '∆,如图所示.试问:⑴当α为多少度时,能使得图②中AB DC ∥?⑵连结BD ,当045α︒<︒≤时,探寻DBC CAC BDC ''∠+∠+∠值的大小变化情况,并给出你的证明.ABCDABCDC'图2图1图②M DB ACE 图①M D B ACE【例7】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:(1)AN BM =(2)CD CE =(3)CF 平分AFB ∠(4)CDE △是等边三角形.M D NEC BFA【巩固】如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E是BM 中点,求证:CDE ∆是等边三角形.M DNECBA【例8】 如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.OB ECF A【巩固】在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.APMCQ B【例9】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.NM DCBA【例10】 如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)CF BH =;(2)MH MF =MHGFECB A本课易错点反思1、等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.DFE CBA2、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:(1)AE CG =;(2)CG AE ⊥.G FE DCBA课后作业3、已知:△ABC 和△ADE 均为等腰直角三角形, ∠ABC =∠ADE =90︒, AB = BC ,AD =DE ,按图1放置,使点E 在BC 上,取CE 的中点F ,联结DF 、BF . (1)探索DF 、BF 的数量关系和位置关系,并证明;(2)将图1中△ADE 绕A 点顺时针旋转45︒,再联结CE ,取CE 的中点F (如图2),问(1)中的结论是否仍然成立?证明你的结论;(3)将图1中△ADE 绕A 点转动任意角度(旋转角在0︒到90︒之间),再联结CE ,取CE 的中点F (如图3),问(1)中的结论是否仍然成立?证明你的结论图1FE D CBA图2ABCD E FFEDCBA图34、在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M ,N ,D 为ABC ∆外一点,且︒=∠60MDN ,︒=∠120BDC ,CD BD =,探究:当点M ,N 分别爱直线AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及AMN ∆的周长与等边ABC ∆的周长L 的关系.N M DCBANM DCBANMD CBA图(1) 图(2) 图(3)⑴如图①,当点M ,N 在边AB ,AC 上,且DM=DN 时,BM ,NC ,MN 之间的数量关系式__________;此时LQ=__________ ⑵如图②,当点M ,N 在边AB ,AC 上,且DN DM ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN=x ,则Q=_________(用x ,L 表示)。
全等模型汇总编辑:陆老师2023.10.15【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件. 【常见模型】【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.【常见模型】【模型解读】模型主体为两个直角三角形,且两条斜边互相垂直。
【常见模型】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
【模型图示】公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得。
共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论: (1)BCD ACE ≅△△ (2)AE BD = (3)AFB DFE ∠=∠ (4)FC BFE ∠平分【常见模型】(等腰)(等边)(等腰直角)一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
初二数学全等三角形旋转模型知识点总结附解析一、全等三角形旋转模型1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.答案:C解析:(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN ,∴∠MCF=∠NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ),∴CF=CG (全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .2.(1)如图1,在OAB 和OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M .求:①AC BD 的值; ②∠AMB 的度数.(2)如图2,在OAB 和OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由; (3)在(2)的条件下,将OCD 点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=2,OB=23,请直接写出当点C 与点M 重合时AC 的长.答案:A解析:(1)①1,②40°;(2)AC BD3∠AMB=90°,见解析;(3)33【分析】(1)①根据已知条件证明△COA ≌△DOB ,即可证明AC=BD ;②根据△COA ≌△DOB 可得∠CAO=∠DBO ,根据已知条件可得∠OAB+∠ABO=140°,然后在△AMB 中,根据等角的转换即可得到答案;(2)根据已知条件证明△AOC ∽△BOD ,可得∠CAO=∠DBO ,进而可得∠MAB=∠OAB+∠DBO ,最后可得∠AMB=180°-(∠OAB+∠ABM+∠DBO )=90°;(3)分两种情况讨论,根据题(2),同理可得OAC OBD △△,90AMB ∠=︒,3AC BD=,设BD=x ,则3AC x = 用x 表示出AM 、BM 的长,在Rt AMB 中,根据勾股定理222AM BM AB +=列出方程,求解即可. 【详解】 解:(1)①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB ,∵OC=OD ,OA=OB ,∴△COA ≌△DOB (SAS ),∴AC=BD ,∴AC BD=1, ②∵△COA ≌△DOB ,∴∠CAO=∠DBO ,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD )=180°﹣(∠DBO+∠OAB+∠ABD )=180°﹣140°=40°,(2)如图2,AC BD3∠AMB=90°,理由是:在Rt △COD 中,∠DCO=30°,∠DOC=90°, ∴3tan 303OD OC =︒=, 同理得:3tan 303OB OA =︒=, ∴OD OB OC OA=, ∵∠AOB=∠COD=90°,∴∠AOC=∠BOD ,∴△AOC ∽△BOD ,∴AC OC BD OD==3,∠CAO=∠DBO , 在△AMB 中,∠AMB=180°﹣(∠MAB+∠ABM )=180°﹣(∠OAB+∠ABM+∠DBO )=90°;(3)AC 的长为23或43.①如图,点C 与点M 重合,同理可得:OAC OBD △△,90AMB ∴∠=︒,3AC BD =设BD=x ,则3AC x =,在Rt ODC 中,30OCD ∠=︒,OD=2,4CD ∴=,在Rt AOB 中,30OAB ∠=︒,OB=23,43AB ∴=,在Rt AMB 中,222AM BM AB +=, 即222(3)(4)(43)x x ++=,解得:x=2或-4(舍), AC=323x =;②如图,点C 与点M 重合,同理可得:90AMB ∠=︒,3AC BD =设BD=x ,则3x ,在Rt COD 中, 90OCD ∠=︒,OD=2,4CD ∴=,4BC x =-, 在Rt AOB 中,30OAB ∠=︒,3OB = 243AB OB ∴==,在Rt AMB 中,222AM BM AB +=,即222(3)(4)(43)x x +-=,解得:x=4或-2(舍),343x =综上所述,AC 的长为2343【点睛】本题主要考查三角形的综合运用,涉及全等三角形与相似三角形的性质和判定、勾股定理、解一元一次方程、图形旋转证明、特殊角的三角函数值等知识点,难度较大,第(1)题证明△COA ≌△DOB 是关键,第(2)题证明△AOC ∽△BOD 是关键,第(3)题要特别注意分情况讨论.3.问题提出:(1)如图1,在ABC 中,AB AC BC =≠,点D 和点A 在直线BC 的同侧,BD BC =,90BAC ∠=︒,30DBC ∠=︒,连接AD ,将ABD △绕点A 逆时针旋转90︒得到ACD ',连接BD '(如图2),可求出ADB ∠的度数为______.问题探究:(2)如图3,在(1)的条件下,若BAC α∠=,DBC β∠=,且120αβ+=︒,DBC ABC ∠<∠ ,①求ADB ∠的度数.②过点A 作直线AE BD ⊥,交直线BD 于点E ,7,2BC AD ==.请求出线段BE 的长.答案:A解析:(1)30°;(2)①30︒;②73-【分析】(1)由旋转的性质,得△ABD ≌ACD '∆,则ADB AD C '∠=∠,然后证明BCD '∆是等边三角形,即可得到30ADB AD C '∠=∠=︒;(2)①将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .与(1)同理证明D BC '∆为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出3DE =【详解】解:(1)根据题意,∵AB AC BC =≠,90BAC ∠=︒,∴ABC ∆是等腰直角三角形,∴45ABC ACB ∠=∠=︒,∵30DBC ∠=︒,∴15ABD ∠=︒,由旋转的性质,则△ABD ≌ACD '∆,∴ADB AD C '∠=∠,15ABD ACD '∠=∠=︒,BC CD '=,∴60BCD '∠=︒,∴BCD '∆是等边三角形,∴60BD C '∠=︒,BD CD ''=∵AB AC =,AD AD ''=,∴ABD '∆≌ACD '∆,∴30AD B AD C ''∠=∠=︒,∴30ADB AD C '∠=∠=︒;(2)①DBC ABC ∠<∠,60120α︒︒∴<<.