绿春县高中2018-2019学年高三下学期第三次月考试卷数学
- 格式:doc
- 大小:764.00 KB
- 文档页数:16
2015-2016学年下学期第三次月考高三数学(理)试题一.选择题:(每题4分,共10小题,40分)1.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )A .5B .8C .10D .142.正项等比数列{a n }的公比为2,若a 2a 10=16,则a 9的值是( )A .8B .16C .32D .643.某几何体的三视图如图所示,则它的体积是( )A .283π-B .83π- C .8-2π D .23π4.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4π C .2π D.4π3 5.如图是一个几何体的三视图,若该几何体的表面积为9π,则正视图中实数a 的值等于( )A .1B .2C .3D .46.设等差数列{a n }的前n 项和为S n ,若S 3=3,S 6=15,则S 9=( )A .27B .36C .44D .547.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1) C.n (n +1)2 .D n (n -1)28.下列不等式一定成立的是( )A . 21lg()lg (0)4x x x +>>B .1sin 2(,)sin x x k k Z x π+≥≠∈C.212||()x x x R +≥∈D 211()1x R x >∈+9.设l ,m 是两条不同直线,α,β是两个不同平面,则下列命题中正确的是( )A .若l ∥α,α∩β=m ,则l ∥mB .若l ∥α,m ⊥l ,则m ⊥αC .若l ∥α,m ∥α,则l ∥mD .若l ⊥α,l ∥β,则α⊥β 10.若函数)(x f 是奇函数,且在(+∞,0),内是增函数,0)3(=-f ,则不等式0)(<⋅x f x 的解集为( ) A .}303|{><<-x x x 或B .}303|{<<-<x x x 或C .}33|{>-<x x x 或D .}3003|{<<<<-x x x 或二.填空题:(每题4分,共5小题,20分) 11.已知a 、b ∈R +,且a+b=1,则ba 11+≥m,恒成立的实数m 的最大值是________________.12.函数y=31-x +x(x >3)的最小值.________________.13.公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则210log a = .14.若实数x,y 满足{x −y +1≥0,x +y ≥0,x ≤0,则z=2x+3y 的最大值是 .15. 若不等式2x>x 2+a 对于一切x ∈[-2,3]恒成立,则实数a 的取值范围是 . 三.解答题:(每小题10分))16.如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ;(2)BC 1⊥AB 1.17.数列{a n }的通项公式为a n =4n-1, (1)求数列{a n }前n 项的和为n S ;(2)令b n =nS n,求数列{2n b n }的前n 项的和n T 。
威县高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( ) A .2B .﹣2 C.﹣ D.2. 已知等差数列的公差且成等比数列,则( )A .B .C .D .3. 如果执行如图所示的程序框图,那么输出的a=( )A .2 B. C .﹣1 D .以上都不正确4. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.5. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣16.已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .1<e<B .e>C .e>D .1<e<7. 下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°9. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为( )A .B .C .D .10.已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(,-∞B .(,-∞C .(0,D .)+∞ 11.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位: 小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要( )小时.A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.12.函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题13.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .14.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .15.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为()A.B.C.D.16.(﹣)5的展开式的常数项为(用数字作答).,两类产品,甲种设备每天能生产A类产品5件和B类产品10件,17.某公司租赁甲、乙两种设备生产A B乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为__________元. 18.如图是函数y=f(x)的导函数y=f′(x)的图象,对此图象,有如下结论:①在区间(﹣2,1)内f(x)是增函数;②在区间(1,3)内f(x)是减函数;③在x=2时,f(x)取得极大值;④在x=3时,f(x)取得极小值.其中正确的是.三、解答题19.2014年“五一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/t)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如图所示的频率分布直方图.(Ⅰ)求这40辆小型车辆车速的众数及平均车速(可用中值代替各组数据平均值);(Ⅱ)若从车速在[60,70)的车辆中任抽取2辆,求车速在[65,70)的车辆至少有一辆的概率.20.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.21.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=.千克(1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .22.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.23.已知双曲线C :与点P (1,2).(1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;(2)是否存在过点P 的弦AB ,使AB 的中点为P ,若存在,求出弦AB 所在的直线方程,若不存在,请说明理由.24.在△ABC 中,D 为BC 边上的动点,且AD=3,B=.(1)若cos ∠ADC=,求AB 的值;(2)令∠BAD=θ,用θ表示△ABD 的周长f (θ),并求当θ取何值时,周长f (θ)取到最大值?25.如图,在平面直角坐标系xOy中,以x为始边作两个锐角α,β,它们的终边分别与单位圆交于A,B两点.已知A,B的横坐标分别为,.(1)求tan(α+β)的值;(2)求2α+β的值.26.已知数列{a n}的前n项和为S n,且S n=a n﹣,数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0上.(1)求数列{a n},{b n}的通项a n和b n;(2)设c n=a n•b n,求数列{c n}的前n项和T n.威县高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(3×672﹣1)=f(﹣1);又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,所以f(﹣1)=﹣f(1)=﹣2,即f(2015)=﹣2.故选:B.【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).2.【答案】A【解析】由已知,,成等比数列,所以,即所以,故选A答案:A3.【答案】B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n≤2016,执行循环体,a=﹣1,n=5满足条件n≤2016,执行循环体,a=2,n=7满足条件n≤2016,执行循环体,a=,n=9…由于2015=3×671+2,可得:n=2015,满足条件n≤2016,执行循环体,a=,n=2017不满足条件n≤2016,退出循环,输出a的值为.故选:B.4.【答案】D【解析】由已知得{}=01A x x<?,故A B1[,1]2,故选D.5.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.6.【答案】B【解析】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO==c,∠MF1F2=60°,∠PF1F2=30°,设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2﹣a2)x2﹣2ca2x﹣a2c2﹣3a2b2=0,则方程有两个异号实数根,则有3b2﹣a2>0,即有3b2=3c2﹣3a2>a2,即c>a,则有e=>.故选:B.7.【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.8.【答案】B【解析】解:y=x2的导数为y′=2x,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tanα=1,解得α=45°.故选:B.【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.9. 【答案】C【解析】解:F 1,F 2为椭圆=1的两个焦点,可得F 1(﹣,0),F 2().a=2,b=1.点P 在椭圆上,若线段PF 1的中点在y 轴上,PF 1⊥F 1F 2, |PF 2|==,由勾股定理可得:|PF 1|==.==.故选:C .【点评】本题考查椭圆的简单性质的应用,考查计算能力.10.【答案】B 【解析】试题分析:因为函数()xF x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022xxx xe ee e a--+--≥恒成立, ()2222x x x xx xx xe e e ea e e e e -----++∴≤=--()2x x x xe e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,220t e e -∴<≤-, 此时不等式2tt +≥当且仅当2t t=,即t =时, 取等号,a ∴≤故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.11.【答案】15 【解析】12.【答案】D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是减函数,D正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.二、填空题13.【答案】.【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(﹣,),故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.14.【答案】1.【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(﹣1,t),则B(﹣1,﹣t),C(1,﹣t),D(1,t),由直线和圆相切的条件可得,t=1.将A(﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.15.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA=,M为A1B1的中点,1∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.16.【答案】﹣10【解析】解:由于(﹣)5展开式的通项公式为T=•(﹣1)r•,r+1令15﹣5r=0,解得r=3,故展开式的常数项是﹣10,故答案为:﹣10.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.17.