人教版七年级数学上册 第四章 几何图形初步 第四节 课题学习 设计制作长方体形状的包装纸盒(含解析)
- 格式:doc
- 大小:220.50 KB
- 文档页数:13
人教版七年级数学4.4 课题学习设计制作长方体形状的包装盒单位:姓名:电话:教学设计4.4 课题学习设计制作长方体形状的包装盒一、内容和内容解析1.内容人教版七年级上册第四章《几何初步》第4小节课题学习《设计制作长方体形状的包装纸盒》2.内容解析点、线、面是组成几何图形的基本要素,观察立体实物中点、线、面的几何位置和形状特征,进而设计其平面展开图,有助于培养学生的空间想象能力和动手操作能力.在本次课题学习中,还会用到美术知识:图案、视觉效果、美术字;语言知识:文字设计、广告语言、汉语拼音或英语词组;生产常识:材料、生产成本。
学生完整地经历了“实物观察——平面展开图形——平面图形设计——实物制作还原”的过程,有助于后续几何知识的系统学习.本节课的教学重点:根据立体图形的平面展开图,制作包装纸盒.二、教材分析教科书对于本节课的活动作了认真细致的安排,包括方法、材料、准备和活动步骤等.在课题学习中要分组、分工,观察和讨论、设计和制作、交流和比较、评价和总结,课后还要自己做进一步的练习等.教材安排这个课题学习的目的,是让学生借助所学的几何初步知识,逐渐学会独立思考,学会与他人合作,并经历发现问题、分析问题和解决问题的过程,并在活动中培养空间想象能力、逻辑思维能力、动手操作能力和在实践中应用数学的能力。
本节课是在教师的指导下开展“数学知识的再创造”学习活动,培养学生的研究能力.三、教学目标和目标解析1.教学目标(1)学生能完成包装纸盒的制作;(2)通过制作过程体会立体图形与平面图形的对应转化关系.2.目标解析(1)通过小组探究、合作交流,训练学生运用所学的几何初步知识,逐步学会独立思考,经历发现问题、分析问题和解决问题的过程,培养学生动手操作能力,以及在实践中应用数学的能力;学会与他人合作,培养学生实践意识、团队合作精神.(2)通过探究长方体的展开图,以及制作长方体包装盒,培养学生观察、思考、实验、归纳的数学能力和空间想象力、逻辑思维能力,理解立体图形和相应平面图形之间的转化关系,逐步渗透转化的数学思想.四、教学问题诊断分析在日常生活中,学生对于点、线、面等基本几何图形已有初步感性知识,但都比较粗浅. 学生在系统学习几何图形时,要逐步认识点、线、面在立体图形及其平面展开图间的相互转化.在本节课中不仅要求学生画出平面图形,而且还要再制作成为立体图形,这就要求学生在平面图形的设计上位置和尺寸要准确,才能很好地完成制作任务.基于以上分析,本节课的教学难点:画立体图形的平面展开图.五、教学支持条件分析根据本节课的教材内容特点,教师按照教科书上提的“组间同质,组内异质”(不同小组之间各组的整体学习及活动水平大致相同,但同一小组各成员的学习及活动水平应该不同)的原则将学生进行合理、有效分组,并准备一些长方体形状的包装纸盒进行实物演示.学生准备包装纸盒实物和硬纸板、直尺、裁纸刀、剪刀、胶水、彩笔等工具.六、教学过程设计1.创设情境,引出课题问题1:妈妈的生日快要到了,轩轩给妈妈准备了节日礼物,可他在拆开的过程中不小心把包装盒撕烂了,我们能帮他设计制作一个包装盒吗!如何设计呢?今天老师就和你们共同学习设计制作长方体形状的包装盒。
人教版七年级数学上册第四章几何图形初步第四节课题学习设计制作长方体形状的包装纸盒同步测试一.选择题(共10小题,每小题3分,共30分)1.下列哪个图形是正方体的展开图()A.B.C.D.2.下列几何体中,其侧面展开图为扇形的是()A.B.C.D.3.在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.4.一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.5.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.6.下列图形中能折叠成棱柱的是()A.B.C.D.7.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.8.下列各图中,不能折叠成一个立方体的是()A.B.C.D.9.下列各图中,经过折叠不能围成一个棱柱的是()A.B.C.D.10.在图上剪去一个图形,剩下的图形可以折叠成一个长方体,则剪去的这个图形是()A.①B.②C.③D.④二.填空题(共8小题,每小题3分,共24分)11.如图为某几何体的展开图,该几何体的名称是.12.一个无盖的长方体的包装盒展开后如图所示(单位:cm),则该长方体的体积为cm3.13.把一个圆柱体的侧面展开后得到一个长方形,长方形的长是4π厘米,宽是2π厘米,这个圆柱体的底面半径是厘米.14.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“活”相对应的面上的汉字是.15.