如图1,将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .AB AC =,ABC ACB ∴∠=∠,BAC α∠=, ()111809022ABC αα︒︒∴∠=-=-, 1902ABD ABC DBC αβ︒∴∠=∠-∠=--, 119090180()22D CB ACD ACB αβααβ''︒︒︒∴∠=∠+∠=--+-=-+. 120,αβ︒+=60D CB '︒∴∠=.,BD BC BD CD '==,,BC CD '∴=D BC '∴为等边三角形,D B D C ''∴=,AD B AD C ''∴≌,AD B AD C ''∴∠=∠,1302AD B BD C ''︒∴∠=∠=, 30ADB ︒∴∠=.②如图2,由①知,30ADB ︒∠=,在Rt ADE △中,30,2ADB AD ︒∠==, 3DE ∴=.BCD '是等边三角形,7BD BC '∴==,7BD BD'∴==,73BE BD DE∴=-=-.【点睛】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.4.△CDE和△AOB是两个等腰直角三角形,∠CDE=∠AOB=90°,DC=DE=1,OA=OB=a(a>1).(1)将△CDE的顶点D与点O重合,连接AE,BC,取线段BC的中点M,连接OM.①如图1,若CD,DE分别与OA,OB边重合,则线段OM与AE有怎样的数量关系?请直接写出你的结果;②如图2,若CD在△AOB内部,请你在图2中画出完整图形,判断OM与AE之间的数量关系是否有变化?写出你的猜想,并加以证明;③将△CDE绕点O任意转动,写出OM的取值范围(用含a式子表示);(2)是否存在边长最大的△AOB,使△CDE的三个顶点分别在△AOB的三条边上(都不与顶点重合)?如果存在,请你画出此时的图形,并求出边长a的值;如果不存在,请说明理由.答案:A解析:(1)①OM=12AE;②OM=12AE,证明详见解析;③12a-≤OM≤12a+;(2)5【分析】(1)①利用△CDE≌△AOB得出BC=AE,再由直角三角形斜边的中线等于斜边的一半求解.②作辅助线,利用△COF≌△EOA及三角形中位线得出OM=12 AE.③分两种情况,当OC与OB重合时OM最大,当OC在BO的延长线上时OM最小,据此求出OM的取值范围.(2)分两种情况:当顶点D在斜边AB上时,设点C,点E分别在OB,OA上.由DM +OM ≥OF 求出直角边a 的最大值;当顶点D 在直角边AO 上时,点C ,点E 分别在OB ,AB 上时,利用△EHD ≌△DOC ,得出OD =EH ,在Rt △DHE 中,运用勾股定理ED 2=DH 2+EH 2,得出方程,由△判定出a 的最大值.【详解】解:(1)①∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =B 0,∠CDE =∠AOB ,在△CDE 和△AOB 中,CD ED CDE AOB AO BO =⎧⎪∠=∠⎨⎪=⎩∴△CDE ≌△AOB (SAS ),∴BC =AE∵M 为BC 中点,∴OM =12BC , ∴OM =12AE . ②猜想:OM =12AE . 证明:如图2,延长BO 到F ,使OF =OB ,连接CF ,∵M 为BC 中点,∴OM =12CF , ∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =BO =OF ,∠CDE =∠AOB ,∵∠AOC +∠COB =∠BOE +∠COB =90°,∴∠AOC =∠BOE ,∠FOC =∠AOE ,在△COF 和△EOA 中,CD ED FOC AOE OF AO =⎧⎪∠=∠⎨⎪=⎩∴△COF ≌△EOA ,∴CF =AE ,∴OM =12AE . ③Ⅰ、如图3,当OC 与OB 重合时,OM 最大,OM =11122a a -++= Ⅱ、如图4,当OC 在BO 的延长线上时,OM 最小,OM =12a +﹣1=12a -, 所以12a -≤OM ≤12a +, (2)解:根据△CDE 的对称性,只需分两种情况: ①如图5,当顶点D在斜边AB上时,设点C,点E分别在OB,OA上.作OF⊥AB于点F,取CE的中点M,连接OD,MD,OM.∵△AOB和△CDE是等腰直角三角形,∠AOB=∠CDE=90°,OA=OB=a(a>1),DC=DE=1,∴AB=2a,OF=12AB=22a,∴CE=2,DM=12CE=22,在RT△COE中,OM=12CE=22,在RT△DOM中,DM+OM≥OD,又∵OD≥OF,∵DM+OM≥OF,即22+22≥22a,∴a≤2,∴直角边a的最大值为2.②如图6,当顶点D在直角边AO上时,点C,点E分别在OB,AB上,作EH⊥AO于点H.∵∠AOB=∠CDE=∠DHE=90°,∵∠HED+∠EDH=∠CDO+∠EDH=90°,∴∠HED=∠CDO,∵DC=DE,在△EHD和△DOC中,EHD COD HED CDO DE DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EHD ≌△DOC (AAS )设OD =x ,∴OD =EH =AH =x ,DH =a ﹣2x ,在Rt △DHE 中,ED 2=DH 2+EH 2,∴1=x 2+(a ﹣2x )2,整理得,5x 2﹣4ax +a 2﹣1=0,∵x 是实数,∴△=(4a )2﹣4×5×(a 2﹣1)=20﹣4a 2≥0,∴a 2≤5,∴a 2的最大值为5,∴a 的最大值为5.综上所述,a 的最大值为5.【点睛】本题主要考查了几何变换综合题及三角形全等的判定和性质,解题的关键是在取最大值时,对三角形的位置进行讨论分别求值.5.如图,点B ,C ,D 在同一条直线上,△BCF 和△ACD 都是等腰直角三角形,连接AB ,DF ,延长DF 交AB 于点E .(1)如图1,若AD =BD ,DE 是∠ADB 的平分线,BC =1,求CD 的长度;(2)如图2,连接CE ,求证:DE =2CE +AE ;(3)如图3,改变△BCF 的大小,始终保持点在线段AC 上(点F 与点A ,C 不重合).将ED 绕点E 顺时针旋转90°得到EP ,取AD 的中点O ,连接OP .当AC =2时,直接写出OP 长度的最大值.解析:(1)21CD =;(2)证明见解析;(3)22+【分析】 (1)根据等腰直角三角形的性质,求出1FC BC ==,再判断出FA FB =,即可得出结论;(2)先判断出ABC DFC ≅△△,得出BAC CDF ∠=∠,进而判断出ACE DCH ≅△△,得出AE DH =,CE CH =,即可得出结论;(3)先判断出2OE OQ ==,再判断出OED QEP ≅△△,进而求出2PQ OD ==.即可得出结论. 【详解】(1)解:BCF 和ACD △都是等腰直角三角形,AC CD ∴=,1FC BC ==,2FB =,AD BD =,DE 是ABD ∆的平分线,DE ∴垂直平分AB ,2FA FB ∴==,21AC FA FC ∴=+=+,21CD ∴=+;(2)证明:如图2,过点C 作CH CE ⊥交ED 于点H ,BCF 和ACD △都是等腰直角三角形,AC DC ∴=,FC BC =,90ACB DCF ∠=∠=︒;()ABC DFC SAS ∴≅△△,BAC CDF ∴∠=∠,90ECH ∠=︒,90ACE ACH ∴∠+∠=︒,90ACD ∠=︒,90DCH ACH ∴∠+∠=︒,ACE DCH ∴∠=∠.在ACE 和DCH 中,BAC CDF AC DCACE DCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACE DCH ASA ∴≅△△,AE DH ∴=,CE CH =,2EH CE ∴=.2DE EH DH CE AE =+=+;(3)OP 的最大值是22+.解:如图3,连接OE ,将OE 绕点E 顺时针旋转90︒得到EQ ,连接OQ ,PQ ,则2OQ OE =.由(2)知,90AED ABC CDF ABC BAC ∠=∠+∠=∠+∠=︒,在Rt AED △中,点O 是斜边AD 的中点,122222OE OD AD AC ∴===== 2222OQ OE ∴===,在OED 和QEP △中,OE QE OED QEP DE PE =⎧⎪∠=∠⎨⎪=⎩,()OED QEP SAS ∴≅△△,2PQ OD ∴==22OP OQ PQ +=+O 、P 、Q 三点共线时,取“=”号,OP ∴的最大值是22+【点睛】此题是几何变换综合题,主要等腰直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.6.如图1所示,矩形ABCD 中,点E ,F 分别为边AB ,AD 的中点,将△AEF 绕点A 逆时针旋转α(0°<α≤360°),直线BE 、DF 相交于点P .(1)若AB=AD,将△AEF绕点A逆时针旋转至如图2所示的位置,则线段BE与DF的数量关系是.(2)若AD=nAB(n≠1),将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明,若不成立,请写出正确结论,并说明理由.(3)若AB=8,BC=12,将△AEF旋转至AE⊥BE,请算出DP的长.答案:B解析:(1)BE=DF;(2)不成立,结论:DF=nBE;理由见解析(3)634或634【分析】(1)如图2中,结论:BE=DF,BE⊥DF.证明△ABE≌△ADF(SAS),利用全等三角形的性质可得结论;(2)结论:DF=nBE,BE⊥DF,证明△ABE∽△ADF(SAS),利用相似三角形的性质可得结论;(3)分两种情形画出图形,利用相似三角形的性质以及勾股定理求解即可.【详解】解:(1)结论:BE=DF,BE⊥DF,理由:∵四边形ABCD是矩形,AB=AD,∴四边形ABCD是正方形,AE=12AB,AF=12AD,∴AE=AF,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴BE=DF,故答案为:BE=DF;(2)结论不成立,结论:DF=nBE,∵AE=12AB,AF=12AD,AD=nAB,∴AF=nAE,∴AF∶AE=AD∶AB,∴AF∶AE=AD∶AB,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△BAE∽△DAF,∴DF∶BE=AF∶AE=n,∠ABE=∠ADF,∴DF=nBE;(3)如图4-1中,当点P在BE的延长线上时,在Rt△AEB中,∵∠AEB=90°,AB=8,AE=12AB=4,∴BE=22AB AE-=43,∵△ABE∽△ADF,∴ABAD =BE DF,∴812=43DF,∴DF=63,∵四边形AEPF是矩形,∴AE=PF=4,∴PD=DF-PF=634-;如图4-2中,当点P在线段BE上时,同法可得DF=63PF=AE=4,∴PD=DF+PF=634,综上所述,满足条件的PD的值为634-或634.