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 18.【答案】 ③ .【解析】解:由 y=f'(x )的图象可知, x ∈(﹣3,﹣),f'(x )<0,函数为减函数;所以,①在区间(﹣2,1)内f (x )是增函数;不正确; ②在区间(1,3)内f (x )是减函数;不正确; x=2时,y=f'(x )=0,且在x=2的两侧导数值先正后负, ③在x=2时,f (x )取得极大值; 而,x=3附近,导函数值为正,所以,④在x=3时,f (x )取得极小值.不正确. 故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.三、解答题19.【答案】【解析】解:(1)众数的估计值为最高的矩形的中点,即众数的估计值等于77.5… 这40辆小型车辆的平均车速为:(km/t )… (2)从图中可知,车速在[60,65)的车辆数为:m 1=0.01×5×40=2(辆) 车速在[65,70)的车辆数为:m 2=0.02×5×40=4(辆)设车速在[60,65)的车辆设为a ,b ,车速在[65,70)的车辆设为c ,d ,e ,f ,则所有基本事件有:(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f )(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f )(e ,f )共15种其中车速在[65,70)的车辆至少有一辆的事件有:(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),共14种所以,车速在[65,70)的车辆至少有一辆的概率为.…【点评】本题考查频率分布直方图的应用,古典概型概率公式的应用,基本知识的考查.20.【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元; 若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元;若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分) 21.【答案】(1)n a n 2=;(2)=n T )1(2+n n.考点:1.一元二次方程;2.裂项相消法求和.22.【答案】【解析】解:∵向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),∴=0,+8=0,∴=,化为,代入=0,化为:+16﹣cos2θ,∴,∴θ=或.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.23.【答案】【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点所以l的方程为…(ⅱ)当2﹣k2≠0,即k≠±时△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.所以l的方程为3x﹣2y+1=0…综上知:l的方程为x=1或或3x﹣2y+1=0…(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12﹣y12=2,2x22﹣y22=2,两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…又∵x1+x2=2,y1+y2=4,∴2(x1﹣x2)=4(y1﹣y2)即k AB==,…∴直线AB的方程为y﹣2=(x﹣1),…代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,由于判别式为482﹣4×15×34>0,则该直线AB存在.…【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.24.【答案】【解析】(本小题满分12分)解:(1)∵,∴,∴…2分(注:先算∴sin∠ADC给1分)∵,…3分∴,…5分(2)∵∠BAD=θ,∴, (6)由正弦定理有,…7分∴,…8分∴,…10分=,…11分当,即时f(θ)取到最大值9.…12分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.25.【答案】【解析】解:(1)由已知得:.∵α,β为锐角,∴.∴.∴.(2)∵,∴.∵α,β为锐角,∴,∴.26.【答案】【解析】解:(1)∵S n=a n﹣,∴当n≥2时,a n=S n﹣S n﹣1=a n﹣﹣,即a n=3a n﹣1,.∵a1=S1=﹣,∴a1=3.∴数列{a n}是等比数列,∴a n=3n.∵点P(b n,b n+1)在直线x﹣y+2=0上,∴b n+1﹣b n=2,即数列{b n}是等差数列,又b1=1,∴b n=2n﹣1.(2)∵c n=a n•b n=(2n﹣1)•3n,∵T n=1×3+3×32+5×33+…+(2n﹣3)3n﹣1+(2n﹣1)3n,∴3T n=1×32+3×33+5×34+…+(2n﹣3)3n+(2n﹣1)3n+1,两式相减得:﹣2T n=3+2×(32+33+34+…+3n)﹣(2n﹣1)3n+1,=﹣6﹣2(n﹣1)3n+1,∴T n=3+(n﹣1)3n+1.。
一、填空题:1.已知集合{}|12A x x =≤≤,{}1,2,3,4B =,则AB = ▲ .2.已知复数z 满足i 1i z ⋅=+(i 是虚数单位),则z = ▲ .3.袋中有2个红球,2个蓝球,1个白球,从中一次取出2个球,则取出的球颜色相同的概率为 ▲ .4.平面α截半径为2的球O 所得的截面圆的面积为π,则球心O 到平面α的距离为 ▲ .5.如图所示的流程图,输出y 的值为3,则输入x 的值为 ▲ .6.一组数据2,,4,6,10x 的平均值是5,则此组数据的标准差是 ▲ .7.在平面直角坐标系xOy 中,曲线C 的离心率为2,且过点(1,2),则曲线C 的标准方程 为 ▲ .8.已知函数()f x 对任意的x ∈R 满足()()f x f x -=,且当0x ≥时,2()1f x x ax =-+.若()f x 有4个零点,则实数a 的取值范围是 ▲ .9.已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 ▲ .10.在直角三角形ABC 中,C =90°,6AC =,4BC =.若点D 满足2AD DB =-,则||CD = ▲ . 11.已知函数()sin()f x x ωϕ=+的图象如图所示,则(2)f = ▲ .12.在平面直角坐标系xOy 中,圆C 的方程为2240x y x +-=.若直线(1)y k x =+上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是 ▲ .13.设数列{a n }为等差数列,数列{b n }为等比数列.若12a a <,12b b <,且2(1,2,3)i i b a i ==,则 数列{b n }的公比为 ▲ .14.在△ABC 中,BC =2,AC =1,以AB 为边作等腰直角三角形ABD (B 为直角顶点,C 、D 两点 在直线AB 的两侧).当C ∠变化时,线段CD 长的最大值为 ▲ .二、解答题:15.如图,在五面体ABCDEF 中,四边形ABCD 是矩形,DE ⊥平面ABCD . (1)求证:AB ∥EF ;(2)求证:平面BCF ⊥平面CDEF .16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若4b =,8BA BC ⋅=. (1)求22a c +的值;13 xy O(第11题)·1-1(2)求函数2()3sin cos cos f B B B B =+的值域.17.某风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆 弧上的一点C 之间设计为直线段小路,在路的两侧..边缘种植绿化带;从点C 到点B 设计为沿弧BC 的弧形小路,在路的一侧..边缘种植绿化带.(注:小路及绿化带的宽度忽略不计) (1)设 ÐBAC =q (弧度),将绿化带总长度表示为q 的函数()s θ; (2)试确定q 的值,使得绿化带总长度最大.18.如图,在平面直角坐标系xOy 中,椭圆22221(0)y x a b a b+=>>的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,7AB CD +=. (1)求椭圆的方程;(2)求AB CD +的取值范围.19.已知函数2()()e x f x x a =-在2x =时取得极小值. (1)求实数a 的值;(2)是否存在区间[],m n ,使得()f x 在该区间上的值域为44[e ,e ]m n ?若存在,求出m ,n 的值; 若不存在,说明理由.20.各项均为正数的数列{a n }中,设12n n S a a a =+++,12111n nT a a a =+++,且(2)(1)2n n S T -+=,*n ∈N . (1)设2n n b S =-,证明数列{b n }是等比数列;(2)设12n n c na =,求集合(){}*,,|2,,,,m r k m k r c c c m k r m k r +=<<∈N .南通市2014届高三第二次调研测试数学Ⅱ(附加题)21.A 选修4—1:几何证明选讲如图,圆O 的两弦AB 和CD 交于点E ,//EF CB ,EF 交AD 的 延长线于点F .求证:△DEF ∽△EAF .21.B 选修4—2:矩阵与变换若矩阵012a ⎡⎤=⎢⎥-⎣⎦M 把直线:20l x y +-=变换为另一条直线:40l x y '+-=,试求实数a 值.21.C 选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 经过点P (0,1),曲线C 的方程为2220x y x +-=,若直线l 与曲线C 相交于A ,B 两点,求PA PB ⋅的值.21.D 选修4—5:不等式选讲已知0x >,0y >,a ∈R ,b ∈R .求证()222ax by a x b yx y x y++++≤.22.在平面直角坐标系xOy 中,已知定点F (1,0),点P 在y 轴上运动,点M 在x 轴上,点N 为平面内的动点,且满足0PM PF ⋅=,PM PN +=0. (1)求动点N 的轨迹C 的方程;(2)设点Q 是直线l :1x =-上任意一点,过点Q 作轨迹C 的两条切线QS ,QT ,切点分别为S ,T ,设切线QS ,QT 的斜率分别为1k ,2k ,直线QF 的斜率为0k ,求证:1202k k k +=.23.各项均为正数的数列{}n x 对一切*n ∈N 均满足112n n x x ++<.证明:(1)1n n x x +<; (2)111n x n-<<.。
城区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( )A.124+ B.124- C. 34D .0 2. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种3. 已知一三棱锥的三视图如图所示,那么它的体积为( ) A .13 B .23C .1D .2 4. 执行如图所示的程序框图,输出的z 值为( )A .3B .4C .5D .65. 函数f (x )=()x2﹣9的单调递减区间为( ) A .(﹣∞,0) B .(0,+∞) C .(﹣9,+∞) D .(﹣∞,﹣9)6. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是( )A .(0,) B .(0,] C.(,] D .[,1)7. 自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果: ①报考“北约”联盟的学生,都没报考“华约”联盟 ②报考“华约”联盟的学生,也报考了“京派”联盟 ③报考“卓越”联盟的学生,都没报考“京派”联盟 ④不报考“卓越”联盟的学生,就报考“华约”联盟 根据上述调查结果,下列结论错误的是( ) A .没有同时报考“华约” 和“卓越”联盟的学生班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________B .报考“华约”和“京派”联盟的考生一样多C .报考“北约” 联盟的考生也报考了“卓越”联盟D .报考“京派” 联盟的考生也报考了“北约”联盟8. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-29. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13B .15C .12D .1110.已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}2则几何体的体积为( )34意在考查学生空间想象能力和计算能a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列b D .b <1<a值等于 .2)+sin2,则该数列的前16项和为 .__________.16.