转基因技术及其在植物育种中的应用
- 格式:doc
- 大小:32.50 KB
- 文档页数:12
转基因技术在动植物育种中的应用随着现代科学技术的不断发展,转基因技术成为了动植物育种中的新宠儿。
通过对植物或动物的基因进行改良,让其拥有更好的生长特性、抗病能力、更高的产量等等,从而提高农业生产效益。
本文将探讨转基因技术在动植物育种中的应用。
一、转基因植物的应用转基因技术已被广泛应用于研究和生产中。
在植物育种中,利用转基因技术,可以将一些有益的基因导入到传统作物的基因组中。
这些有益的基因可以来自于其他植物,或者是来自于其他物种。
例如,在小麦的育种中,通过将耐旱、抗虫、抗病等基因导入到小麦中,可以大幅度提高小麦的产量和质量。
同样,在玉米和大豆的育种中,通过导入抗虫和抗草害基因,可以减少化学农药的使用,从而降低成本。
此外,转基因技术还可以使植物适应于不同的环境。
例如,在盐碱地种植玉米,需要导入盐碱逆境相关基因,以提高玉米在贫瘠环境下的生长能力。
此外,在荒漠化地区的沙漠植被修复中,通过将抗盐碱基因导入盐生植物中,可以提高植物的耐荒能力,使其能够在恶劣环境中生长。
二、转基因动物的应用除转基因植物外,转基因技术还被广泛应用于动物的生产中。
这种技术不仅可以提高动物的生长速度和产量,还可以改良动物的肉质、脂肪含量、抗病能力等方面。
例如,在猪的育种中,通过改良生长激素基因,可以让猪的生长速度更快、肉质更优,提高了猪肉的产量和利润。
在牛的育种中,通过改良生长抑素基因,可以让牛的背膘更加丰满,使牛肉更加美味。
此外,转基因技术还可以完善动物的免疫功能。
例如,在毛牛的育种中,通过导入牛源性细胞因子基因,可以增强毛牛的抗病能力,降低治疗成本。
三、转基因技术的争议虽然转基因技术在农业生产中有着广泛的应用,但也引来了不少的质疑和争议。
首先,很多人担心转基因产品会带来健康问题。
营养学家称,转基因食品会导致未知的健康风险,并可能导致过敏反应。
另外,转基因技术也会对环境产生影响。
从基因工程改造和农药消耗量减少等方面看,转基因技术可减少农业温室气体排放量和化学农药使用量。
转基因技术在植物育种中的应用及展望转基因技术是近几十年来农业科技领域中的一个重要突破,也是当前全球农业发展的热门话题之一。
作为一种高新科技,转基因技术在植物育种中的应用已经被广泛探讨和研究。
本文将重点探讨转基因技术在植物育种中的应用及展望。
一、转基因技术在植物育种中的应用转基因技术是将一种外源基因引入到目标生物体的染色体中,从而实现遗传特性上的改变。
在植物育种中,利用转基因技术可以培育更加耐旱、耐病、抗虫等具备丰富经济价值的作物品种。
1. 提高作物抗病性和耐逆性通过转基因技术,科学家可以向植物中引入具有优良遗传特性的基因,这些基因能够提高植物的抗病性和耐逆性。
例如,利用转基因技术将含有Bt 基因的细胞注入到玉米种子内,可以使得玉米植株对玉米螟等昆虫的侵害产生免疫力。
此外,对于在干旱季节中受到水分限制的作物,通过引入基因可使其在缺水的情况下能够正常生长和生产。
这些技术的应用,将有助于提高全球粮食安全性和减少农业生产成本。
2. 改善植物的品质和口感利用转基因技术,可以大大改善作物品种的口感和品质。
例如,对西红柿进行基因转换,使其带有甜度增强基因可以使其味道更好。
此外,还可以改善作物的颜色、香味和形状等特性,使之符合消费者的口味需求。
3. 增加作物产量传统育种技术往往需要多年的时间才能培育出产量高、质量好的作物品种。
利用转基因技术,可以将优良遗传特性的基因移植到目标品种中,从而实现高产的效果。