【点睛】此题考查了矩形的性质,全等三角形的判定及性质,旋转的性质,相似三角形的判定及性质,勾股定理,注意应用分类思想解决问题,是一道较难的几何综合题.7.在平面直角坐标系中,点A在y轴正半轴上,点B在x轴负半轴上,BP平分∠ABO.(1)如图1,点T在BA延长线上,若AP平分∠TAO,求∠P的度数;(2)如图2,点C为x轴正半轴上一点,∠ABC=2∠ACB,且P在AC的垂直平分线上.①求证:AP//BC;②D是AB上一点,E是x轴正半轴上一点,连接AE交DP于H.当∠DHE与∠ABE满足什么数量关系时,DP=AE.给出结论并说明理由.答案:D解析:(1)45°;(2)①见解析;②∠DHE+∠ABE=180°,理由见解析【分析】(1)由三角形的外角性质和角平分线的性质可得∠AOB=2∠P=90°,可求解;(2)①过点P作PE⊥AB交BA延长线于E,过点P作PF⊥BC于F,连接PC,由角平分线的性质可得PE=PF,由垂直平分线的性质可得PA=PC,由“HL”可证Rt△APE≌Rt△CPF,可得∠EPA=∠CPF,由四边形内角和定理可得∠EBF+∠EPF=180°,由角的数量关系可证∠ACB=∠PAC,由平行线的判定可证AP∥BC;②如图3,在OE上截取ON=OB,连接AN,通过证明△ADP≌△NEA,可得DP=AE.【详解】解:(1)∵BP平分∠ABO,AP平分∠TAO,∴∠PBT=12∠ABO,∠TAP=12∠TAO,∵∠TAO=∠ABO+∠AOB,∠TAP=∠P+∠ABP,∴∠AOB=2∠P=90°,∴∠P=45°;(2)①如图2,过点P作PE⊥AB交BA延长线于E,过点P作PF⊥BC于F,连接PC,又∵PB 平分∠ABC ,∴PE =PF ,∵P 在AC 的垂直平分线上,∴PA =PC ,∴∠PAC =∠PCA ,在Rt △APE 和Rt △CPF 中,AP PC PE PF =⎧⎨=⎩, ∴Rt △APE ≌Rt △CPF (HL ),∴∠EPA =∠CPF ,∴∠EPF =∠APC ,在四边形BEPF 中,∠EBF+∠BEP+∠EPF+∠PFB =180°,∴∠EBF+∠EPF =180°,∴∠ABC+∠APC =180°,∵∠APC+∠PAC+∠PCA =180°,∴∠ABC =∠PAC+∠PCA =2∠PAC ,∵∠ABC =2∠ACB ,∴∠ACB =∠PAC ,∴AP ∥BC ;②当∠DHE+∠ABE =180°时,DP =AE ,理由如下:如图3,在OE 上截取ON =OB ,连接AN ,∵OB =ON ,AO ⊥BE ,∴AB =AN ,∴∠ABN =∠ANB ,∵AP ∥BE ,BP 平分∠ABE ,∴∠APB =∠PBE =∠ABP ,∠ABN+∠BAP =180°,∴AP =AB ,∴AP =AN ,∵∠ANB+∠ANE =180°,∴∠BAP =∠ANE ,∵∠DHE+∠ABE =180°,∠DHE+∠ABE+∠BDH+∠BEH =360°,∴∠BDH+∠BEH =180°,∵∠ADP+∠BDP =180°,∴∠ADP =∠AEN ,在△ADP 和△NEA 中,DAP ANE ADP AEN AP AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△NEA (AAS ),∴DP =AE .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,线段垂直平分线的性质,四边形内角和定理等知识,添加恰当辅助线构造全等三角形是本题的关键. 8.(1)ABC 和CDE △是两个等腰直角三角形,如图1,其中90ACB DCE ∠=∠=︒,连接AD 、BE ,求证:ACD △≌BCE .(2)ABC 和CDE △是两个含30°的直角三角形,中90ACB DCE ∠=∠=︒,∠=CAB CDE ∠30=︒,CD AC <,CDE △从边CD 与AC 重合开始绕点C 逆时针旋转一定角度()0180αα︒<<︒.①如图2,DE 与BC 交于点F ,交AB 于G ,连接AD ,若四边形ADEC 为平行四边形,求BG AG的值. ②若12AB =,当点D 落在AB 上时,求BE 的长.答案:A解析:(1)见解析;(2)①13BG AG =;②2212312cos 4sin 1ααα+- 【分析】(1)利用SAS 证明即可;(2)①连接CG ,根据平行四边形的性质推出//AD CE ,求出120ADE ∠=︒,得到90ADC ADE CDE ∠=∠-∠=︒,根据30CAB CDE ∠=∠=︒证得A 、D 、G 、C 四点共圆,从而得到90AGC ADC ∠=∠=︒,利用直角三角形中30度角的性质求出3AG CG =, 3CG BG =,即可求出答案;②先证明ACD △∽BCE ,由此推出∠DBE=90°,得到DBE 为直角三角形,设BE a =,则3AD a =,123BD a =-,过D 点作DH AC ⊥于H ,利用30A ∠=︒得到3sin 302DH AD a =︒=,由ACD α∠=,得到3sin 2sin HD a CD αα==,由此求出cos30sin CD a DE α==︒,由勾股定理得222DE BE BD =+,即()2222221231443243sin a a a a a a α=+-=++-,解方程求出a.【详解】 (1)∵ABC 和CDE △是两个等腰直角三角形,∴AC BC =,CD CE =,ACB DCE ∠=∠, ∴∠ACB-∠DCB=∠DCE-∠DCB ,∴ACD BCE ∠=∠, 在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴ACD △≌BCE (SAS ).(2)①连接CG ,如图所示,∵四边形ADEC 为平行四边形,∴//AD CE ,∴180ADE CED ∠+∠=︒,∵90903060CED CDE ∠=︒-∠=︒-︒=︒, ∴120ADE ∠=︒,∴90ADC ADE CDE ∠=∠-∠=︒,∵30CAB CDE ∠=∠=︒,∴A 、D 、G 、C 四点共圆,∴90AGC ADC ∠=∠=︒,∵30CAB ∠=︒,∴12CG AC =,3AG CG =,30BCG ∠=︒, ∴3CG BG =,即33BG CG =, ∴13BG AG =;②∵90ACB DCE ∠=∠=︒,∴ACB DCB DCE DCB ∠-∠=∠-∠,∴ACD BCE ∠=∠,∵30CAB CDE ∠=∠=︒,∴3AC DC BC CE ==, ∴ACD △∽BCE ,∴CAD CBE ∠=∠,∴90DBE DBC CBE DBC CAD ∠=∠+∠=∠+∠=︒,∴DBE 为直角三角形,设BE a =,∴3AD a =,∴123BD a =-,过D 点作DH AC ⊥于H ,30A ∠=︒, 则3sin 302DH AD a =︒=, 又∵ACD α∠=,∴3sin 2sin HD a CD αα==, 又在Rt CDE △中,30∠=︒CDE ,∴cos30sin CD a DE α==︒, ∴在Rt BDE △中,由勾股定理得222DE BE BD =+,即()2222221231443243sin a a a a a a α=+-=++-,∴22142431440sin a a α⎛⎫--+= ⎪⎝⎭, 解得22576243576sin 28sin a αα±-=-, 即222243sin 241sin 8sin 2a ααα+-=- 2222243sin 24cos 123sin 12cos 8sin 24sin 1αααααα++==--, 故BE 的长为22123sin 12cos 4sin 1ααα+-.【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质,旋转的性质,平行四边形的性质,四点共圆,含30度角的直角三角形的性质,相似三角形的判定及性质,锐角三角函数,是一道较难的几何综合题.9.问题:如图(1),点M、N分别在正方形ABCD的边BC、CD上,∠MAN=45°,试判断BM、MN、ND之间的数量关系.(1)研究发现如图1,小聪把△ADN绕点A顺时针旋转90°至△ABG,从而发现BM、MN、DN之间的数量关系为(直接写出结果,不用证明)(2)类比引申如图2,在(1)的条件下,AM、AN分别交正方形ABCD的对角线BD于点E、F.已知EF =5,DF=4.求BE的长.(3)拓展提升如图3,在(2)的条件下,AM、AN分别交正方形ABCD的两个外角平分线于Q、P,连接PQ.请直接写出以BQ、PQ、DP为边构成的三角形的面积.答案:B解析:(1)BM+DN=MN,理由见解析;(2)BE=3;(3)以BQ、PQ、DP为边构成的三角形的面积为36.【分析】(1)结论是:BM+DN=MN,如图1,利用三角形AND旋转90º得三角形ABG,∠DAN=∠BAG,可证∠GAM=∠GAB+∠BAM=∠MAN,利用SAS证△AMN≌△AMG即可;(2)如图2,按同样方法△AFD顺时针旋转90º,使AD与AB重合,得△ABF′,连结EF′,△BEF′是直角三角形,用勾股定理求EF′=5,再证△AEF≌△AEF即可;(3)如图3,由(2)可得BD=12,可求正方形边长,构建△P′AQ,P′B=DP,将△ADP顺时针转90º,AD与AB重合,得△BQP′,连OP′,可证△BQP′是直角三角形,可证PQ=P′Q,再证△ABQ∽△PDA,将△P′BQ面积=12BQ•BP′=12BQ•DP=12AD•AB可求.