如图,把一个长方体纸盒展成一个平面图形,需要剪开条棱.16.如图(1),在边长为18cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个如图(2)所示的无盖的长方体.设剪去的小正方形的边长为4cm,则这样折成的无盖长方体的容积是.17.将如图中的图形剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去哪个小正方形?(说出两种即可)18.小明家有一个如图的无盖长方体纸盒,现沿着该纸盒的棱将纸盒剪开,得到其平面展开图.若长方体纸盒的长、宽、高分别是a,b,c(单位:cm,a>b>c).则它的展开图周长最大时,用含a,b,c的代数式表示最大周长为cm.三.解答题(共7小题,共66分)19.已知一个六棱柱,它的底面边长都是5厘米,侧棱长都是8厘米,请回答下列问题(1)这个六棱柱一共有多少个面?一共有多少条棱?这些棱的长度之和是多少?(2)沿一条侧棱将这个六棱柱侧面全部展开成一个平面图形,这个图形的面积是多少?20.如图是一个正方体的展开图,标注了字母A,C的面分别是正方体的正面和底面,其他面分别用字母B,D,E,F表示.已知A=kx+1,B=3x﹣2,C=1,D=x﹣1,E=2x﹣1,F=x.(1)如果正方体的左面与右面所标注字母代表的代数式的值相等,求出x的值;(2)如果正面字母A代表的代数式与对面字母代表的代数式的值相等,且x为整数,求整数k 的值.21.如图是一个长方体的表面展开图,每个面上都标注了字母和数据,请根据要求回答(1)如果A面在长方体的底部,那么面会在上面;(2)求这个长方体的表面积和体积.22.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的体积:cm3.23.如图所示,用标有数字1、2、3、4的四块正方形,以及标有字母A、B、C、D、E、F、H的七块正方形中任意一块,用这5块连在一起的正方形折叠成一个无盖的正方体盒子,一共有几种不同的方法?写出这些方法所用到正方形所标有的数字和字母.(例如:1、2、3、4、F)24.如图是一个用硬纸板制作的长方体包盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这的包装盒需花费多少钱?(不考虑边角损耗)25.图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有条棱,有个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开条棱,需剪开棱的棱长的和的最大值为cm.参考答案一.选择题1.【解答】解:根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展故选:B.2.【解答】解:A、圆柱的侧面展开图可能是正方形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三角形,故D错误.故选:C.3.【解答】解:由带有各种符号的面的特点及位置,可知只有选项D符合.故选:D.4.【解答】解:由题意可知,该几何体为四棱锥,所以它的底面是四边形.故选:B.5.【解答】解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选:B.6.【解答】解:A、不能折叠成棱柱,缺少一个侧面,故A不符合题意;B、能折叠成四棱柱,故B符合题意;C、不能折叠成四棱柱,有两个面重叠,故C不符合题意;D、不能折叠成六棱柱,底面缺少一条边,故D不符合题意;故选:B.7.【解答】解:三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.故选:B.8.【解答】解:A、是正方体的展开图,不符合题意;B、有两个面重合,不是正方体的展开图,符合题意;C、是正方体的展开图,不符合题意;D、是正方体的展开图,不符合题意.故选:B.9.【解答】解:A、C、D可以围成四棱柱,B选项不能围成一个棱柱.10.【解答】解:拼成长方体的4种情况1.“一•四•一”,中间一行4个作侧面,两边各1个分别作上下底面,•共有6种.2.“二•三•一”(或一•三•二)型,中间3个作侧面,上(或下)边2•个那行,相连的长方形作底面,不相连的再下折作另一个侧面,共3种.3.“二•二•二”型,成阶梯状.4.“三•三”型,两行只能有1个长方形相连.因此剪去①,剩下的图形可以折叠成一个长方体.故选:A.二.填空题11.【分析】展开图为两个圆,一个长方形,易得是圆柱的展开图.【解答】解:∵圆柱的展开图为两个圆和一个长方形,∴展开图可得此几何体为圆柱.故答案为:圆柱.【点评】此题主要考查了由展开图得几何体,关键是考查同学们的空间想象能力.12.