例如,在转基因大米的育种中,科学家们将既性不一致基因转入到水稻种子中,从而让这种大米有着比普通大米更高出20%的产量。
这项技术被广泛应用在全球的大米种植当中,也为世界的粮食安全做出了更大的贡献。
二、转基因技术在植物育种中的展望随着转基因技术的不断发展,在植物育种中的应用也将逐步扩大和深化。
转基因技术具有高效率、高精准度和快速实现等优势,将成为改善重要作物品种和解决粮食安全问题的重要工具。
1. 应用范围将更加广泛未来,转基因技术将被广泛应用在各类植物的育种当中,包括注重营养价值的蔬菜和小米杂粮的培育。
基因工程技术在植物育种中的应用研究随着生物技术的发展,基因工程技术已经成为现代农业中不可或缺的重要手段。
通过基因工程技术,可以针对植物疾病抗性、耐旱、耐寒等特性进行改良,进一步提高植物的产量和品质,为全球粮食安全和生态环境保护做出了重要贡献。
本文将介绍基因工程技术在植物育种中的应用研究,探讨其在未来发展中可能面临的挑战和机遇。
一、基因工程技术在植物育种中的应用研究1、转基因作物转基因作物是通过改变植物基因来提高其产量和营养价值、抵抗病虫害等特性的一种农业技术。
转基因作物在全球范围内逐渐普及,并取得了显著的经济效益。
例如,玉米、大豆、棉花、番茄等农作物都已经被转基因改良,使其耐旱、抗虫害及抗草害等特性得到了增强。
在转基因作物中,最常用的基因工程技术是植物转录因子技术,通过研究植物在不同环境下的转录因子变化,来识别并控制植物某些基因的表达,以达到种质改良的目的。
2、基因组编辑技术基因组编辑技术也是一种重要的基因工程技术,在植物育种中的应用领域也越来越广泛。
它通过引入或删除基因片段来改造植物基因组,并实现对植物特征的控制。
例如,通过应用CRISPR/Cas9技术对植物基因进行定向编辑,可以使植物产生更好的品质、更高的产量、更强的抗性等特性。
同时,这种技术还可以应用于研究植物发育、细胞分化等生物学问题。
3、遗传多样性评估遗传多样性评估是一个重要的植物育种研究方向。
它通过对产地、品种、种类等植物样本进行DNA序列分析,针对不同植物特征进行遗传多样性评估,以确定植物材料的可变性和遗传关系。
这种技术可以帮助植物育种者在固有遗传多样性的基础上,更好地把握遗传演化规律,更好地引入优良基因,实现质量提高和品种选育等目标。
二、未来的机遇与挑战尽管目前基因工程技术在植物育种中已经取得了一定的成果,但是在未来的发展中,它仍然面临着一系列挑战和机遇。
1、技术开发当前,基因工程技术在植物育种中应用依旧存在技术瓶颈。
例如,目前的基因组编辑技术虽然能够通过对基因序列进行编辑,来实现植物的遗传改良,但是在具体实施过程中,往往会引起不可预知的遗传变异和代价等问题。
基因编辑技术在植物育种领域的应用随着科技的不断进步和发展,基因编辑技术也在人类社会发挥着越来越重要的作用。
基因编辑技术大大提高了人类对自身以及其他生物体的认识和理解,还有望在我们的生活中产生越来越多的意义。
在植物领域,基因编辑技术也得到了广泛的应用。
本文将主要讲述基因编辑技术在植物育种领域的应用及其意义。
一、基因编辑技术简介基因编辑技术指的是通过修改某个生物体的DNA序列,以实现精准、快速、有效地改变其特征和性状的方法。
目前较为常见的基因编辑技术有锌指核酸酶(ZFN)、转录激活因子样核酸酶(TALEN),以及CRISPR/Cas9等。
其中,CRISPR/Cas9是一种革命性的基因编辑工具,它可将DNA切割为精准的序列,从而进行增删改基因等操作。
这种技术的优势在于速度快、效率高、可靠性高,因此在植物育种领域有着广泛的应用。
二、1. 提高作物品质自从农业文明开始,人类一直在对作物进行育种,让它们更适应生产和消费的需求。