【详解】(1)如图1,BM+DN=MN,理由如下:∵四边形ABCD 是正方形,∴AB =AD ,∠D =∠ABC =∠BAD =90°,小聪把△ADN 绕点A 顺时针旋转90°至△ABG ,由旋转可得:BG =DN ,AN =AG ,∠1=∠2,∠ABG =∠D =90°,∴∠ABG +∠ABM =90°+90°=180°,因此,点G ,B ,M 在同一条直线上,∵∠MAN =45°,∴∠2+∠3=∠BAD ﹣∠MAN =90°﹣45°=45°,∵∠1=∠2,∴∠1+∠3=45°,∴∠GAM =∠MAN ,∵AM =AM ,∴△AMN ≌△AMG (SAS ),∴MN =GM ,∵GM =BM +BG =BM +DN ,∴BM +DN =MN ;故答案为:BM +DN =MN ;(2)如图2,把△ADF 绕点A 顺时针旋转90°至△ABF ',连接EF ',∴AF ′ =AF ,∠DAF =∠BAF ',∠ABF ′ =∠ADF =45°,BF ′ =DF =4,∵∠ABE =45°,∴∠EBF ′ =45°+45°=90°,∵AE =AE ,同理得△EAF ≌△EAF '(SAS ),∴EF '=EF =5,在Rt △EBF '中,由勾股定理得:BE ()()2222EF +BF 5-4=3''=3;(3)由(2)知:BE=3,EF=5,DF=4,∴BD=3+4+5=12,由勾股定理得:AB2+AD2=BD2,∵AB=AD,∴AB2=72,如图3,把△ADP绕点A顺时针旋转90°至△ABP ',连接BP ′,则∠ABP′=∠ADP,PD=P ′B,AP=AP ′,∵AM、AN分别交正方形ABCD的两个外角平分线于Q、P,∴∠ADP=∠ABQ=135°,∴∠DAP+∠APD=45°,∵∠DAP+∠BAQ=45°,∴∠BAQ=∠APD,∴△ADP∽△QBA,∴AD PD=BQ AB,∴BQ•PD=AD•AB=72,∵∠ABP'=∠ABQ=135°,∴∠QBP'=360°﹣135°﹣135°=90°,∴S△BP'Q=12BQ•BP′=12BQ•DP=12×72=36,∵AP=AP',∠PAQ=∠P'AQ,AQ=AQ,∴△QAP≌△QAP'(SAS),∴PQ=P'Q,∴以BQ、PQ、DP为边构成的三角形的面积为36.【点睛】本题是感知,探究,创新新题型,主要考查了学生对正方形的性质,旋转变换,勾股定理及全等三角形与相似三角形的判定方法的综合运用.关键是灵活掌握所学知识,同时会从感知中学到方法,结合下一图形,找到解决问题的方法,以及突破口,在创新中,注意把给出的问题进行转化,利用转化思想来解决.10.如图,抛物线y =24x 2+2x ﹣62交x 轴于A 、B 两点(点A 在点B 的左侧),交y 轴于C 点,D 点是该抛物线的顶点,连接AC 、AD 、CD .(1)求△ACD 的面积;(2)如图,点P 是线段AD 下方的抛物线上的一点,过P 作PE ∥y 轴分别交AC 于点E ,交AD 于点F ,过P 作PG ⊥AD 于点G ,求EF+52FG 的最大值,以及此时P 点的坐标; (3)如图,在对称轴左侧抛物线上有一动点M ,在y 轴上有一动点N ,是否存在以BN 为直角边的等腰Rt △BMN ?若存在,求出点M 的横坐标,若不存在,请说明理由.答案:A解析:(1)24;(2)最大值为22,点P (﹣2,﹣1522);(3)存在,点M 的2262﹣6.【分析】(1)先求出抛物线与坐标轴的交点坐标和顶点坐标,再用待定系数法求得AC 的解析式,进而求出点N 、D 的坐标,再根据三角形的面积公式求出结果;(2)证明5FG 即为EP 的长度,即可求解; (3)分∠BNM 为直角、∠MBN 为直角,利用三角形全等即可求解.【详解】解:(1)令x =0,得202062624y =⨯+⨯-=-, ∴C (0,﹣2),令y =0,得222620y x x =+-=, 解得162x =-22x =∴A (62-,0),点B (220),设直线AC 的解析式为:y =kx+b (k ≠0),则62062k b b ⎧-+=⎪⎨=-⎪⎩, ∴162k b =-⎧⎪⎨=-⎪⎩, ∴直线AC 的解析式为:62y x =--, ∵()2222262228244y x x x =+-=+-,∴D (22-,82-),过D 作DM ⊥x 轴于点M ,交AC 于点N ,如图,令22x =-,()226242y =---=-,则N (22-,42-),∴42DN =,∴1142622422ACD S DN AO =⋅=⨯⨯=; (2)如图,过点D 作x 轴的平行线交FP 的延长线于点H ,由点A 、D 的坐标得,直线AD 的表达式为:2122y x =--∴tan ∠FDH =2,则sin ∠FDH 2555=, ∵∠HDF+∠HFD =90°,∠FPG+∠PFG =90°,∴∠FDH =∠FPG ,在Rt △PGF 中,PF =FG sin G FP ∠= FG sin FDH ∠255FG ==52FG , 则EF+52FG =EF+PF =EP , 设点P (x ,222624x x +-),则点E (x ,62x --), 则EF+52FG =EF+PF =EP =222262262344x x x x x ⎛⎫---+-=-- ⎪ ⎪⎝⎭, ∵﹣24<0,故EP 有最大值,此时x =﹣2b a =﹣32,最大值为922; 当x =32-时,2215226242y x x =+-=-, 故点P (32-,1522-); (3)存在,理由: 设点M 的坐标为(m ,n ),则222624n m m =+-,点N (0,s ), ①当∠MNB 为直角时,如图,过点N 作x 轴的平行线交过点B 与y 轴的平行线于点H ,交过点M 与y 轴的平行线于点G ,∵∠MNG+∠BNH =90°,∠MNG+∠GMN =90°,∴∠GMN =∠BNH ,∵∠NGM =∠BHN =90°,MN =BN ,∴△NGM ≌△BHN (AAS ),∴GN =BH ,MG =NH ,即22n s -=m s -=-,联立并解得:226m =故226m =M (226226②当∠NBM 为直角时,如图,过点B 作y 轴的平行线交过点N 与x 轴的平行线于点G ,交过点M 与x 轴的平行线于点H ,同理可证:△MHB ≌△BGN (AAS ),则BH =NG ,即22n =-, 当22n =-时,22262224m m +-=-,解得:2226m =±(舍去正值), 故2226m =-,则点M (2226-,22-);综上,点M 的横坐标为226--或2226-.【点睛】本题考查二次函数的综合题,涉及三角形面积的求解,用胡不归原理求最值,等腰直角三角形的存在性问题,解题的关键是需要掌握这些特定题型的特定解法,熟练运用数形结合的思想去解决问题.11.回答下列问题:(1)(发现)如图1,点A 为线段BC 外一动点,且4BC =,2AB =.填空:线段AC 的最大值为 .图1(2)(应用)点A 为线段BC 外一动点,且3BC =,2AB =,如图2所示,分别以AB ,AC 为边,作等腰直角ABD △和等腰直角ACE ,连接CD ,BE .图2①证明:BE DC =.②求线段BE 的最大值.(3)(拓展)如图3,在平面直角坐标系中,直线l ;4y x =+与坐标轴交于点A 、B 两点,点C 为线段AB 外一动点,且2CB =,以AC 为边作等边ACD △,连接BD ,求线段BD 长的最大值并直接写出此时点C 的横坐标.图3答案:A解析:(1)6(2)①证明见解析. ②322+(3)42226-26+ 【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论;(2) ①由“SAS” 可证△DAC ≌△BAE ,可得BE=DC ;②由于线段长BE 的最大值=线段DC 的最大值,根据(1)中的结论即可得到结果,(3)以BC 为边作等边三角形BCE ,可以证明△ACE ≌△DCB(SAS) ,从而得到BD=AE ,BE=BC ,由AE≤AB+BE ,当且仅当A 、B 、E 三点共线时,AE 取得最大值,即BD 取得最大值,当BD 取得最大值时,①当C 在直线AB 的上方时,过C 作CH ⊥y 轴于H ,作BC 的垂直平分线交BH 于N ,求出CH 的长度,即可求出点C 的横坐标,②当C 在直线AB 的下方时,按同①的方法也可以求出点C 的横坐标.【详解】(1)当A 在选段BC 的延长线上时, max 6AC AB BC =+=.(2)①∵等腰直角AEC 与等腰直角三角形ABD ,∴AD AB =,AE AC =,90DAB EAC ∠=∠=︒,∴DAB BAC EAC BAC ∠+∠=∠+∠,∴DAC EAB ∠=∠,在DAC △和BAE 中,DA BA DAC BAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS DAC BAE ≌△△, ∴BE CD =.②由①可知,BE DC =,∵线段BE 的最大值即线段DC 的最大值. 在等腰直角ABD △中,222BD AB ==,∵CD BC BD ≤+,∴当点D 在CB 的延长线上时, CD 取得最大值为322+.∴线段BE 的最大值为322+.(3)如图,以BC 为边作等边三角形BCE ,则BC CE =,60BCE ∠=︒.∵60ACD ∠=︒,∴ACD ECD BCE ECD ∠-∠=∠-∠, ∴ACE DCB ∠=∠.在ACE 与DCB 中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ACE DCB ≌△△, ∴BD AE =.对于一次函数4y x =+,令0x =,则4y =, ∴()0,4B ,令0y =,则4x =-,∴()4,0A -.∴224442AB =+=又∵2BE BC ==,∴AE AB BE ≤+,∴当且仅当A 、B 、E 三点共线时,AE 取得最大值,即BD 取得最大值为422+;当BD 取得最大值时,①当C 在直线AB 的上方时过C 作CH y ⊥轴于H ,∵45ABO HBE ∠=∠=︒,60CBE ∠=︒,∴15CBH CBE HBE ∠=∠-∠=︒,作BC 的垂直平分线交BH 于N ,∴CN BN =,15NCB NBC ∠=∠=︒,∴30CNB ∠=︒,在Rt CHN △中,设CH x =.则3HN x =,2CN x =,∴2BN x =,∴)32BH HN BN x =+=, 在Rt BHC △中,22222HC BH BC +==,∴)222322x x ⎡⎤+=⎣⎦, 整理得(227434x x ++=, 223x =,)12312x =,)22312x =-(舍), ∴62CH -=2②当C 在直线AB 的下方时,过C 作CL ⊥y 轴于L ,∵∠ABO=45°,∠CBE=60°,∴∠CBL=180°-∠CBE−∠ABO=75°,∴∠BCL=15°,作BC 的垂直平分线交BL 于M ,∴CM=BM ,∠MCB=∠MBC=15°,∴∠LMB=30°,在Rt △CLB 中,设BL=y .则3,BM=2y ,∴CM=2y ,∴3+2)y ,在Rt △BLC 中,BL 2+CL 2=BC 2=22,∴)222322y y ⎡⎤+=⎣⎦, 整理得(227434y y ++=, 223y = )1231y =,)2231y =(舍去), 622BL =∴CL=)32BL 26+2综合以上可得点C 的横坐标为:262-或 262+ 【点睛】 本题是三角形综合题,考查了全等三角形的判.定和性质,等腰直角三角形的性质,最大值问题,旋转的性质正确的作出辅助线构造全等三角形是解题的关键.12.如图,在等边三角形ABC 中,点D 是射线CB 上一动点,连接DA ,将线段DA 绕点D 逆时针旋转60°得到线段DE ,过点E 作EF ∥BC 交直线AB 于点F ,连接CF .