【分析】先用10cm减去8cm求出高为2cm,再用8cm减去2cm求出宽为6cm,再用14cm减去6cm求出长为8cm,再根据长方体的体积公式计算即可求解.【解答】解:10﹣8=2(cm),8﹣2=6(cm),14﹣6=8(cm),2×6×8=96(cm3).答:其容积为96cm3.故答案为:96.【点评】考查了几何体的展开图,解题的关键是得到长方体的长宽高.13.【分析】由圆柱的侧面展开图的特点可知:圆柱的侧面展开后,当圆柱的底面周长大于圆柱的高时,得到的是一个长方形,长方形的长等于底面周长,宽等于圆柱的高;当圆柱的底面周长小于圆柱的高时,得到的是一个长方形,但此时长方形的宽是圆柱的底面周长,长是圆柱的高,由此根据圆的周长公式,考虑两种情况,分别求出这个圆柱体的底面半径.【解答】解:(1)当圆柱的底面周长大于圆柱的高时:4π÷π÷2≈2(厘米),(2)当圆柱的底面周长小于圆柱的高时:2π÷π÷2=1(厘米),答:这个圆柱体的底面半径是2厘米或1厘米;故答案为:2或1.【点评】此题主要考查了对圆柱的侧面展开图的理解,解题的关键是能够考虑两种情况.14.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“活”字相对的面上的汉字是“数”.故答案为:数.【点评】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.15.【分析】据长方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵长方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴至少要剪开12﹣5=7条棱,故答案为:7.【点评】此题主要考查了长方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.16.【分析】由于正方形的边长为18cm,同时在正方形纸片的四个角各剪去一个同样大小的正方形,剪去的小正方形的边长为4cm,由此得到长方体的长、宽、高,最后利用长方体的容积公式即可求解;【解答】解:依题意得长方体的容积为:4×(18﹣2×4)2=400cm2;故答案为:400cm2.【点评】此题主要考查了展开图折叠成几何体,解题的关键是正确题意,然后根据题目的数量关系列出代数式解决问题.17.【分析】利用正方体及其表面展开图的特点解答即可.【解答】解:根据有“田”字格的展开图都不是正方体的表面展开图可知,故应剪去我或喜或活,故答案为:我,喜.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.18.【分析】根据边长最长的都剪,边长最短的剪的最少,可得答案.【解答】解:如图:,这个平面图形的最大周长是8a+4b+2c(cm).故答案为:(8a+4b+2c).【点评】此题主要考查了长方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.三.解答题19.【解答】解:(1)这个六棱柱一共有2+6=8个面;一共有6×3=18条棱;这些棱的长度之和是8×6+5×6×2=108厘米;(2)侧面全部展开成一个平面图形,其面积为8×5×6=240厘米2.20.【解答】解:(1)∵正方体的左面D与右面B代表的代数式的值相等,∴x﹣1=3x﹣2,解得x=;(2)∵正面字母A代表的代数式与对面F代表的代数式的值相等,∴kx+1=x,∴(k﹣1)x=﹣1,∵x为整数,∴x,k﹣1为﹣1的因数,∴k﹣1=±1,∴k=0或k=2,综上所述,整数k的值为0或2.21.【解答】解:(1)如图所示,A与F是对面,所以如果A面在长方体的底部,那么F面会在上面;故答案是:F;(2)这个长方体的表面积是:2×(1×3+1×2+2×3)=22(米2).这个长方体的体积是:1×2×3=6(米3).22.【解答】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的容积为:3×2×2=12(cm3).故答案为:12.23.【解答】解:将4个数字和1个字母括起来的不同的方法有:(1、2、3、4、A),(1、2、3、4、B),(1、2、3、4、C),(1、2、3、4、D),(1、2、3、4、E).故一共有5种不同的方法.24.【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这的包装盒需花费1.8元钱.25.【解答】解:(1)这个三棱柱有条9棱,有个5面;故答案为:9,5;(2)如图;(3)由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9﹣4=5(条).故至少需要剪开的棱的条数是5条.需剪开棱的棱长的和的最大值为:7×3+5×2=31(cm).故答案为:5,31.。