进入21世纪后,在基因编辑技术的帮助下,作物的品质和产量都得到了大幅提高。
比如,研究人员通过CRISPR/Cas9技术将玉米中含有过敏原的生成素基因进行了编辑,使得这个玉米不再会引发人的过敏反应,从而让这种玉米能更加安全地食用。
此外,还有研究人员利用基因编辑技术改变了黑色素的生成路径,从而使得某些蔬菜变得更加色彩丰富,更具卖相,也更获得了消费者的青睐。
2. 提高作物的产量基因编辑技术还可以用于提高作物的产量,使得粮食更加充足,从而解决世界上的食品问题。
具体而言,研究人员可以利用基因编辑技术,将一些与作物生长相关的基因进行调整,从而让作物生长更快、结果更多,这样可有效提高作物的产量。
比如,在研究利用基因编辑技术提高水稻产量的过程中,研究人员成功地识别出许多与水稻生长相关的基因,然后进行了相应的编辑,让水稻的生长速度和产量都得到了极大的提高。
3. 提高作物的耐性在对抗病虫害和恶劣环境方面,作物往往会遇到重重困难。
基因测序技术在植物育种中的应用植物育种是为了改良植物品种,以提高产量、抗性或品质等特性。
传统的植物育种方法需要长时间的观察和多次选择,效率较低。
但是随着基因测序技术的出现,植物育种已经进入了一个新的时代。
基因测序技术,就是通过对生物体的基因组序列进行测序,来研究基因和基因组的结构、功能和演化过程。
这项技术在植物育种中的应用非常广泛,下面我们分析几个具体的方面。
一、基因组测序基因组测序是一种通过测序技术获得一个完整的基因组序列表示的方法。
通过得到植物基因组的序列,可以更好地了解植物的基因组结构和功能。
基因组测序可以揭示植物间的遗传差异,解析植物基因、解释功能以及推断演化,对植物基因改良具有很大帮助。
例如,通过基因组测序,国内科研团队成功筛选到世界上最大的冬枣种质资源库,实现了对冬枣的基因组测序。
这项经典的农业基因组学研究让科研人员深入挖掘到了冬枣基因组信息,并为水果开发提供了技术基础。
二、转基因技术转基因技术是指将外源基因引入到植物体内来改变其遗传特点的技术手段。
使用基因测序技术可以找到植物中的一些特殊的基因,从而把它们转移到其他植物体内,实现育种方法的改良。
例如,在水稻中加入了苏云金膜的基因,提高水稻对干旱、盐碱、低温等压力的适应性,实现了水稻的抗逆能力增强,同时也更加耐热、产量更高。
三、分子标记辅助育种分子标记技术是指在DNA水平上寻找基因型特殊的基因。
通过分析植物DNA中的不同部分的遗传变异性,确定与某个表型(如抗病性、耐性、高产性)有关的特定基因位点,以快速获得所需的新品种。
例如,发现农作物中的簇毛菌根真菌体内有某些基因与耐盐碱能力有关,而在不含这些基因的农作物中,其耐盐碱能力较差。
利用分子标记技术,可以快速筛选出某些植物品种中可能含有相关基因的植物材料,并进行后续的选择、育种。
四、单细胞测序技术单细胞测序技术可以用于检测单个细胞的基因组序列,避免了传统生物组学研究中的混杂效应。
在植物育种中,单细胞测序技术可以帮助科学家寻找基因表达差异大的质体,并通过进一步的研究来深入了解这些基因的功能与调节机制。
基因工程在植物育种中的应用官玲(GUAN Ling)(莆田学院环境与生命科学系福建莆田351100)摘要:在现代生物技术中,基因工程作为一个重要的部分,已经在生产和生活等多方面起着重要的作用。
不断成熟的基因工程技术它解决了传统育种不能突破的问题,与传统育种方法相比, 基因工程技术具有独特优势可以定向修饰植物的某些目标性状并保留其它原有性状通过引入外来基因扩大基因库。
本文主要综述了基因工程在药用植物和花卉植物育种中的研究状况及对以后的发展现状进行的展望。