(1)如图1,若点D 为线段BC 的中点,则四边形EDCF 是 ;(2)如图2,若点D 为线段CB 延长线上任意一点,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若点D 为射线CB 上任意一点,当∠DAB =15°,△ABC 的边长为2时,请直接写出线段BD 的长.答案:A解析:(1)平行四边形;(2)成立,见解析;(3)423-或31-.【分析】(1)证明△ADB ≌△DEO (AAS )和四边形EOBF 为平行四边形,进而求解;(2)证明△OED ≌△DAC (SAS ),则∠EOD =∠ACD =60°=∠ABC ,故OE ∥AB ,进而求解;(3)分点D 在线段BC 上、点D (D ′)在BC 的延长线上两种情况,利用勾股定理和等腰直角三角形的性质分别求解即可.【详解】解:(1)过点E 作DE 的垂线交CB 的延长线于点O ,设BA 交ED 于点R ,∵点D为线段BC的中点,则AD⊥BC且∠BAD=30°,∵∠ADE=60°,∴∠EDB=∠ADB﹣ADE=90°﹣60°=30°,∵EF∥BC,∴∠EFD=∠ABC=60°,∠FED=∠EDO=30°,∴∠ERF=90°,∴DE⊥AB,∵AD=ED,∠BAD=∠EDO=30°,∠ADB=∠DEO=90°,∴△ADB≌△DEO(AAS),∴OE=BD=12BC=12AB,则OB=OD﹣BD=AB﹣12AB=12AB,∴OB=BD=CD,∵OE⊥DE,DE⊥AB,∴OE∥AB,∵EF∥BC,∴四边形EOBF为平行四边形,∴EF=OB=CD,而EF∥CD,∴四边形EFCD为平行四边形,故答案为:平行四边形;(2)如图2,在CD的延长线上截取DO=AC,连接OE,设∠ADC的度数为α,∵∠EDO=180°﹣∠EDA﹣∠ADC=180°﹣60°﹣α=120°﹣α,∠DAC=180°﹣∠ACD﹣∠ADC=120°﹣α=∠EDO,而AC=OD,DE=AD,∴△OED≌△DAC(SAS),∴∠EOD=∠ACD=60°=∠ABC,∴OE∥AB,而EF∥BC,∴四边形EFCD为平行四边形;(3)①当点D在线段BC时,过点A 作AH ⊥BC ,则∠BAH =30°,而∠DAB =15°,BH =12BC =1, 即BD 是∠BAH 的角平分线,过点D 作DG ⊥AB 于点G ,设DH =x ,则DG =DH =x ,BD =BH ﹣DH =1﹣x ,在△BDG 中,∠BDG =30°,则BG =12BD =12x - 由勾股定理得:()21x -=212x -⎛⎫ ⎪⎝⎭+2x ,解得:x =233-, ∴BD =1﹣x =423-,②当点D (D ′)在BC 的延长线上时,∵∠BAD ′=15°,∴∠D ′AH =30°+15°=45°,则D ′H =AH =2213-=,∴BD ′=D ′H ﹣BH =31-;综上,BD 的长度为423-或31-.【点评】本题是四边形综合题,主要考查了平行四边形性质、三角形全等、等边三角形性质等知识点,综合性强,难度较大.13.阅读下面材料:小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF=45°,连结EF ,则EF=BE+DF ,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.答案:B解析:(1)∠B+∠D=180°(或互补);(2)∴5DE【解析】试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°.(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED 得到DE=EG,由勾股定理即可求得DE的长.(1)∠B+∠D=180°(或互补).(2)∵ AB=AC,∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.则∠B=∠ACG,BD=CG,AD=AG.∵在△ABC中,∠BAC=90°,∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.∴ EC 2+CG 2=EG 2.在△AEG 与△AED 中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD .又∵AD=AG ,AE=AE ,∴△AEG ≌△AED .∴DE=EG .又∵CG=BD,∴ BD 2+EC 2=DE 2. ∴5DE =.考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.14.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解析:(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.。
三大变换之旋转(从全等到相似)
旋转是该到完结的时候了,也编不下去了,本来考虑加一点费马点问题,考题到之前已经写过,而如果要拓展到加权费马点似乎也不会考,为了更精准对接中考,还是不让这东东打扰大家了,本文继续旋转,从全等到相似,不变的是旋转,的性质.
01
从全等到相似
模型建立
在手拉手模型中,我们可以看成是两个相似的等腰三角形作共点旋转,由等腰条件可得一组全等三角形.
若△ABC与△ADE非等腰,则可得到旋转型相似,取直角三角形为例.
如图,Rt△ABC∽Rt△ADE,连接BD、CE,
可得:△ADB∽△AEC,(利用两边对应成比例且夹角相等)
且旋转的性质,旋转角都相等依然成立,如下右图,∠BAD=∠EAC=∠EFB.
02
真题速览
2019枣庄中考-旋转全等
2019鞍山中考-从全等到相似
2019河南中考-从全等到相似
2018济南中考-从全等到相似
2019襄阳中考-旋转相似
2019东营中考-探究旋转
2019宿迁中考-旋转角的思考。
人教版初三数学旋转模型(含详细解析)————————————————————————————————作者:————————————————————————————————日期:旋转模型授课日期时 间主 题教学内容1.巩固并掌握旋转的性质;2.结合辅助线的构造,更深刻的认识旋转的性质;知识结构1、在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转2、►旋转具有以下特征:(1)图形中的每一点都绕着旋转中心旋转了同样大小的角度;(2)对应点到旋转中心的距离相等; (3)对应角、对应线段相等;(4)图形的形状和大小都不变。
3、旋转的思想:旋转也是图形的一种基本变换,通过图形旋转变换,从而将一些简单的平面图形按要求旋转到适当的位置,使问题获得简单的解决,它是一种要的解题方法。
4、旋转不同类型(一)正三角形类型在正ABC ∆中,P 为ABC ∆内一点,将ABP ∆绕A 点按逆时针方向旋转60o,使得AB 与AC 重合。
经过这样旋转变化,将图(1-1-a )中的PA 、PB 、PC 三条线段集中于图(1-1-b )中的一个'P CP ∆中,此时'P CP ∆也为正三角形。
【例题】如图:(1-1):设P是等边ABC∆内的一点,PA=3,PB=4,PC=5,APB∠的度数是________.οοο1509060.3,'''''''=+=+∠=∠∴≅==∠=∠PBPAPPAPBRTPBPAPPCAPBAPBPAPAPCAPBAPABC△为为正三角形,△。
易证△△则△,连结且的外侧,作简解:在△‘(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ABP∆绕B点按顺时针方向旋转90o,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的'CPP∆中,此时'CPP∆为等腰直角三角形。
专题06 全等三角形的五种模型全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不再重复。
模型一、截长补短模型①截长:在较长的线段上截取另外两条较短的线段。
如图所示,在BF 上截取BM=DF ,易证△BMC△△DFC (SAS ),则MC=FC=FG ,△BCM=△DCF , 可得△MCF 为等腰直角三角形,又可证△CFE=45°,△CFG=90°,△CFG=△MCF ,FG△CM ,可得四边形CGFM 为平行四边形,则CG=MF ,于是BF=BM+MF=DF+CG.②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。
如图所示,延长GC 至N ,使CN=DF ,易证△CDF△△BCN (SAS ), 可得CF=FG=BN ,△DFC=△BNC=135°,又知△FGC=45°,可证BN△FG ,于是四边形BFGN 为平行四边形,得BF=NG , 所以BF=NG=NC+CG=DF+CG.例1.如图,△ABC 中,△B =2△A ,△ACB 的平分线CD 交AB 于点D ,已知AC =16,BC =9,则BD 的长为( )A .6B .7C .8D .9【答案】.B 【详解】解:如图,在CA 上截取,CN CB = 连接,DN CD 平分,ACB ∠ ,BCD NCD ∴∠=∠,CD CD = (),CBD CND SAS ∴≌ ,,,BD ND B CND CB CN ∴=∠=∠=9,16,BC AC == 9,7,CN AN AC CN ∴==-=,CND NDA A ∠=∠+∠ ,B NDA A ∴∠=∠+∠2,B A ∠=∠ ,A NDA ∴∠=∠,ND NA ∴= 7.BD AN ∴== 故选:.B【变式训练1】如图,在△ABC 中,AB =BC ,△ABC =60°,线段AC 与AD 关于直线AP 对称,E 是线段BD 与直线AP 的交点.(1)若△DAE =15°,求证:△ABD 是等腰直角三角形;(2)连CE ,求证:BE =AE +CE .【答案】(1)见解析;(2)见解析【详解】证明:(1)△在△ABC 中,AB =BC ,△ABC =60°,△△ABC 是等边三角形, △AC =AB =BC ,△BAC =△ABC =△ACB =60°,△线段AC 与AD 关于直线AP 对称,△△CAE =△DAE =15°,AD =AC ,△△BAE =△BAC +△CAE =75°,△△BAD =90°,△AB =AC =AD ,△△ABD 是等腰直角三角形; (2)在BE 上取点F ,使BF =CE ,连接AF ,△线段AC 与AD 关于直线AP 对称,△△ACE =△ADE ,AD =AC ,△AD =AC =AB ,△△ADB =△ABD=∠ACE ,在△ABF 与△ACE 中,AC AB ACE ABF CE BF =⎧⎪∠=∠⎨⎪=⎩,△△ABF △△ACE (SAS ),△AF =AE ,△AD =AB ,△△D =△ABD ,又△CAE =△DAE , △()()111806022AEB D DAE D ABD DAC BAC ∠=∠+∠=∠+∠+∠=︒-∠=︒, △在△AFE 中,AF =AE ,△AEF =60°,△△AFE 是等边三角形,△AF =FE ,△BE =BF +FE =CE +AE .