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +<恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.17.(x﹣)6的展开式的常数项是(应用数字作答).18.等比数列{a n}的前n项和为S n,已知S3=a1+3a2,则公比q=.三、解答题19.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.20.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.21.(本小题满分10分)已知圆P 过点)0,1(A ,)0,4(B .(1)若圆P 还过点)2,6(-C ,求圆P 的方程; (2)若圆心P 的纵坐标为,求圆P 的方程.22.已知三棱柱ABC ﹣A 1B 1C 1,底面三角形ABC 为正三角形,侧棱AA 1⊥底面ABC ,AB=2,AA 1=4,E 为AA 1的中点,F 为BC 的中点 (1)求证:直线AF ∥平面BEC 1 (2)求A 到平面BEC 1的距离.23.已知f (α)=,(1)化简f (α);(2)若f (α)=﹣2,求sin αcos α+cos 2α的值.24.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.25.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.266(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.城区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义. 2. 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C 31C 62C 21C 42=540种.故选D .3. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 4. 【答案】D【解析】解:执行循环体前,S=1,a=0,不满足退出循环的条件,执行循环体后,S=1×20=20,a=1,当S=2°,a=1,不满足退出循环的条件,执行循环体后,S=1×21=21,a=2 当S=21,a=2,不满足退出循环的条件,执行循环体后,S=21×22=23,a=3 当S=23,a=3,不满足退出循环的条件,执行循环体后,S=23×23=26,a=4 当S=26,a=4,满足退出循环的条件,则z==6故输出结果为6 故选:D【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5. 【答案】B【解析】解:原函数是由t=x 2与y=()t﹣9复合而成,∵t=x 2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=()t﹣9其定义域上为减函数,∴f (x )=()x2﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数,∴函数ff (x )=()x2﹣9的单调递减区间是(0,+∞).故选:B .【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键.6. 【答案】D 【解析】解:由题意设=2x ,则2x+x=2a ,解得x=,故||=,||=,当P 与两焦点F 1,F 2能构成三角形时,由余弦定理可得 4c 2=+﹣2×××cos ∠F 1PF 2, 由cos ∠F 1PF 2∈(﹣1,1)可得4c 2=﹣cos ∠F 1PF 2∈(,),即<4c 2<,∴<<1,即<e 2<1,∴<e <1;当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.7. 【答案】D【解析】集合A 表示报考“北约”联盟的学生,集合B 表示报考“华约”联盟的学生, 集合C 表示报考“京派”联盟的学生,集合D 表示报考“卓越”联盟的学生,由题意得U A B B CD C D B=∅⎧⎪⊆⎪⎨=∅⎪⎪=⎩ð,∴U A D B C D B ⊆⎧⎪=⎨⎪=⎩ð, 选项A .B D =∅,正确;选项B .B C =,正确; 选项C .A D ⊆,正确. 8. 【答案】B 【解析】A DB=C考点:向量共线定理.9.【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A.10.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算11.【答案】D【解析】12.【答案】A【解析】解:由f(x)=e x+x﹣2=0得e x=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出计算y=e x,y=lnx,y=2﹣x的图象如图:∵函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=e x与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选:A.【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.二、填空题13.【答案】.【解析】解:角α终边上一点为P(﹣1,2),所以tanα=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.14.【答案】546.【解析】解:当n=2k﹣1(k∈N*)时,a2k+1=a2k﹣1+1,数列{a2k﹣1}为等差数列,a2k﹣1=a1+k﹣1=k;当n=2k(k∈N*)时,a2k+2=2a2k,数列{a2k}为等比数列,.∴该数列的前16项和S16=(a1+a3+…+a15)+(a2+a4+…+a16)=(1+2+...+8)+(2+22+ (28)=+=36+29﹣2=546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.a15.【答案】2【解析】试题分析:因为()ln f x a x x =-在区间(1,2)上单调递增,所以(1,2)x ∈时,()'10af x x=-≥恒成立,即a x ≥恒成立,可得2a ≥,故答案为2a ≥.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题. 16.【答案】15(,)43-17.【答案】 ﹣160【解析】解:由于(x ﹣)6展开式的通项公式为 T r+1=•(﹣2)r •x 6﹣2r ,令6﹣2r=0,求得r=3,可得(x ﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.18.【答案】 2 .【解析】解:设等比数列的公比为q , 由S 3=a 1+3a 2,当q=1时,上式显然不成立;当q ≠1时,得,即q 2﹣3q+2=0,解得:q=2.故答案为:2.【点评】本题考查了等比数列的前n 项和,考查了等比数列的通项公式,是基础的计算题.三、解答题19.【答案】【解析】解:(Ⅰ)由曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,可得它的直角坐标方程为x+y=1,根据曲线C 2的参数方程为(θ为参数),可得它的普通方程为+y 2=1.(Ⅱ)把曲线C 1与C 2是联立方程组,化简可得 5x 2﹣8x=0,显然△=64>0,故曲线C 1与C 2是相交于两个点.解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.20.【答案】【解析】解:(I )证明:∵PD ⊥平面ABCD ,∴PD ⊥BC , 又∵ABCD 是正方形,∴BC ⊥CD ,∵PDICE=D , ∴BC ⊥平面PCD ,又∵PC ⊂面PBC ,∴PC ⊥BC . (II )解:∵BC ⊥平面PCD , ∴GC 是三棱锥G ﹣DEC 的高.∵E 是PC 的中点,∴.∴.(III )连接AC ,取AC 中点O ,连接EO 、GO ,延长GO 交AD 于点M ,则PA ∥平面MEG . 下面证明之:∵E 为PC 的中点,O 是AC 的中点,∴EO ∥平面PA , 又∵EO ⊂平面MEG ,PA ⊄平面MEG ,∴PA ∥平面MEG , 在正方形ABCD 中,∵O 是AC 中点,∴△OCG ≌△OAM ,∴,∴所求AM 的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.21.【答案】(1)047522=++-+y x y x ;(2)425)2()25(22=-+-y x . 【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程022=++++F Ey Dx y x ,将三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为25,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆P 的方程是022=++++F Ey Dx y x ,则由已知得⎪⎩⎪⎨⎧=+-+-+=++++=++++026)2(6004040001222222F E D F D F D ,解得⎪⎩⎪⎨⎧==-=475F E D . 故圆P 的方程为047522=++-+y x y x .(2)由圆的对称性可知,圆心P 的横坐标为25241=+,故圆心)2,25(P , 故圆P 的半径25)20()251(||22=-+-==AP r ,故圆P 的标准方程为425)2()25(22=-+-y x .考点:圆的方程 22.【答案】【解析】解:(1)取BC 1的中点H ,连接HE 、HF , 则△BCC 1中,HF ∥CC 1且HF=CC 1又∵平行四边形AA 1C 1C 中,AE ∥CC 1且AE=CC 1 ∴AE ∥HF 且AE=HF ,可得四边形AFHE 为平行四边形, ∴AF ∥HE ,∵AF ⊄平面REC 1,HE ⊂平面REC 1 ∴AF ∥平面REC 1.… (2)等边△ABC 中,高AF==,所以EH=AF=由三棱柱ABC ﹣A 1B 1C 1是正三棱柱,得C 1到平面AA 1B 1B的距离等于∵Rt △A 1C 1E ≌Rt △ABE ,∴EC 1=EB ,得EH ⊥BC 1 可得S△=BC 1•EH=××=,而S △ABE=AB ×BE=2由等体积法得V A ﹣BEC1=V C1﹣BEC ,∴S△×d=S △ABE×,(d 为点A 到平面BEC 1的距离)即××d=×2×,解之得d=∴点A 到平面BEC 1的距离等于.…【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.23.【答案】【解析】解:(1)f (α)===﹣tan α;…5(分) (2)∵f (α)=﹣2, ∴tan α=2,…6(分)∴sin αcos α+cos 2α====.…10(分)24.【答案】(1)详见解析;(2)3λ=.【解析】(1)由于2AB =,AM BM ==,则AM BM ⊥,又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM ,∴⊥BM 平面ADM ,…………3分又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分25.【答案】【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax≤2∵不等式f(x)≤3的解集为{x|﹣2≤x≤1}.∴当a≤0时,不合题意;当a>0时,,∴a=2;(Ⅱ)记,∴h(x)=∴|h(x)|≤1∵恒成立,∴k≥1.【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.26.【答案】【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为.则,∴年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.(3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.。
贵州省2018-2019学年第二学期高一数学第三次月考试卷一、选择题1、古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。
下列数中及时三角形数又是正方形数的是()A.1225 B.1024 C.289 D.13782、如图圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图像大致为( )A. B.C.D.3、函数在内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点4、下列函数中,最小值为2的是()A.B.C.D.5、数列满足则()A.1 B.1999 C.1000 D.-16、若的内角所对的边分别为,已知,且,则等于()A.B.C.D.7、阅读右面的程序框图,则输出的S=()A.14 B.20C.30 D.558、已知a>0,b>0,a+b=2,则y=的最小值是 ( )A.B.4 C.D.59、若a>b>0,0<c<d,则一定有( )A.B.C.D.10、设全集,集合,则()A.B.C.D.11、等比数列的前项和为,且,,成等差数列,若,则()A.7 B.8 C.15 D.16二、填空题12、设数列{}是首项为1的正项数列,且(n+1),则它的通项公式______。