关键词:基因工程;植物育种;基因芯片技术;前景展望基因工程是指运用分子生物学技术, 将目的基因或DNA片段通过载体或直接导入受体细胞, 使受体细胞遗传物质重新组合, 经细胞复制增殖, 新的基因在受体细胞中表达, 最后从转化细胞中筛选有价值的新类型, 继而它再生为工程植株, 从而创造新品种的一种定向育种技术。
与传统育种相比, 植物基因工程具有以下特点植物基因工程是在基因水平上来改造植物的遗传物质, 更具有科学性和精确性,同时育种速度也大大加快能定向改造植物的遗传性状, 提高了育种的目的性与可操作性植物基因工程大大地扩展了育种的范围, 打破了物种之间的生殖隔离障碍, 实现了基因在生物界的共用性, 丰富了基因资源及植物品种。
1.基因工程技术在药用植物育种中的应用由于医药事业的快速发展, 野生药材资源已远远不能满足需要, 尤其是许多原料性药用植物资源已面临资源枯竭的威胁, 加之人工驯化和栽培的药用植物物种退化和濒危的问题极为突出。
根据这些中药资源的活性成分、生长规律、生产特性, 运用生物工程技术对其进行保存性研究, 从而保护濒危紧缺的药用植物资源.。
通过遗传转化, 将目的基因(如抗逆、抗病毒、抗虫、抗除草剂等相关基因)导入药用植物以改变传统遗传性状, 培育优良品种, 增强药用植物抗病毒、抗虫害、抗除草剂的能力, 利用植物生产异源蛋白及改变植物质量性状、保护和繁殖濒临灭绝的植物材料[1].1.1优良品种的培育刘建勋等[2]利用PCR 技术克隆出青蒿素生物合成途径中的关键酶基因和东北红豆杉中紫三醇生物合成途径中起限速作用的紫三烯合成酶基因, 该基因cDNA 片段由2586 个核苷酸组成, 将该cDNA 片段导入红豆杉细胞后, 影响紫杉醇含量。
转基因技术在植物育种中的应用转基因技术是一种通过改变基因组表达方式从而实现改良或增强基因特性的技术。
在植物育种中,转基因技术被广泛应用于提高农作物的产量、改善农产品质量、增强植物抗病性等方面。
本文将探讨转基因技术在植物育种中的应用以及其对农业发展的影响。
一、1. 提高农作物产量农作物产量的提高一直是农业科技发展的根本目标之一。
利用转基因技术,可以向植物中引入具有特定功能或特性的基因,从而实现增加农作物的产量。
比如,通过将底生果树的花期向后推迟,可以使得果树在开花后更容易达到叶绿素合成的过程,从而形成更多的果实。
此外,还可以利用转基因技术增加植物的耐旱性、抗塑料性、味道等特性,以使植物更适应不同的环境。
2. 改善农产品质量除了增加产量,转基因技术还可以帮助改良农产品的质量。
在植物育种中,转基因技术能够向植物中引入特定基因,从而增加植物的有益物质含量,提高植物的营养价值。
比如,利用转基因技术将蔗糖和淀粉转化为甘油三酯,可以使大米的脂肪含量提高,从而改善大米的食感。
此外,还可以通过转基因技术改变植物中乙醛含量,提高水果的香气度和口感。
3. 增强植物抗病性植物的抗病性对农业生产起着至关重要的作用,它不仅能够改善农产品的品质,还能够减少植物病害带来的经济损失。
利用转基因技术,可以向植物中引入能够产生抗病性物质的基因,从而增强植物的抗病性,降低病害对农作物的影响。
比如,在玉米中引入一种叫作BT基因的抗虫基因,可以减少玉米的虫害,并大幅提高玉米的产量。
二、转基因技术对农业发展的影响转基因技术的应用对农业发展产生了深远的影响。
从一定程度上来说,转基因技术的应用能够推动农业生产的现代化和智能化,进一步提高农业的产值和质量。
1. 促进农业现代化在转基因技术的指引下,农业生产正逐渐从传统的劳动生产方式向现代化、智能化的生产方式转变。
通过利用转基因技术,加快物种的育种速度,实现农作物的高产、优质和高效,在一定程度上缩短了育种周期,提高了农业生产的效率和效益。