【变式训练2】如图,在△ABC 中,△ACB=△ABC=40o ,BD 是△ABC 的角平分线,延长BD 至点E ,使得DE=DA ,则△ECA=________.【答案】40°【详解】解:在BC 上截取BF=AB ,连接DF ,△ACB=△ABC=40°,BD 是△ABC 的角平分线,∴△A=100°,△ABD=△DBC=20°,∴△ADB=60°,△BDC=120°,BD=BD ,∴△ABD△△FBD ,DE=DA ,∴ DF=AD=DE ,△BDF=△FDC=△EDC=60°,△A=△DFB=100°,DC=DC ,∴△DEC△△DFC ,∴1006040DCB DCE DFC FDC ∠=∠=∠-∠=︒-︒=︒;故答案为40°.【变式训练3】已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,△四边形ABCD 是正方形,△AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB ADABG ADN BG DN=⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,△45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AMGAM NAM AN AG=⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又△BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,△四边形ABCD 是正方形,△AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,△GAB GAD DAN GAD ∠+∠=∠+∠,△90GAN BAD ∠=∠=︒, 又45MAN ∠=︒,45GAM GAN MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又△BM BG GM -=,BG DN =,△BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,△四边形ABCD 是正方形,△AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG 中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,△MAB BAG GAD BAG ∠+∠=∠+∠,△90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩, ()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,△6CN =,8MC =,△1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-,△DC BC =,△48x x +=-,解得:2x =,△6AB BC CD CN ====,△//AB CD ,△BAP CNP ∠=∠,在ABP △与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP NCP AAS ∴△≌△,132CP BP BC ∴===,△CP 的长为3.模型二、平移全等模型例.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,△A = △D .(1)求证:ABC DEF ≌;(2)若BF = 11,EC = 5,求BE 的长.【答案】(1)见解析;(2)BE =3.【详解】(1)证明:△AB△DE ,△△ABC =△DEF ,在△ABC 和△DEF 中A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩△△ABC△△DEF (ASA ); (2)解:△△ABC△△DEF ,△BC =EF ,△BC -EC =EF -EC ,即BE =CF ,△BF =11,EC =5,△BF -EC =6.△BE +CF =6.△BE =3.【变式训练1】如图,AB//CD ,AB=CD 点E 、F 在BC 上,且BF=CE .(1)求证:△ABE△△DCF (2)求证:AE//DF .【答案】(1)见详解;(2)见详解【详解】证明:(1)△AB △CD ,△B C ∠=∠,△BF =CE ,△CF EF BE EF +=+,△BE CF =,△AB =CD ,△ABE DCF △≌△(SAS );(2)由(1)可得:ABE DCF △≌△,△DFC AEB ∠=∠,△180,180DFC EFD AEF AEB ∠+∠=︒∠+∠=︒,△EFD AEF ∠=∠,△//AE DF .【变式训练2】如图,已知点C 是AB 的中点,CD △BE ,且CD BE =.(1)求证:△ACD△△CBE .(2)若87,32A D ∠=︒∠=︒,求△B 的度数.【答案】(1)见解析;(2)61【分析】(1)根据SAS 证明△ACD△△CBE ;(2)根据三角形内角和定理求得△ACD ,再根据三角形全等的性质得到△B=△ACD .【详解】(1)△C 是AB 的中点,△AC =CB ,△CD//BE ,△ACD CBE ∠=∠,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,△ACD CBE ∆≅∆;(2)△8732A D ︒︒∠=∠=,,△180180873261ACD A D ︒︒︒︒︒∠=-∠-∠=--=,又△ACD CBE ∆≅∆,△61B ACD ︒∠=∠=.模型三、对称全等模型例.如图,已知△C =△F =90°,AC =DF ,AE =DB ,BC 与EF 交于点O ,(1)求证:Rt△ABC△Rt△DEF ;(2)若△A =51°,求△BOF 的度数.【答案】(1)见解析;(2)78°【详解】(1)证明:△AE =DB ,△AE +EB =DB +EB ,即AB =DE .又△△C=△F=90°,AC=DF,△Rt△ABC△Rt△DEF.(2)△△C=90°,△A=51°,△△ABC=△C-△A=90°-51°=39°.由(1)知Rt△ABC△Rt△DEF,△△ABC=△DEF.△△DEF=39°.△△BOF=△ABC+△BEF=39°+39°=78°.【变式训练1】如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90º,∠B =∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有()A.4个B.3个C.2个D.1个【解答】B【解析】∵∠E=∠F=90º,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴BE=CF,∵∠BAE=∠CAF,∠BAE-∠BAC=∠CAF-∠BAC,∴∠1=∠2,∴△ABE≌△ACF,∴∠B=∠C,AB=AC,又∵∠BAC=∠CAB,∴△ACN≌△ABM,④CD=DN不能证明成立,∴共有3个结论正确.【变式训练2】如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③【解答】D【解析】∵BE⊥AC于E,CF⊥AB于F,∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(第一个正确),∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(第二个正确),∴DF=DE,连接AD,∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD =∠EAD ,即点D 在∠BAC 的平分线上(第三个正确).模型四、旋转全等模型例.如图,△ABC 和△ADE 中,AB =AC ,AD =AE ,△BAC =△DAE ,且点B ,D ,E 在同一条直线上,若△CAE +△ACE +△ADE =130°,则△ADE 的度数为( )A .50°B .65°C .70°D .75°【答案】B【详解】BAC DAE ∠=∠BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∴∠=∠,AB AC AD AE == ∴在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴BAD ≌CAE ( SAS ) ABD ACE ∴∠=∠130CAE ACE ADE ∠+∠+∠=︒130ABD BAD ADE ∴∠+∠+∠=︒ADE ABD BAD ∠=∠+∠2130ADE ∴∠=︒65ADE ∴∠=︒故选:B .【变式训练1】如图,将正方形ABCD 绕点A 逆时针旋转60°得到正方形AB ′C ′D ′,线段CD ,B ′C ′交于点E ,若DE =1,则正方形的边长等于_____.【答案】2+【详解】解:连接AC 、AE ,延长C ′B ′交AC 于点F ,过点F 作GF △DC 于G , 由题意得,AD =AB ′,△D =△AB ′E ,△B ′AB =60°,△CAB =△GCB ′=45°,△△DAB ′=30°,△CAB ′=15°在RT △ADE 与RT △AB ′E 中AD AB AE AE ='⎧⎨=⎩,△RT △ADE △RT △AB ′E (HL ), △△DAE =△B′AE =12△DAB ′=15°,DE=EB ′=1,△△B′AE=△CAB ′在△AB′E 和△AB′F 中==B AE CAB AB AB EB A FB A ∠'=∠'⎧⎪''⎨⎪∠'∠'⎩ ,△△AB′E △△AB′F (ASA ),△EB′=BF=1 △△DEB ′=360°-△D -△EB A '-∠DAB′=150°,△△GEF =30°在RT △EGF 中,EG =EF ×cos △GEFDF =EF ×sin △GEF =2×12=1 在△CGF 中,△GCF =45°,△CG=GF =1,△DC =DE+EG+GC所以正方形的边长为【变式训练1】如图,,,,AC BC DC EC AC BC DC EC ⊥⊥==, 求证:(1)ACE BCD ∆≅∆;(2)AE BD ⊥.