13、已知A,B,C是圆O上的三点(点O为圆的圆心),若,则与的夹角为______。
14、函数的最小值为_________。
15、在中,若,,则=_____。
三、解答题16、已知数列的前项和为,且满足:(Ⅰ)求数列的通项公式;(Ⅱ)若存在,使得成等差数列,试判断:对于任意的,且是否成等差数列,并证明你的结论。
17、当时,关于x的不等式的解集中整数恰好有3个,求实数a 的取值范围。
六安市高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 若a >0,b >0,a+b=1,则y=+的最小值是( )A .2B .3C .4D .52. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A .B .C .D .3. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A .B .C .D .4. 执行如图所示的程序框图,输出的z 值为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .3B .4C .5D .65. 已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)6. 已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm )对工期延误天数Y PA .0.1B .0.3C .0.42D .0.5 7. 已知数列,则5是这个数列的( ) A .第12项 B .第13项C .第14项D .第25项 8. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形9. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .210.已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣211.执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 12.设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C.2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.二、填空题13.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .14.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.15.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,b ∈R .若=,则a+3b 的值为 .16.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 17.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.18.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .三、解答题19.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+=平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.20.某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元) (1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).21.已知直线l 1:(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系,圆C 1:ρ2﹣2ρcos θ﹣4ρsin θ+6=0.(1)求圆C 1的直角坐标方程,直线l 1的极坐标方程; (2)设l 1与C 1的交点为M ,N ,求△C 1MN 的面积.22.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A 的人数;(Ⅱ)若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A .在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.23.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.24.设函数f(x)=lnx+,k∈R.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围;(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.25.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.26.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.六安市高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:∵a >0,b >0,a+b=1,∴y=+=(a+b )=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4. 故选:C .【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.2. 【答案】D【解析】解:根据函数与导数的关系:可知,当f ′(x )≥0时,函数f (x )单调递增;当f ′(x )<0时,函数f (x )单调递减结合函数y=f (x )的图象可知,当x <0时,函数f (x )单调递减,则f ′(x )<0,排除选项A ,C当x >0时,函数f (x )先单调递增,则f ′(x )≥0,排除选项B 故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题3. 【答案】C 【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C .【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.4. 【答案】D【解析】解:执行循环体前,S=1,a=0,不满足退出循环的条件,执行循环体后,S=1×20=20,a=1,当S=2°,a=1,不满足退出循环的条件,执行循环体后,S=1×21=21,a=2 当S=21,a=2,不满足退出循环的条件,执行循环体后,S=21×22=23,a=3 当S=23,a=3,不满足退出循环的条件,执行循环体后,S=23×23=26,a=4当S=26,a=4,满足退出循环的条件,则z==6故输出结果为6 故选:D【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5.【答案】C【解析】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C6.【答案】D【解析】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,设:降水量X至少是100为事件A,工期延误不超过15天的事件B,P(A)=0.6,P(AB)=0.3,P=P(B丨A)==0.5,故答案选:D.7.【答案】B【解析】由题知,通项公式为,令得,故选B答案:B8.【答案】D【解析】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A,∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA(sinA﹣sinB)=0,∴cosA=0,或sinA=sinB,∴A=,或a=b,∴△ABC为等腰三角形或直角三角形故选:D.【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.9. 【答案】B【解析】试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以()14160,2λλ+-==,故选B. 考点:1、向量的坐标运算;2、向量平行的性质.10.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣. 故选:B .11.【答案】B12.【答案】A 【解析】二、填空题13.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.14.【答案】±.【解析】分析题意得,问题等价于264x ax ++≤只有一解,即220x ax ++≤只有一解,∴280a a ∆=-=⇒=±,故填:±. 15.【答案】 ﹣10 .【解析】解:∵f (x )是定义在R 上且周期为2的函数,f (x )=,∴f ()=f (﹣)=1﹣a ,f ()=;又=,∴1﹣a=①又f (﹣1)=f (1), ∴2a+b=0,②由①②解得a=2,b=﹣4; ∴a+3b=﹣10. 故答案为:﹣10.16.【答案】1 【解析】 试题分析:()()()()2213111222=-+--+-=m AB ,解得:1=m ,故填:1.考点:空间向量的坐标运算 17.【答案】【解析】(2a +b )·a =(2,-2+t )·(1,-1) =2×1+(-2+t )·(-1) =4-t =2,∴t =2. 答案:218.【答案】=1【解析】解:由题意得,圆心C (1,0),半径等于4,连接MA ,则|MA|=|MB|,∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,故点M 的轨迹是:以A 、C 为焦点的椭圆,2a=4,即有a=2,c=1,∴b=,∴椭圆的方程为=1.故答案为:=1. 【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题.三、解答题19.【答案】(1)()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e 上单调递减;(2)1[,)2+∞. 【解析】试题解析:(1)由条件可得221'(1)1f e e a=-=-,∴1a =, 由21()f x e x x=+,可得2222211'()e x f x e x x -=-=, 由'()0f x >,可得2210,0,e x x ⎧->⎨≠⎩解得1x e >或1x e <-;由'()0f x <,可得2210,0,e x x ⎧-<⎨≠⎩解得10x e -<<或10x e <<.所以()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e上单调递减.(2)令()ln g t t t =,当(0,)s ∈+∞,(1,]t e ∈时,()0f s >,()ln 0g t t t =>,由()ln kf s t t ≥,可得ln ()t tk f s ≥在(0,)x ∈+∞,(1,]t e ∈时恒成立,即max ln ()t t k f s ⎡⎤≥⎢⎥⎣⎦max()()g t f s ⎡⎤=⎢⎥⎣⎦,故只需求出()f s 的最小值和()g t 的最大值. 由(1)可知,()f s 在1(0,)e 上单调递减,在1(,)e +∞上单调递增,故()f s 的最小值为1()2f e e=,由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立,所以()g t 在(1,]e 上的最大值为()ln g e e e e ==, 所以只需122e k e ≥=, 所以实数的取值范围是1[,)2+∞.考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).20.【答案】【解析】解:(1)投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元,由题设f(x)=kx,g(x)=k2,(k1,k2≠0;x≥0)由图知f(1)=,∴k1=又g(4)=,∴k2=从而f(x)=,g(x)=(x≥0)(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元y=f(x)+g(10﹣x)=,(0≤x≤10),令,∴(0≤t≤)当t=,y max≈4,此时x=3.75∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.21.