基因技术在植物育种中的应用植物育种一直是农业领域的重要研究领域。
随着人口的增长和食品需求的不断增加,如何提高作物的产量和抗性成为了重要的课题。
基因技术作为现代生物技术的重要组成部分,为植物育种带来了革命性的变革。
通过基因工程技术,科学家们可以精确地编辑和改变作物的基因组,从而达到改良和优化植物特征的目的。
一、基因工程在传统育种中的应用基因工程技术在传统育种中的应用主要包括基因克隆、基因表达、基因转导和基因编辑等方面。
1. 基因克隆:通过基因克隆技术,研究人员可以获取和研究作物中具有特定功能的基因。
例如,通过克隆植物的抗病基因,可以帮助提高作物的抗病性能。
2. 基因表达:利用基因表达技术,研究人员可以将特定的基因转录成具体的蛋白质,从而探索基因的功能,并加深对植物生长、开花和抗性等方面的了解。
3. 基因转导:通过基因转导技术,研究人员可以将特定基因导入到目标植物中,从而实现特定性状的改变。
例如,通过将植物中的耐旱基因转导到其他作物中,可以提高作物的耐旱能力。
4. 基因编辑:基因编辑技术是近年来发展迅猛的一个领域,它可以精确地编辑目标基因组,包括删除、添加或修改特定的基因。
这一技术使得植物育种更加高效和精确。
二、转基因技术在植物育种中的应用转基因技术是基因工程技术在植物育种中的一个重要应用方向。
通过转基因技术,研究人员可以将外源基因导入到目标植物中,从而改变植物的性状和性能。
1. 作物的抗性提高:通过转基因技术,研究人员可以向目标作物中导入具有抗病、抗虫等特性的基因,从而提高作物的抗性。
例如,将一种具有抗虫性的细菌基因导入到作物中,可以使作物对特定虫害具有防御能力。
2. 作物的适应性改善:转基因技术可以改善作物的生长环境适应性,使其更好地适应不同的生态环境。
例如,通过导入一种耐盐基因,可以提高作物在盐碱地区的生长能力。
3. 作物的品质改良:转基因技术可以改变作物的品质特性,使其更好地满足消费者的需求。
植物生物技术中的转基因植物与育种随着工业化和城市化的加速发展,人类对于粮食的需求也在不断增加。
这时候,自然资源的扩张显然已经无法满足人类的需求,转基因技术便应运而生。
而植物作为人类的生命线,植物生物技术发展的不断深入,已经逐渐成为了现代育种领域的一个重要方面。
植物生物技术的发展正是伴随着转基因植物的充分应用,这一过程也可以进一步分为以下几个方面:一、转基因植物的发展与特点传统意义下,育种的工作需要经过漫长的时间和大量的资源投入。
但是,采用现代生物技术,可以缩短育种周期、提高育种效率,同时还可以将更多的适应性基因导入到优良的亲本中去。
这样的话,育种的效率可以显著提高,同时所得到的品种也会更好的符合农民的需求。
而转基因植物在育种方面的特点主要在于其快速性和可控性。
对于传统的育种方法来说,由于在传递适应性基因的过程中需要进行大量杂交,所以在育种过程中可能会导致一系列的细节问题。
而运用转基因技术,可以将所需的基因直接转入经过清洗的亲本体内,从而省去中间环节,降低自然杂交对于育种效果的干扰,因此更加快速和可控。
二、转基因植物在育种方面的优势转基因植物在育种过程中具有很大的优势,主要体现在以下几个方面:1.增强种植的抗病性在传统的育种方法中,很难直接筛选出具有抗病能力的种子。
但是随着转基因技术在植物生物技术领域的运用,可以将适合的抗病基因直接引入到种子体内,从而增强种植的抗病能力,更好地保障粮食的生产和质量。
2.提高种植的耐旱能力由于全球气候的变化,越来越多的地区面临着缺水危机。
在这种情况下,如果种植的作物缺乏足够的耐旱能力,将会导致他们丧失生态平衡和经济效益。