【答案】(1)见解析;(2)见解析【详解】证明:()1AC BC ⊥,DC EC ⊥,90ACB DCE ∴∠=∠=︒, ACB ACD DCE ACD ∴∠+∠=∠+∠,∴∠=∠DCB ECA ,在DCB ∆和ECA ∆中,AC BC DCB ECA CD CE =⎧⎪∠=∠⎨⎪=⎩,()DCB ECA SAS ∴∆≅∆;()2如图,设AC 交BD 于N ,AE 交BD 于O ,∆≅∆DCB ECA ,A B ∴∠=∠,∠=∠AND BNC ,90∠+∠=︒B BNC , 90∴∠+∠=︒A AND ,90∴∠=︒AON ,AE BD ∴⊥.【变式训练2】如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△;(2)若90α=︒,试判断BD 与CE的数量及位置关系并证明;(3)若CAB EAD α∠=∠=,求CFA ∠的度数.【答案】(1)见详解;(2)BD=CE ,BD△CE ;(3)902α︒-【详解】(1)△△CAB=△EAD△△CAB+△BAE=△EAD+△BAE ,△ △CAE=△BAD ,△AB=AC ,AE=AD 在△AEC 和△ADB 中AB AC CAE BAD AE AD =⎧⎪⎨⎪⎩∠=∠=△ △AEC△△ADB (SAS ) (2)CE=BD 且CE△BD ,证明如下:将直线CE 与AB 的交点记为点O ,由(1)可知△AEC△△ADB ,△ CE=BD , △ACE=△ABD ,△△BOF=△AOC ,△α=90°,△ △BFO=△CAB=△α=90°,△ CE△BD .(3)过A 分别做AM△CE ,AN△BD 由(1)知△AEC△△ADB ,△两个三角形面积相等故AM·CE=AN·BD△AM=AN△AF 平分△DFC由(2)可知△BFC=△BAC=α△△DFC=180°-α△△CFA=12△DFC=902α︒- 【变式训练3】如图①,在△ABC 中,△A =90°,AB =AC1,BC =2D 、E 分别在边AB 、AC 上,且AD =AE =1,DE.现将△ADE 绕点A 顺时针方向旋转,旋转角为α(0°<α<180°).如图②,连接CE 、BD 、CD .(1)如图②,求证:CE =BD ;(2)利用备用图进行探究,在旋转的过程中CE 所在的直线能否垂直平分BD?如果能,请猜想α的度数,画出图形,并将你的猜想作为条件,给出证明;如果不能,请说明理由; (3)在旋转的过程中,当△BCD 的面积最大时,α= °.(直接写出答案即可)【答案】(1)证明见解析;(2)能,α=90°;(3)135α=︒.【详解】(1)证明:如图2中,根据题意:AB AC =,AD AE =,90CAB EAD ∠=∠=︒, 90CAE BAE BAD BAE ∠+∠=∠+∠=︒,CAE BAD ∴∠=∠,在ACE ∆和ABD ∆中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,()ACE ABD SAS ∴∆≅∆,CE BD ∴=;(2)能,若CE 所在直线垂直平分BD ,则CD =BC ,△AB =AC+1,BC =2,AD =AE =1,DE△1122AC AD CD BC +=+=== △AC +AD =CD ,即A 、C 、D 在同一条直线上,此时α=90°,如下图,CE 的延长线与BD 交于F ,与(1)同理可得()ACE ABD SAS ∆≅∆,ACE ABD ∴∠=∠,90ACE AEC ∠+∠=︒,且AEC FEB ∠=∠,90ABD FEB ∴∠+∠=︒,90EFB ∴∠=︒,CF BD ∴⊥,BC CD =,CF ∴是线段BD 的垂直平分线;(3)解:BCD ∆中,边BC 的长是定值,则BC 边上的高取最大值时BCD ∆的面积有最大值, ∴当点D 在线段BC 的垂直平分线上时,BCD ∆的面积取得最大值,如图中:1AB AC ==,1AD AE ==,90CAB EAD ∠=∠=︒,DG BC ⊥于G ,12AG BC ∴==45GAB ∠=︒,1DG AG AD ∴=+==,18045135DAB ∠=︒-︒=︒, BCD ∴∆的面积的最大值为:1122BC DG ⋅==135α=︒. 模型五、手拉手全等模型例.如图,B ,,三点在一条直线上,和均为等边三角形,与交于点,与交于点.(1)求证:;(2)若把绕点任意旋转一个角度,(1)中的结论还成立C E ABC ∆DCE ∆BD AC M AE CDN AE BD =DCE ∆C吗?请说明理由.【答案】(1)见解析(2)成立,理由见解析.【详解】解:(1)证明:如图1中,与都是等边三角形,,,,,,,即.在和中,,(SAS)..即AE=BD ,(2)成立;理由如下:如图2中,、均为等边三角形, ,,,,即,在和中,,,.【变式训练1】如图,△OAB 和△OCD 中,OA =OB ,OC =OD ,△AOB =△COD =90°,AC 、BD 交于点M .(1) 如图1,求证:AC=BD ,判断AC 与BD 的位置关系并说明理由;(2) 如图2,△AOB =△COD =60°时,△AMD 的度数为___________.【答案】(1)答案见解析;(2)120.ABC ∆DCE∆AC BC ∴=CD CE =60ACB DCE ∠=∠=︒180ACB ACD DCE ∠+∠+∠=60ACD ∴∠=︒ACB ACD ACD DCE ∠+∠=∠+∠BCD ACE ∠=∠BCD ∆ACE ∆BC AC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩BCD ACE ∴∆≅∆BD AE ∴=AE BD =ABC ∆DCE ∆BC AC ∴=CD CE =60BCA DCE ∠=∠=︒BCA ACD DCE ACD ∴∠+∠=∠+∠BCD ACE ∠=∠ACE ∆BCD ∆AC BC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACE BCD SAS ∴∆≅∆AE BD ∴=【详解】()190AOB COD ∠∠==,.AOB AOD COD AOD ∠+∠∠+∠= 即:.BOD AOC ∠∠=,,OA OB OC OD ==易证.BOD AOC ≌.OBD OAC ∴∠=∠ AC=BD△,AMD ABM BAM ∠=∠+∠.BAM BAO OAC ∠=∠+∠△.AMD ABM BAO OBD OBA BAO ∠=∠+∠+∠=∠+∠△90.AOB ∠= △90.OBA BAO ∠+∠=90.AMD ∴∠= △AC△BD(2)同理可得. .AMD OBA BAO ∠=∠+∠60.AOB ∠= 120.OBA BAO ∠+∠= 120.AMD ∴∠= 故答案为: 120.【变式训练2】如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明;(2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.【答案】(1)AC=BD ,AC△BD ,证明见解析;(2)存在,AC=BD ,AC△BD ,证明见解析;(3)AC=BD ,AC△BD【详解】(1)AC=BD ,AC△BD , 证明:延长BD 交AC 于点E .△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△COA=△BOD=90º,△△AOC△△BOD (SAS ),△AC=BD ,△△OAC=△OBD ,△△ADE=△BDO ,△△AED=△BOD=90º,△AC△BD ;(2)存在,证明:延长BD 交AC 于点F ,交AO 于点G .△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△DOC=BOA=90º,△△AOC=△DOC -△DOA ,△BOD=△BOA -△DOA ,△△AOC=△BOD ,△△AOC△△BOD (SAS ),△AC=BD ,△OAC=△OBD ,△△AGF=△BGO ,△△AFG=△BOG=90º,△AC△BD ;(3)AC=BD ,AC△BD .证明:BD 交AC 于点H ,AO 于M ,△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△DOC=BOA=90º,△△AOC=△DOC+△DOA ,△BOD=△BOA+△DOA ,△△AOC=△BOD ,△△AOC△△BOD (SAS ),△AC=BD ,△OAC=△OBD ,△△AMH=△BMO ,△△AHM=△BOH=90º,△AC△BD .【变式训练3】已知:如图1,在和中,,,.(1)证明.(2)如图2,连接和,,与分别交于点和,,求的度数.(3)在(2)的条件下,若,请直接写出的度数.【答案】(1)证明见解析;(2)△ACE =62°;(3)△CBA =6°.【详解】解:(1)△△CAE =△DAB ,△△CAE +△CAD =△DAB +△CAD ,即△CAB =△EAD ,在△ABC 和△ADE 中,△△ABC△△ADE (AAS ),ABC ∆ADE ∆C E ∠=∠CAE DAB ∠=∠BC DE =ABC ADE ∆∆≌CE BD DE AD BC M N 56DMB ∠=︒ACE ∠CN EM =CBA∠C E CAB EAD BC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩(2)△△ABC△△ADE ,△△CBA=△EDA ,AC=AE ,在△MND 和△ANB 中,△△EDA +△MND+△DMB =,△CBA +△ANB +△DAB =,又△ △MND=△ANB ,△ △DAB=△DMB=,△△CAE =△DAB=,△AC=AE ,△△ACE =△AEC=,△△ACE =, (3)△CBA=,如图所示,连接AM ,,CN=EM,CA=EA,(SAS), AM=AN,,=即,由(2)可得:,=, △CAE =△DAB==-= .课后训练1.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为( )A .120︒B .135︒C .115︒D .125︒【答案】C 【详解】在△ABC 和△ADE 中AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩△ △ABC △△ADE (SAS )△△BAC =△DAE 180︒180︒56︒56︒1(18056)622︒︒︒-=62︒6︒NCA MEA ∠=∠∴NCA MEA ≅∴EAM CAN ∠=∠∴EAM CAM ∠-∠CAN CAM ∠-∠EAC MAN ∠=∠=56EAC MAN ︒∠=∠∴ANM ∠1(18056)622︒︒︒-=56︒∴CBA ANM DAB ∠=∠-∠62︒56︒6︒△△EAB =△BAC +△DAE +△CAD =120°△△BAC =△DAE ()112010552=⨯︒-︒=︒ △△BAF =△BAC +△CAD =65°△在△AFB 中,△AFB =180°-△B -△BAF =90°△△GFD =90°在△FGD 中,△EGF =△D +△GFD =115°故选:C2.