【答案】【解析】解:(1)∵,将其代入C1得:,∴圆C1的直角坐标方程为:.由直线l1:(t为参数),消去参数可得:y=x,可得(ρ∈R).∴直线l1的极坐标方程为:(ρ∈R).(2),可得⇒,∴.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B的考生有10人,所以该考场有10÷0.25=40人,所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:×=2.9;(Ⅲ)因为两科考试中,共有6人得分等级为A ,又恰有两人的两科成绩等级均为A , 所以还有2人只有一个科目得分为A ,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A 的同学,则在至少一科成绩等级为A 的考生中,随机抽取两人进行访谈,基本事件空间为:Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.设“随机抽取两人进行访谈,这两人的两科成绩等级均为A ”为事件B ,所以事件B 中包含的基本事件有1个,则P (B )=.【点评】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容.23.【答案】(1)详见解析;(2)3λ=.【解析】(1)由于2AB =,AM BM ==,则AM BM ⊥,又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM ,∴⊥BM 平面ADM ,…………3分又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分24.【答案】【解析】解:(Ⅰ)由条件得f′(x)=﹣(x>0),∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,∴此切线的斜率为0,即f′(e)=0,有﹣=0,得k=e;(Ⅱ)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒成立…(*)设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h′(x)=﹣﹣1≤00在(0,+∞)上恒成立,得k≥﹣x2+x=(﹣x﹣)2+(x>0)恒成立,∴k≥(对k=,h′(x)=0仅在x=时成立),故k的取值范围是[,+∞);(Ⅲ)由题可得k=e,因为M∩P≠∅,所以f(x)<在[e,3]上有解,即∃x∈[e,3],使f(x)<成立,即∃x∈[e,3],使m>xlnx+e成立,所以m>(xlnx+e)min,令g(x)=xlnx+e,g′(x)=1+lnx>0,所以g(x)在[e,3]上单调递增,g(x)min=g(e)=2e,所以m>2e.【点评】本题考查导数的运用:求切线的斜率和单调区间,主要考查函数的单调性的运用,考查不等式存在性和恒成立问题的解决方法,考查运算能力,属于中档题.25.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n =1+2(n ﹣1)=2n ﹣1, 数列{a n }的通项公式a n =2n ﹣1;(2)b n ===(﹣),S n = [(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n }的前n 项和S n ,S n =.26.【答案】【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A ,B ,∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,∴,,∴甲队以4:2,4:3获胜的概率分别为和.(Ⅱ)随机变量X 的可能取值为5,6,7,∴,P (X=6)=,P (X=7)=,∴随机变量X 的分布列为5 6 7【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.。
一、单项选择题1、 指数函数y=5x 的底数是( ) A .yB .xC .5D .152、 下列平面直角坐标系中的四个图形中,可以做为函数y =f (x )的图象的是( )3、若(a2-9)0=1,则a 必须满足( ) A .a ≠3B .a ≠-3C .a ≠3或a ≠-3D .a ≠3且a ≠-34、()21((2))f x x f f =-=已知函数,则( ) A. 3 B. 5 C . 2 D. 无法确定 5、 如果指数函数f (x )=(2a -3)x是R 上的减函数,则实数a 的取值范围是( )A .0<a <1B .32<a <2C .a >1D .a >326、 已知下列函数:①f(x)=2x 3; ②f(x)=-x ; ③f(x)=3x +5; ④f(x)=x 5+x 3+x . 其中,是奇函数的个数为( ) A .1 B .2 C .3 D .4A .B .C .D .7、log a 若3<1,则实数a 的取值范围是( )A . ∞(3,+)B . ∞(1,+)C . (0,1)D . ⋃∞(0,1)(3,+)8、 函数 y =(x -1)0x +1 的定义域是( )A .[-1,1]B .(-1,1)∪(1,+∞)C .(-1,1)D .(-1,+∞)9、 若0<a<1,则函数logy x =与函数y=x+a 的图像可能是( )10、在同一坐标系中,当a>1时函数xy a log = 与x a y -=的图像是( )二、填空题1、 函数y=x 2-2x-3的单调递增区间是 .2、 二次函数252++=bx x y 图像顶点在x 轴上,b =_______. 3、 (),(1)2xf x f x x =+=+已知则_______. A BCD4、 设log 34•log 48•log 8m =log 416,则m 的值为___________.5、 设3a =2, 3b =5,则32a-b =_____________.6、 函数y =log a x 在闭区间[1,4]上的最大值与最小值的和为2,则a 的值是__________.7、 已知函数xx f -=13)(,则=)2(log 3f .2203828.()()(lg5)275--+-= . 9、已知3a=4b=M ,且1a +1b =2,则M 的值为___________.10、(log 43+log 83)(log 35+log 95)(log 52+log 252)的值为________. 三解答题1、 判断函数f (x )=a x -1a x +1的奇偶性,并证明你的结论.2、 已知二次函数y =f (x )图象的对称轴是x =-2,它在x 轴上截得的线段长为6,且抛物线过点(-1,-4),求该二次函数的解析式.3、 已知函数f(x)=2121x-+, 试判断f (x )的奇偶性。
绿春县一中2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( )A .﹣12B .﹣10C .﹣8D .﹣62. 已知函数f (x )=,则f (1)﹣f (3)=()A .﹣2B .7C .27D .﹣73. 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2,则()=2016f ( )A 、-12B 、-16C 、-20D 、04. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( )A .16B .﹣16C .8D .﹣85. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)6. 如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos 2﹣sincos﹣的值为()A .B .C .﹣D .﹣7. 四面体 中,截面 是正方形, 则在下列结论中,下列说法错误的是()ABCD PQMNA .B .AC BD ⊥AC BD= C.D .异面直线与所成的角为AC PQMN A PM BD 458. 四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在P ABCD -ABCD PA ⊥ABCD 2AB =体积为同一球面上,则( )24316πPA =A .3B .C .D .7292【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.9. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( )A .(¬p )∨qB .p ∨qC .p ∧qD .(¬p )∧(¬q )10.已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是()A .5B .3C .2D .11.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )A .512个B .256个C .128个D .64个12.复数的值是( )i i -+3)1(2A .B .C .D .i 4341+-i 4341-i 5351+-i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.二、填空题13.已知函数,则的值是_______,的最小正周期是______.22tan ()1tan x f x x =-()3f π()f x 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的''''O A B C cm 周长为.1111]15.将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的()0,2()4,0()7,3(),m n m n +值是.16.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .三、解答题17.已知椭圆C : +=1(a >b >0)与双曲线﹣y 2=1的离心率互为倒数,且直线x ﹣y ﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设不过原点O 的直线与椭圆C 交于M 、N 两点,且直线OM 、MN 、ON 的斜率依次成等比数列,求△OMN 面积的取值范围.18.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0).(1)求f (x )的最小值,并求取最小值时x 的范围;(2)若f (x )的最小值为2,求证:f (x )≥+.a b19.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.20.(本小题满分12分)在多面体中,四边形与均为正方形,平面ABCDEFG ABCD CDEF CF ⊥,平面,且.ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)求二面角的大小的余弦值.D FGE --21.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n .22.已知集合A={x|a≤x≤a+9},B={x|8﹣b<x<b},M={x|x<﹣1,或x>5},(1)若A∪M=R,求实数a的取值范围;(2)若B∪(∁R M)=B,求实数b的取值范围.23.24.(本小题满分10分)选修4-5:不等式选讲.已知函数f(x)=|x+1|+2|x-a2|(a∈R).(1)若函数f(x)的最小值为3,求a的值;(2)在(1)的条件下,若直线y=m与函数y=f(x)的图象围成一个三角形,求m的范围,并求围成的三角形面积的最大值.绿春县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C【解析】解:由已知得f ′(x )=4x 3cosx ﹣x 4sinx+2mx+1,令g (x )=4x 3cosx ﹣x 4sinx+2mx 是奇函数,由f ′(x )的最大值为10知:g (x )的最大值为9,最小值为﹣9,从而f ′(x )的最小值为﹣9+1=﹣8.故选C .【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大. 2. 【答案】B 【解析】解:∵,∴f (1)=f (1+3)=f (4)=17,f (3)=10,则f (1)﹣f (3)=7,故选B . 3. 【答案】A 【解析】试题分析:因为,所以,的周期为,因此()()5f x f x +=-()()()105f x f x f x +=-+=()f x 10,故选A.()()()()20164416412f f f =-=-=--=-考点:1、函数的奇偶性;2、函数的解析式及单调性.4. 【答案】B【解析】解:∵f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,∴f (﹣2)﹣g (﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f (2)+g (2)=f (﹣2)﹣g (﹣2)=﹣16.