而转基因植物通过该技术能够增强种子的水分稳定性,从而提高种植的耐旱能力,使得种子在恶劣的气候条件下生长更加稳定。
3.提高种植的抗逆性另外一些情况下,种子在转基因技术的帮助下,还能够增强其抗逆能力。
例如,在酸碱度较高的土壤中种植的种子经常面临着环境难以适应的情况,但是如果把相关的基因直接转入到种子体内,那么种子的抗逆性就会显著提高。
转基因技术及其在植物育种中的应用一、概述从70年代重组DNA技术创建,到1983年第一株转基因烟草获得以来,国际上对转基因作物就存在着截然不同的观点:接受?抵制?随着技术日趋成熟,转基因作物由实验室进人大田中试,不少作物已向商品化发展。
与此同时,转基因作物的生态风险,可能带来的环境问题、转基因产品作为食品对人体健康问题、产品贴标签问题、运输问题、国际贸易问题、知识产权问题等已引起世界性的所谓“生物安全”的论战。
转基因技术实际上已由学术观点分歧,发展到知识产权问题、环境问题、经济问题甚至政治问题二、什么是转基因技术转基因技术是将人工分离与修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术(Transgene technology)。
又名"遗传工程"、"基因工程"、"遗传转化"。
三、几种常用的植物转基因方法遗传转化的方法按其是否需要通过组织培养、再生植株可分成两大类,第一类需要通过组织培养再生植株,常用的方法有农杆菌介导转化法、基因枪法;另一类方法不需要通过组织培养,目前比较成熟的主要有花粉管通道法,花粉管通道法是中国科学家提出的。
1.农杆菌介导转化法农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。
根癌农杆菌与发根农杆菌中细胞中分别含有Ti质粒与Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。
因此,农杆菌是一种天然的植物遗传转化体系。
人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞与组织培养技术,再生出转基因植株。
农杆菌介导法起初只被用于双子叶植物中,自从技术瓶颈被打破之后,农杆菌介导转化在单子叶植物中也得到了广泛应用,其中水稻已经被当作模式植物进行研究。
2.花粉管通道法在授粉后向子房注射含目的基因的DNA溶液,利用植物在开花、受精过程中形成的花粉管通道,将外源DNA导入受精卵细胞,并进一步地被整合到受体细胞的基因组中,随着受精卵的发育而成为带转基因的新个体。
该方法于80年代初期由中国学者周光宇提出,中国目前推广面积最大的转基因抗虫棉就是用花粉管通道法培育出来的。
该法的最大优点是不依赖组织培养人工再生植株,技术简单,不需要装备精良的实验室,常规育种工作者易于掌握。
3. 基因枪法利用火药爆炸或高压气体加速(这一加速设备被称为基因枪),将包裹了带目的基因的DNA溶液的高速微弹直接送入完整的植物组织与细胞中,然后通过细胞与组织培养技术,再生出植株,选出其中转基因阳性植株即为转基因植株。
与农杆菌转化相比,基因枪法转化的一个主要优点是不受受体植物范围的限制。
而且其载体质粒的构建也相对简单,因此也是目前转基因研究中应用较为广泛的一种方法。
四、转基因植株的检测标记基因(包括选择标记基因及报告基因)用于帮助在植物遗传转化中筛选与鉴定转化的细胞、组织与再生植株。
在选择压力下,不含标记基因及其产物的非转化细胞与组织死亡,转化细胞由于有抗性,可继续成活、分裂并分化成植株。
选择标记基因包括抗生素抗性基因及除草剂抗性基因等,其中用得最多的是抗生素抗性标记基因。