如图,△ABC 中,E 在BC 上,D 在BA 上,过E 作EF△AB 于F ,△B =△1+△2,AB =CD ,BF =43,则AD 的长为________.【详解】在FA 上取一点T ,使得FT =BF ,连接ET ,在CB 上取一点K ,使得CK =ET ,连接DK . △EB =ET ,△△B =△ETB ,△△ETB =△1+△AET ,△B =△1+△2,△△AET =△2,△AE =CD ,ET =CK ,△△AET △△DCK (SAS ),△DK =AT ,△ATE =△DKC ,△△ETB =△DKB ,△△B =△DKB ,△DB =DK ,△BD =AT ,△AD =BT ,△BT =2BF =83,△AD =83,故答案为:83.3.如图,2A C ,BD 平分ABC ∠,10BC =,6AB =,则AD =_____.【答案】4【详解】解:(1)在BC 上截取BE =BA ,如图,△BD 平分△ABC ,△△ABD =△EBD ,在△ABD 和△BED 中,BE BA ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,△△ABD △△EBD (SAS ),△DE =AD ,△BED =△A ,又△△A =2△C ,△△BED =△C +△EDC =2△C ,△△EDC =△C ,△ED =EC ,△EC =AD ,△BC =BE +EC =AB +AD ,△BC =10,AB =6,△AD =10﹣6=4;故答案为:4.4.如图,正方形ABCD ,将边CD 绕点D 顺逆时针旋转α(0°<α<90°),得到线段DE ,连接AE ,CE ,过点A 作AF △CE 交线段CE 的延长线于点F ,连接BF .(1)当AE =AB 时,求α的度数;(2)求证:△AEF =45°;(3)求证:AE △FB .【答案】(1)α=30°;(2)证明见解析;(3)证明见解析.【详解】解:(1) 在正方形ABCD 中,AB =AD =DC ,由旋转可知,DC =DE ,△AE =AB △AE =AD =DE△△AED 是等边三角形,△∠ADE =60°,△△ADC =90°,△α=△ADC -∠ADE =90°-60°=30°.(2)证明:在△CDE 中,DC =DE ,△△DCE =△DEC =180=9022αα--, 在△ADE 中,AD =ED ,△ADE =90°-α,△△DAE =△DEA =()18090=4522αα--+ △△AEC =△DEC +△DEA =90+45+22αα-=135°.△△AEF =45°,(3)证明:过点B 作BG //CF 与AF 的延长线交于点G ,过点B 作BH //GF 与CF 交于点H , 则四边形BGFH 是平行四边形,△AF △CE ,△平行四边形BGFH 是矩形,△△AFP =△ABC =90°,△APF =△BPC ,△△GAB =BCP ,在△ABG 和△CBH 中,GAB HCB BGA BHC AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABG △△CBH (AAS ),△BG =BH ,△矩形BGFH 是正方形,△△HFB =45°,由(2)可知:△AEF =45°,△△HFB =△AEF =45°,△AE△F B .5.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65º,求∠BDC的度数.【答案】(1)见解析;(2)50º【解析】(1)证明:∵∠BAC=∠EAD,∴∠BAC-∠EAC=∠EAD-∠EAC,即∠BAE =∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD,∴∠ABD=∠ACD;(2)∵∠BOC是△ABO和△DCO的外角,∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD +∠BDC,∴∠ABD+∠BAC=∠ACD+∠BDC,∵∠ABD=∠ACD,∴∠BAC=∠BDC,∵∠ACB=65º,AB=AC,∴∠ABC=∠ACB=65º ,∴∠BAC=180º-∠ABC-∠ACB=180º-65º-65º=50º ,∴∠BDC=∠BAC=50º.6.如图①,在△ABC中,△BAC=90°,AB=AC,点E在AC上(且不与点A、C重合),在△ABC 的外部作△CED,使△CED=90°,DE=CE,连接AD,分别以AB、AD为邻边作平行四边形ABFD,连接AF.(1)求证:EF=AE;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF、AE的数量关系,并证明你的结论.【答案】(1)见解析;(2)AF=,见解析.【详解】解:(1)如图,四边形ABFD是平行四边形,∴AB=DF,AB=AC,∴AC=DF,DE=EC∴AE=EF;(2)AF=,证明:连接EF,设DF交BC于K,四边形ABFD是平行四边形,∴AB//DF∴△DKE=△ABC=45°,∴△EKF=180°-△DKE=135°△ADE=180°-△EDC=180°-45°=135°,∴△EKF=△ADE,△DKC=△C,∴DK=DC ,DF=AB=AC,∴KF=AD在△EKF和△EDA中,EK DKEKF ADEKF AD=⎧⎪∠=∠⎨⎪=⎩,∴△EKF△△EDA(SAS)∴EF=EA, △KEF=△AED,∴△FEA=△BED=90°,∴△AEF是等腰直角三角形,AF=.7.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB =CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.【解答】(1)见解析;(2)见解析;(3)【解析】(1)证明,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)如图,过E作EM⊥AG,交AG于M,=AG•EM,∵S由(2)得△ACG≌△BCG,∴BG=AG=6,∴×6×EM,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM,∴M是AG的中点,∴AE=EG,∴BE=BG+EG=6+,在Rt△ECB中,∠EBC=30°,∴CE=BE=,∴AC=AE+EC.8.如图,在△ABC中,∠ABC=60°,点D,E分别为AB,BC上一点,BD=BE,连接DE,DC,AC=CD.(1)如图1,若AC=3,DE=2,求EC的长;(2)如图2,连接AE交DC于点F,点M为EC上一点,连接AM交DC于点N,若AE =AM,求证:2DE=MC;(3)在(2)的条件下,若∠ACB=45°,直接写出线段AD,MC,AC的等量关系.【解答】(1(2)见解析;(3【解析】(1)如图,过点C作CG⊥AB于G,∵AC=CD,∴AG=DG,设DG=a,∵BD=BE,∠ABC=60°,∴△BDE是等边三角形,∴BD=DE,∴BG=BD+DG+a,在Rt△BGC中,∠BCG=90°-∠ABC=30°,∴BC=2BG,CG=BG=6+a,在Rt△DGC中,CD=AC=3,根据勾股定理得,CG2+DG2=CD2,∴(6+a)2+a2=90,∴(舍),∴BC=EC+BE=EC+BD,∴EC+BD=2(BD+DG),∴EC=BD+2DG;(2)如图在MC上取一点P,使MP=DE,连接AP,∵△BDE是等边三角形,∴∠BED=60°,BE=DE,∴∠DEC=120°,BE=PM,∵AE=AM,∴∠AEM=∠AME,∴∠AEB=∠AMP,∴△ABE≌△APM(SAS),∴∠APM=∠ABC=60°,∴∠APC=120°=∠DEC,如图,过点M作AC的平行线交AP的延长线于Q,∴∠MPQ=∠APC=120°=∠DEC,∵AC=CD,∴∠ADC=∠DAC,∴∠CDE=180°-∠BDE-∠ADC=180°-60°-∠DAC=120°-∠DAC,在△ABC中,∠ACB=180°-∠ABC-∠DAC=120°-∠DAC=∠CDE,∵MQ∥AC,∴∠PMQ=∠ACB,∴∠PMQ=∠EDC,∴△MPQ≌△DEC(ASA),∴MQ=CD,∵AC=MQ,∴△APC≌△QPM(AAS),∴CP=MP,∴CM=MP+CP=2DE;(3)如图,在MC上取一点P,使PM=DE,由(2)知,MC=2CP=2DE,由(2)知,△ABE≌△APM,∴AB=AP,∵∠ABC=60°,∴△ABP是等边三角形,∴BP=AB,∵BE=BD,∴PE=AD,∴BC=BE+PE+CP=DE+PE+DE=2DE+AD=MC+AD,过点A作AH⊥BC于H,设BH=m,在Rt△ABH,在Rt△ACH中,∠ACB=45°,∴∠CAH=90°-∠ACB=45°=∠ACB,∴CH=AH,∵MC+AD=BC=BH+CH=,∴MC+AD=AC.。
旋转型全等模型
旋转型全等模型
如图,ACB DCE
∆∆
和都是等腰直角三角形,==90
ACB DCE
∠∠,D AB
为边上一点,
(1)求证:ACD BCE
∆≅∆;
(2)EB
AB⊥
如图,梯形ABCD,AD∥BC,CE⊥AB,BDC
∆为等腰直角三角形,CE与BD交于F,连结AF,G为BC中点,连结DG交CF于M。
证明:(1)CM=AB
(2)AF
AB
CF+
=
如图,在等腰△ABC中,∠ABC=90︒,AC
BD⊥于点D,在线段BC上取一点E,连接AE,过点B作AE
BF⊥于点F,连接DF、BD,若△BFD的面积为1,DF=2,求△AFD的面积
A D
A
E
B
F
A
B
A
C
A
G
a
·
M
如图1,ABC ∆是等边三角形,点E 在AC 边上,点D 是BC 边上的一个动点,
以DE 为边作等边DEF ∆,连接CF 。
(1)当点D 与点B 重合时,如图2,求证:CE CF CD +=;
(2)当点D 运动到如图3的位置时,猜想CE 、CF 、CD 之间的等量关系,
并说明理由;
如图,在ABC ∆中,90,ABC D BC ∠=为上一点,在ADE ∆中,E C ∠=∠,
1
1902EDC ∠=-∠。
求证:(1)12∠=∠ (2)ED BC BD =+
如图,△ABD 和△ACE 均为等腰直角三角
形,A为公共直角顶点,过A作AF垂直CB交CB的延长线于F
(1)若AC=10,求四边形ABCD的面积: (2)求证:CE=2AF
已知:如图,在Rt ABC
∆中,90
CAB
∠=︒,AB AC
=,D为AC的中点,过点作CF BD
⊥交BD的延长线于点F,过点作AE AF
⊥于点.
(1)求证:ABE
∆≌ACF
∆;
(2)过点作AH BF
⊥于点H,求证:CF EH
=.
H
F
E
D
C
B
A。