故选:B .【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力. 5. 【答案】D【解析】解:∵方程x 2+ky 2=2,即表示焦点在y 轴上的椭圆∴故0<k <1故选D .【点评】本题主要考查了椭圆的定义,属基础题. 6. 【答案】 A【解析】解:∵|BC|=1,点B 的坐标为(,﹣),故|OB|=1,∴△BOC 为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos (﹣α)=,﹣sin (﹣α)=﹣,∴sin (﹣α)=.∴cos α=cos[﹣(﹣α)]=coscos (﹣α)+sinsin (﹣α)=+=,∴sin α=sin[﹣(﹣α)]=sincos (﹣α)﹣cossin (﹣α)=﹣=.∴cos 2﹣sin cos﹣=(2cos 2﹣1)﹣sin α=cos α﹣sin α=﹣=,故选:A .【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题. 7. 【答案】B 【解析】试题分析:因为截面是正方形,所以,则平面平面,PQMN //,//PQ MN QM PN //PQ ,//ACD QM BDA 所以,由可得,所以A 正确;由于可得截面//,//PQ AC QM BD PQ QM ⊥AC BD ⊥//PQ AC //AC ,所以C 正确;因为,所以,由,所以是异面直线与PQMN PN PQ ⊥AC BD ⊥//BD PN MPN ∠PM BD所成的角,且为,所以D 正确;由上面可知,所以,而045//,//BD PN PQ AC ,PN AN MN DN BD AD AC AD==,所以,所以B 是错误的,故选B. 1,AN DN PN MN ≠=BD AC ≠考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.8. 【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则,AC BD E PC O OE OE PA A OE ⊥ABCD O到四棱锥的所有顶点的距离相等,即球心,均为O 12PC ==可得,解得,故选B .34243316ππ=72PA =9. 【答案】B【解析】解:命题p ∧(¬q )是真命题,则p 为真命题,¬q 也为真命题,可推出¬p 为假命题,q 为假命题,故为真命题的是p ∨q ,故选:B .【点评】本题考查复合命题的真假判断,注意p ∨q 全假时假,p ∧q 全真时真. 10.【答案】D 【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A 到直线2x+y ﹣2=0的距离,即|AM|min =.故选:D .【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义. 11.【答案】D【解析】解:经过2个小时,总共分裂了=6次,则经过2小时,这种细菌能由1个繁殖到26=64个.故选:D .【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题. 12.【答案】C【解析】.i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+二、填空题13.【答案】,.π【解析】∵,∴,又∵,∴的定义域为22tan ()tan 21tan x f x x x ==-2(tan 33f ππ==221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩()f x ,,将的图象如下图画出,从而(,)(,)(,)244442kk k k k k ππππππππππππ-+-+-++++ k Z ∈()f x 可知其最小正周期为,故填:.ππ14.【答案】8cm【解析】考点:平面图形的直观图.15.【答案】34 5【解析】考点:点关于直线对称;直线的点斜式方程.16.【答案】 (﹣1,1] .【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.故答案为:(﹣1,1]三、解答题17.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x﹣y﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…则,于是…又直线OM、MN、ON的斜率依次成等比数列.∴…由m≠0得:又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾)…设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.18.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(+)2=a+b+2≤2(a+b)=4,a b ab∴+≤2,a b∴f(x)≥a+b=2≥+,a b即f(x)≥+.a b19.【答案】【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.所以,直线l的方程为…由消y并整理,得…设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1…(II)由(I)可知,抛物线的方程为y2=2x.由题意,直线m的方程为y=kx+(2k﹣1).…由方程组(1)可得ky2﹣2y+4k﹣2=0(2)…当k=0时,由方程(2),得y=﹣1.把y=﹣1代入y2=2x,得.这时.直线m与抛物线只有一个公共点.…当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.解得.于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…因此,所求m的取值范围是.…【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.20.【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.GH∈AGH AGH⊥EFG∵平面,∴平面平面.……………………………5分21.【答案】【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:2a2=a1+a3﹣1,∴,∴2q=q2,∵q≠0,∴q=2,∴;(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.n≥2时,由b1+2b2+3b3+…+nb n=a n ①b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.22.【答案】【解析】解:A={x|a≤x≤a+9},B={x|8﹣b<x<b},M={x|x<﹣1,或x>5},(1)当A∪M=R 时,应满足,解得﹣4≤a≤﹣1,所以实数a的取值范围是[﹣4,﹣1];(2)∁R M={x|﹣1≤x≤5},B={x|8﹣b<x<b},B∪(∁R M)=B,∴∁R M⊆B,∴,解得b>9;∴实数b的取值范围是b>9.23.【答案】【解析】解:(1)f(x)=|x+1|+2|x-a2|={-3x+2a2-1,x≤-1,-x+2a2+1,-1<x<a2,3x-2a2+1,x≥a2,)当x≤-1时,f(x)≥f(-1)=2a2+2,-1<x<a2,f(a2)<f(x)<f(-1),即a2+1<f(x)<2a2+2,当x≥a2,f(x)≥f(a2)=a2+1,所以当x=a2时,f(x)min=a2+1,由题意得a2+1=3,∴a=±.2(2)当a=±时,由(1)知f(x)=2{-3x+3,x≤-1,-x+5,-1<x<2,3x-3,x≥2,)由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积最大,此时面积为×|3-(-1)|×|6-3|=6.12。
绿春县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]2. 设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i3. 已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|=( )A .B .C .4D .4. 设双曲线焦点在y 轴上,两条渐近线为,则该双曲线离心率e=( )A .5B .C .D .5. 设a ,b 为实数,若复数,则a ﹣b=( )A .﹣2B .﹣1C .1D .26. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .2037. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力. 8. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈ 9. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④ D .①③10.已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位11.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)12.已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .二、填空题13.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .14.已知函数f (x )=恰有两个零点,则a 的取值范围是 .15.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a . 16.椭圆的两焦点为F 1,F 2,一直线过F 1交椭圆于P 、Q ,则△PQF 2的周长为 .17.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.18.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为 .三、解答题19.已知曲线C 的参数方程为(y 为参数),过点A (2,1)作平行于θ=的直线l 与曲线C 分别交于B ,C 两点(极坐标系的极点、极轴分别与直角坐标系的原点、x 轴的正半轴重合).(Ⅰ)写出曲线C 的普通方程; (Ⅱ)求B 、C 两点间的距离.20.已知关x 的一元二次函数f (x )=ax 2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q 中随机取一个数a 和b 得到数对(a ,b ).(1)列举出所有的数对(a ,b )并求函数y=f (x )有零点的概率;(2)求函数y=f (x )在区间[1,+∞)上是增函数的概率.21.在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2:=1.(Ⅰ)在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C1的异于极点的交点为A,与C2的交点为B,求|AB|.22.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.23.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?24.已知函数f(x)=+lnx﹣1(a是常数,e≈=2.71828).(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a=1时,方程f(x)=m在x∈[,e2]上有两解,求实数m的取值范围;(3)求证:n∈N*,ln(en)>1+.绿春县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.2.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.3.【答案】B【解析】解:由题意,抛物线关于x轴对称,开口向右,设方程为y2=2px(p>0)∵点M(2,y0)到该抛物线焦点的距离为3,∴2+=3∴p=2∴抛物线方程为y2=4x∵M(2,y0)∴∴|OM|=故选B.【点评】本题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程.4.【答案】C【解析】解:∵双曲线焦点在y 轴上,故两条渐近线为 y=±x ,又已知渐近线为,∴ =,b=2a ,故双曲线离心率e====,故选C .【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.5. 【答案】C【解析】解:,因此.a ﹣b=1.故选:C .6. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=203,故选D.7. 【答案】C.