报告基因包括葡糖醛酸苷酶(gus)、荧光素酶(1uc)、氯霉素乙酰转移酶(cat)、以及绿色荧光蛋白(gfp)基因等。
标记基因通常与目的基因构建在同一植物表达载体上,一起转人植物,但标记基因本身有时也可作为目的基因,如除草剂抗性基因提供除草荆抗性。
(一)报告基因的捡测报告基因是具有明显区别于受体细胞遗传背景的选择标记,因而易于进行转化后的筛选。
利用酶法分析、通过同位索放射性自显影技术及底物的颜色反应可以快速鉴定报告基因的表达,从而有效地检测出重组细胞或组织。
根据报告基因编码特点,大致分为两类:抗性基因与编码催化人工底物产生颜色变化的酶基因。
1 抗性基因的酶活性检洲(新霉索磷酸转移酶(NIT—II)、氯霉索乙酰转移酶(CAT)、PPT乙酰转移酶(PAT)是常用的3种抗性酶,因其易于检测,编码基因常用作报告基因。
)2 腑脂碱与章鱼碱的测定3 荧光素晦活性检洲检4 GUS晦活性检测(二)PCR法检测转化植株PCR是在体外快速特异地扩增目的基因DNA片段的有效方法。
能在几小时内使pg水平的起始物达到ng乃至旭水平,扩增产物经琼脂糖凝胶电泳,谟化乙锭染色后很容易观察,不通过杂交分析就可以鉴定出基因组中的一些顺序。
(三)点杂交与Southern杂交点杂交是将提取DNA或RNA不经酶切,直接点到硝酸纤维膜或尼龙膜上与探针进行杂交的技术。
利用点杂交,可以初步鉴定转化体中是否有整与的外源基因。
罗云渡等Ⅲ用DNA、RNA 的点杂交技术对转基田植株进行鉴定。
取得与田间表现一致的结果。
但点杂交的特异性差,阳性植株譬进一步作Southern杂交验证。
Southern杂交是将经酶切DNA转移到杂交膜上与探针杂交的技术(四)Northern杂交Northern杂交是将试材RNA与探针杂交的技术,用于检测基因在转录水平上的表达。
Northern杂交的主要原理是把变性RNA转移与固定在特定的薄膜上,用特定的DNA探针来检测RNA(五)Western杂交Western{缸交技术是将蛋白质从SDS-PAGE胶中电转移至固相支持体上,彝};后对固定化蛋白质进行免疫学测定的方法。
Western杂交灵敏度极高.髂达到标准的固定相放射免疫水平Western杂交检测目的基因在翻译水平的表达结果.髂直接显示目的基因在转化体中是否经过转录、翻译最终合成蛋白而影响植株的性状表现四、转基因作物研究进展(一)国际转基因作物的研究进展自1996年首例转基因农作物产业化应用以来,全球转基因技术研究与产业应用快速发展。
中国是国际上第一个商品化种植抗黄瓜花叶病毒(CMv)与抗烟草花叶病毒(TMv)双价转基因烟草的国家,但后劲不足。
美国发展很快。
发展态势:1是品种培育速度加快。
随着生命科学、基因组学、信息学等学科的发展,转基因技术研究日新月异,研究手段、装备水平不断提高,基因克隆技术突飞猛进,一些新基因、新性状与新产品不断涌现。
品种培育呈代际特征,目前全球转基因生物新品种已从抗虫与抗除草剂等第一代产品,向改善营养品质与提高产量的第二代产品,以及工业、医药与生物反应器等第三代产品转变,多基因聚合的复合性状正成为转基因技术研究与应用的重点。
2是产业化应用规模迅速扩大。
截至2009年底,全球已有25个国家批准了24种转基因作物的商业化应用。
以转基因大豆、棉花、玉米、油菜为代表的转基因作物种植面积,由1996年的2550万亩发展到2009年的20亿亩,14年间增长了79倍。
美国仍然是最大的种植国,2009年种植面积9.6亿亩;其次是巴西,3.21亿亩;阿根廷,3.195亿亩;印度,1.26亿亩;加拿大,1.23亿亩;中国,5550万亩;巴拉圭,3300万亩;南非,3150万亩。