【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 8. 【答案】A 【解析】试题分析:因为{}|5A x N x =∈< ,而1.5,1,.5,1N N A A ∉-∉∴∉-∉,即B 、C 正确,又因为0N ∈且05<,所以0A ∈,即D 正确,故选A. 1考点:集合与元素的关系. 9. 【答案】B【解析】解:由m 、n 是两条不同的直线,α,β,γ是三个不同的平面: 在①中:若m ⊥α,n ∥α,则由直线与平面垂直得m ⊥n ,故①正确; 在②中:若α∥β,β∥γ,则α∥γ,∵m ⊥α,∴由直线垂直于平面的性质定理得m ⊥γ,故②正确;在③中:若m ⊥α,n ⊥α,则由直线与平面垂直的性质定理得m ∥n ,故③正确; 在④中:若α⊥β,m ⊥β,则m ∥α或m ⊂α,故④错误.故选:B .10.【答案】B【解析】试题分析:函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数 ()cos 3f x x π⎛⎫=+ ⎪⎝⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,故选B.考点:函数()sin y A x ωϕ=+的图象变换.11.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x 的不等式f (2x ﹣1)﹣f (x+1)>0得到关于x 的不等式f (2x ﹣1)>f (x+1),∴|2x ﹣1﹣2|<|x+1﹣2|即|2x ﹣3|<|x ﹣1|,化简为3x 2﹣1x+8<0,解得x ∈(,2);故选:B .12.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣. 故选:C .【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.二、填空题13.【答案】 .【解析】解:∵数列{a n }为等差数列,且a 3=,∴a 1+a 2+a 6=3a 1+6d=3(a 1+2d )=3a 3=3×=,∴cos (a 1+a 2+a 6)=cos=.故答案是:.14.【答案】 (﹣3,0) .【解析】解:由题意,a ≥0时,x <0,y=2x 3﹣ax 2﹣1,y ′=6x 2﹣2ax >0恒成立, f (x )在(0,+∞)上至多一个零点; x ≥0,函数y=|x ﹣3|+a 无零点, ∴a ≥0,不符合题意;﹣3<a <0时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点,函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上无零点,符合题意;a=﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点, 函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;a <﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点,函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a 的取值范围是(﹣3,0). 故答案为(﹣3,0).15.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c cb b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.116.【答案】 20 .【解析】解:∵a=5,由椭圆第一定义可知△PQF 2的周长=4a . ∴△PQF 2的周长=20., 故答案为20.【点评】作出草图,结合图形求解事半功倍.17.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内18.【答案】.【解析】解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1.Rt△AOC中,r=AO==,从而弧长为αr=2×=,故答案为.【点评】本题考查弧长公式的应用,解直角三角形求出扇形的半径AO的值,是解决问题的关键,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)由曲线C的参数方程为(y为参数),消去参数t得,y2=4x.(Ⅱ)依题意,直线l的参数方程为(t为参数),代入抛物线方程得可得,∴,t1t2=14.∴|BC|=|t1﹣t2|===8.【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题.20.【答案】【解析】解:(1)(a,b)共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况函数y=f(x)有零点,△=b2﹣4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件所以函数y=f(x)有零点的概率为(2)函数y=f(x)的对称轴为,在区间[1,+∞)上是增函数则有,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件所以函数y=f(x)在区间[1,+∞)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.21.【答案】【解析】解:(Ⅰ)曲线为参数)可化为普通方程:(x﹣1)2+y2=1,由可得曲线C1的极坐标方程为ρ=2cosθ,曲线C2的极坐标方程为ρ2(1+sin2θ)=2.(Ⅱ)射线与曲线C1的交点A的极径为,射线与曲线C2的交点B的极径满足,解得,所以.22.【答案】【解析】解:(1)∵f(4)=0,∴4|4﹣m|=0∴m=4,(2)f(x)=x|x﹣4|=图象如图所示:由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k∈(0,4).23.【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求.24.【答案】【解析】解:(1).因为x=2是函数f(x)的极值点,所以a=2,则f(x)=,则f(1)=1,f'(1)=﹣1,所以切线方程为x+y﹣2=0;(2)当a=1时,,其中x∈[,e2],当x∈[,1)时,f'(x)<0;x∈(1,e2]时,f'(x)>0,∴x=1是f(x)在[,e2]上唯一的极小值点,∴[f(x)]min=f(1)=0.又,,综上,所求实数m的取值范围为{m|0<m≤e﹣2};(3)等价于,若a=1时,由(2)知f(x)=在[1,+∞)上为增函数,当n>1时,令x=,则x>1,故f(x)>f(1)=0,即,∴.故即,即.。
个旧市高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 设n S 为数列{}n a 的前n 项的和,且*3(1)()2n n S a n =-∈N ,则n a =( ) A .3(32)n n- B .32n +C .3n D .132n -⋅2. 若双曲线M 上存在四个点A ,B ,C ,D ,使得四边形围是( )A .B .C .3. 若l 、m 、n 是互不相同的空间直线,α、β) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β4. 已知全集U R =,{|239}xA x =<≤,{|0B y y =<≤A .A ØB B .AB B =C .()R A B ≠∅ð ()R B R =ð5. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则=( )A.{}|12x x <≤ B.{}|21x x -≤≤ C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.6. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( ) A .(﹣∞,] B .(﹣∞,] C .(﹣∞,] D .(﹣∞,]7. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .8. 已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________x 输出结束否输入N的能力.9. 设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( ) A .﹣2 B .﹣4 C .0 D .410.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件11.设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( ) A. B. C. D【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.二、填空题13.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +<恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.14.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF的重心到准线距离为 .15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{ 52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.16.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= . 17.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m满足方程+=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为 .18.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .三、解答题19.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.20.在直角坐标系xOy中,直线l的参数方程为为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.21.在等比数列{a n}中,a1a2a3=27,a2+a4=30试求:(1)a1和公比q;(2)前6项的和S6.22.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.(1)求证:BD1∥平面A1DE;(2)求证:A1D⊥平面ABD1.23.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会(Ⅱ)某医疗部门决定从这些抗战老兵中(其中参加纪念活动的环节数为3的抗战老兵数大于等于3)随机抽取3名进行体检,设随机抽取的这3名抗战老兵中参加三个环节的有ξ名,求ξ的分布列和数学期望.24.已知复数z=.(1)求z的共轭复数;(2)若az+b=1﹣i,求实数a,b的值.25.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。