值得一提的是,2000年以来,美国先后批准了6个抗除草剂与药用转基因水稻、伊朗批准了1个转基因抗虫水稻商业化种植;加拿大、墨西哥、澳大利亚、哥伦比亚4国批准了转基因水稻进口,允许食用。
3是生态与经济效益十分显著。
1996至2007年,全球转基因作物的累计收益高达440亿美元,累计减少杀虫剂使用35.9万吨。
2008年,全球转基因产品市场价值达到75亿美元。
4转基因柞物中发展得最快的是大豆,全球1997年为510万公顷,到1998年猛增到1450万公顷。
其它依次为转基因玉米、棉花、油菜,转基因马铃薯仅占很小一部分面积。
5以转基因的性状而论,发展得最快的是抗除草剂转基因作物,l997年全球面积为690万公顷,1998年猛增1290万公顷,达到l980万公顷,其次是抗虫转基因作物,由1997年的400万公顷发展到770万公顷,此外抗虫与抗除草剂双价转基因作物也有所发展。
(二)我国转基因作物的研究进展我国是世界上转基因作物第一个商品化种植的国家且前经农业部审查并经全国基因工程安全委员会批准商品化生产的作物已有我国自行研制开发的抗虫转基因棉花(&棉及&+CpTI棉)、美国Monsanto公司开发的有&棉、延迟成熟期的转基因番茄、抗(Mv转基因番茄、抗cMv转基因甜椒及转查尔酮合酶(CHS)基因矮牵牛,但除转基因抗虫棉已经大面积生产外,后几种作物面积仅在1公顷左右。
五、转基因技术在作物育种中的应用1 抗病毒抗病毒方面目前以转移病毒外壳蛋白(CP)基因的技术最为成功。
1986年首先将TMV外壳蛋白导入烟草与番茄,使转基因植物获得了对TMV的抗性。
至今除TMV外壳蛋白基因外,还把CMV、PVX、SMV、ALMV等多种病毒的外壳基因导入烟草、番茄、马铃薯、大豆等多种作物中,在不同程度上减轻了病症,推迟了发病时间。
2 抗细菌与真菌从抗病植物中克隆出抗病基因再导人易感病的植物中,从而提高后者的抗病性。
例如已转育成功的抗白粉病、赤霉病与黄矮病的小麦,但这些基因只能对特异的病原菌生理小种有一定抗性,当新的生理小种占优势后就会丧失其抗性,因此这类基因的转育效果并不理想。
3 抗虫抗虫方面目前应用最广泛的是苏云金杆菌的Bt杀虫晶体蛋白基因与豇豆等作物中的胰蛋白酶抑制基因。
转Bt基因的作物已有烟草、番茄、马铃薯、水稻、玉米与棉花等,均有较好的杀虫效果。
4 抗除草剂目前利用转基因技术获得抗除草剂作物的途径有二条,其一是改变除草剂靶物的敏感性,其二是导入编码降解除草剂的解毒酶基因,对相应的除草剂呈现出一定的的抗性。
5 改善植物品质主要是通过转基因技术改变植物中氨基酸组成与含量,提高植物品质。
其他,如分别导入抗寒基因、热休克蛋白基因与耐盐的相关基因,从而提高转基因植物的抗寒、耐热与抗盐能力。
此外转基因技术还获得了一些雄性不孕植物、果实延缓成熟的番茄、改变了花颜色的矮牵牛等。
六、转基因作物的利弊分析(一).转基因技术有如下优势:1拓宽可利用的基因资源;2培育高产、优质、高抗优良品种提供了崭新的育种途径;3可以对植物的目标性状进行定向变异与定向选择4可以大大提高选择效率,加快育种进程。
5生产转基因药品。
将一种有治疗作用的基因植入某种食品,人们只需吃食物就能预防或治疗疾病。
(二)转基因作物的潜在风险1转基因作物本身可能变为杂草;2转基因作物通过基因流可使野生近缘种变为杂草;3可能产生新的超级病毒或新的病害;4作为人工制造的转基因作物,可能成为自然界原来不存在的外来品种,若干年后可能对环境造成破坏;5对非目标生物有伤害,对生物多样性形成威胁6转基因产品的毒性,能引起人的过敏反应。