绿春县高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos2﹣sincos﹣的值为( )A. B. C.﹣ D.﹣2. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0 B .1C .2D .33.若,则等于( )A.B.C.D.4. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.5. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+46. 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )A .112B .114C .116D .120班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)8. 若命题“p ∧q ”为假,且“¬q ”为假,则( ) A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假9. 两圆C 1:x 2+y 2﹣4x+3=0和C 2:的位置关系是( )A .相离B .相交C .内切D .外切10.已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →|为( )A .1 B.43C.53 D .2 11.数列中,若,,则这个数列的第10项( )A .19B .21C .D .12.已知集合A={0,m ,m 2﹣3m+2},且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可二、填空题13.已知数列}{n a 的前n 项和为n S ,且满足11a =-,12n n a S +=(其中*)n ∈N ,则n S = .14.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.15.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填A B 方格的数字,则不同的填法共有 种(用数字作答).16.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)17.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .18.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .三、解答题19.(本小题满分12分)111]在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .20.如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D 、E 分别是AC 、AB 上的点,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2.(Ⅰ)求证:平面A 1BC ⊥平面A 1DC ;(Ⅱ)若CD=2,求BD 与平面A 1BC 所成角的正弦值; (Ⅲ)当D 点在何处时,A 1B 的长度最小,并求出最小值.21.已知cos(+θ)=﹣,<θ<,求的值.22.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.23.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.24.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求函数f(x)的解析式.25.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.26.已知数列{a n}的前n项和为S n,且满足a n=3S n﹣2(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.绿春县高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】 A【解析】解:∵|BC|=1,点B 的坐标为(,﹣),故|OB|=1,∴△BOC 为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos (﹣α)=,﹣sin (﹣α)=﹣,∴sin (﹣α)=.∴cos α=cos[﹣(﹣α)]=coscos (﹣α)+sin sin (﹣α)=+=,∴sin α=sin[﹣(﹣α)]=sincos (﹣α)﹣cos sin (﹣α)=﹣=.∴cos 2﹣sin cos ﹣=(2cos2﹣1)﹣sin α=cos α﹣sin α=﹣=,故选:A .【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.2. 【答案】C【解析】解:命题“若x 2>0,则x >0”的逆命题是“若x >0,则x 2>0”,是真命题; 否命题是“若x 2≤0,则x ≤0”,是真命题; 逆否命题是“若x ≤0,则x 2≤0”,是假命题;综上,以上3个命题中真命题的个数是2. 故选:C3. 【答案】B【解析】解:∵,∴,∴(﹣1,2)=m (1,1)+n (1,﹣1)=(m+n ,m ﹣n )∴m+n=﹣1,m ﹣n=2,∴m=,n=﹣,∴故选B .【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等.4.【答案】C5.【答案】A【解析】∵f(x+1)=3x+2=3(x+1)﹣1∴f(x)=3x﹣1故答案是:A【点评】考察复合函数的转化,属于基础题.6.【答案】B【解析】解:根据频率分布直方图,得;该班级数学成绩的平均分是=80×0.005×20+100×0.015×20+120×0.02×20+140×0.01×20=114.故选:B.【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.7.【答案】C【解析】解:=﹣=﹣f′(x0),故选C.8.【答案】B【解析】解:∵命题“p∧q”为假,且“¬q”为假,∴q为真,p为假;则p∨q为真,故选B.【点评】本题考查了复合命题的真假性的判断,属于基础题.9.【答案】D【解析】解:由题意可得,圆C2:x2+y2﹣4x+3=0可化为(x﹣2)2+y2=1,C 2:的x 2+(y+2)2=9两圆的圆心距C 1C 2==4=1+3,∴两圆相外切. 故选:D .【点评】本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题.10.【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →,∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y即x =2,y =53,∴CD →=(2,53)-(2,0)=(0,53),∴|CD →|=02+(53)2=53,故选C.11.【答案】C【解析】 因为,所以,所以数列构成以为首项,2为公差的等差数列,通项公式为,所以,所以,故选C答案:C12.【答案】B【解析】解:∵A={0,m ,m 2﹣3m+2},且2∈A ,∴m=2或m 2﹣3m+2=2,解得m=2或m=0或m=3.当m=0时,集合A={0,0,2}不成立. 当m=2时,集合A={0,0,2}不成立. 当m=3时,集合A={0,3,2}成立.故m=3. 故选:B .【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证.二、填空题13.【答案】13n --【解析】∵12n n a S +=,∴12n n n S S S +-=,∴∴13n n S S +=,11133n n n S S --=⋅=.14.【答案】 18.2【解析】解:∵某城市近10年居民的年收入x 和支出y 之间的关系大致是=0.9x+0.2,∵x=20, ∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2.【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.15.【答案】 27【解析】解:若A 方格填3,则排法有2×32=18种,若A 方格填2,则排法有1×32=9种,根据分类计数原理,所以不同的填法有18+9=27种. 故答案为:27.【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.16.【答案】 10 cm【解析】解:作出圆柱的侧面展开图如图所示,设A 关于茶杯口的对称点为A ′,则A ′A=4cm ,BC=6cm ,∴A ′C=8cm ,∴A ′B==10cm .故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.17.【答案】 4 .【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y 为y=2x+z ,由图可知,当直线y=2x+z 过点A (﹣2,0)时, 直线y=2x+z 在y 轴上的截距最大,即z 最大,此时z=﹣2×(﹣2)+0=4. 故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.18.【答案】 2:1 .【解析】解:设圆锥、圆柱的母线为l ,底面半径为r ,所以圆锥的侧面积为: =πrl圆柱的侧面积为:2πrl所以圆柱和圆锥的侧面积的比为:2:1 故答案为:2:1三、解答题19.【答案】(1)详见解析;(2)详见解析. 【解析】试题分析:(1)根据DB EF //,所以平面BEF 就是平面BDEF ,连接DF,AC 是等腰三角形ABC 和ACF 的公共底边,点D 是AC 的中点,所以BD AC ⊥,DF AC ⊥,即证得⊥AC 平面BEF 的条件;(2)要证明线面平行,可先证明面面平行,取FC 的中点为,连接GI ,HI ,根据中位线证明平面//HGI 平面ABC ,即可证明结论.试题解析:证明:(1)∵DB EF //,∴EF 与DB 确定平面BDEF .如图①,连结DF . ∵CF AF =,D 是AC 的中点,∴AC DF ⊥.同理可得AC BD ⊥. 又D DF BD = ,⊂DF BD 、平面BDEF ,∴⊥AC 平面BDEF ,即⊥AC 平面BEF .考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.20.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0).则,,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),即当x=3时,A1B长度达到最小值,最小值为.21.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos(+θ)=﹣,∴sin(+θ)=﹣=﹣,∴sin(+θ)=sinθcos+cosθsin=(cosθ+sinθ)=﹣,∴sinθ+cosθ=﹣,①cos(+θ)=cos cosθ﹣sin sinθ=(cosθ﹣cosβ)=﹣,∴cosθ﹣sinθ=﹣,②联立①②,得cosθ=﹣,sinθ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.22.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC…1分在长方形ABCD中,AB=BC,∴BD⊥AC…2分又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分而D1E⊂平面BB1D1D,∴AC⊥D1E…4分(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),∴…5分设平面AD1E的法向量为,则,即令z=1,则…7分∴…8分∴DE与平面AD1E所成角的正弦值为…9分(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.设P的坐标为(t,0,0)(0≤t≤1),则∵BP∥平面AD1E∴,即,∴2(t﹣1)+1=0,解得,…12分∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长.…13分.23.【答案】【解析】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又∵A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a===3.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.24.【答案】【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是减函数.(2)当x<0时,﹣x>0,f(﹣x)=﹣1=﹣f(x),∴f(x)=+1.又f(0)=0,故函数f(x)的解析式为f(x)=.25.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x﹣y﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…则,于是…又直线OM、MN、ON的斜率依次成等比数列.∴…由m≠0得:又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾)…设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.26.【答案】【解析】解:(1)∵a n=3S n﹣2,∴a n﹣1=3S n﹣1﹣2(n≥2),两式相减得:a n﹣a n﹣1=3a n,整理得:a n=﹣a n﹣1(n≥2),又∵a1=3S1﹣2,即a1=1,∴数列{a n}是首项为1、公比为﹣的等比数列,∴其通项公式a n=(﹣1)n﹣1•;(2)由(1)可知na n=(﹣1)n﹣1•,∴T n=1•1+(﹣1)•2•+…+(﹣1)n﹣2•(n﹣1)•+(﹣1)n﹣1•,∴﹣T n=1•(﹣1)•+2•+…+(﹣1)n﹣1•(n﹣1)•+(﹣1)n•n•,错位相减得:T n=1+[﹣+﹣+…+(﹣1)n﹣1•]﹣(﹣1)n•n•=1+﹣(﹣1)n•n•=+(﹣1)n﹣1••,∴T n = [+(﹣1)n ﹣1••]=+(﹣1)n ﹣1••.【点评】本题考查数列的通项及前n 项和,考查运算求解能力,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.。