年中考数学复习-第四章统计与概率第15讲统计(精练本)课件
- 格式:ppt
- 大小:2.48 MB
- 文档页数:10
第十五讲 概率刘书妹** 随机事件与概率基础盘点1.在一定条件下,有些事件必然会发生,这样的事件称为必然事件. 在一定条件下,有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件,称为随机事件,也称为不确定事件. 必然事件和不可能事件统称为确定性事件.2.事件A 发生的概率P (A )的取值范围是0≤P (A )≤1,特别地,当A 为必然事件时,P (A )=1;当A 为不可能事件时,P (A )=0.3.一般地,如果在一次试验中有n 种可能的结果,并且它们发生的可能性相等,事件A 包含其中的m种结果,那么事件A 发生的概率P(A)=m n. 4.利用列表格或画树状图,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.考点呈现考点1 事件的判断例1 (2015·沈阳)下列事件为必然事件的是( ) A.经过有交通信号灯的路口,遇到红灯 B.明天会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数解析:由生活常识知A 、B 、D 三项为随机事件,C 项为必然事件,故选C. 考点2 简单的概率计算例2(2015·河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )A.21 B.31 C.51 D.61 解析:向上一面的点数共有6种等可能的结果,分别是1,2,3,4,5,6;与点数3相差2的结果有两种,分别是1,5;因此概率为26=13.故选B.评注:当随机事件只需一个步骤完成或只涉及一个因素时,可以直接列举出所有等可能的结果,从中找出某事件可能发生的结果数,再利用概率计算公式求解.考点3 几何概型概率的计算例3(2015·铁岭)一只蚂蚁在如图1所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为( )A.13B.12C.34D.23解析:由正方形的中心对称性,知阴影部分的面积=正方形面积的12,所以蚂蚁停留在阴影部分的概率为12,故选B.评注:解此类题的一般思路为将面积进行转化,化不规则的面积为规则面积,再利用几何概型计算公式“()A P A 事件可能结果组成的图形面积所有可能结果组成的图形面积”进行计算.考点4 用列表法或画树状图计算概率例4(2015·玉林)现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x (1≤x ≤13,且x 为奇数或偶数).把牌洗匀后第一次抽一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.图1(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)解析:(1)列表如下:红2 红3 黑x红2 红2,红2红2,红3红2,黑x红3 红3,红2红3,红3红3,黑x黑x 黑x,红2黑x,红3黑x,黑x共有9种等可能的结果,其中两次抽得相同花色的结果有5种,所以P(两次抽得相同花色)=59.(2)甲乙两次抽得数字和是奇数的可能性一样大.用列表法说明:甲:x为奇数红2 红3黑x红2偶数奇数奇数红3奇数偶数偶数黑x奇数偶数偶数乙:x为偶数红2红3黑x红2偶数奇数偶数红3奇数偶数奇数黑x偶数奇数偶数由上表,可得甲乙两次抽得数字和是奇数的可能性一样大,均为49.评注:此题为两步试验概率题,需先画树状图或列表格列举出所有等可能的结果数,再利用概率计算公式求解.例5(2015·黄冈)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解析:(1)画树状图如下:由树状图,可知选手A 一共可以获得8种等可能的结果.(2)由(1)可知,评委给出选手A 所有可能的结果共有8种,其中选手A“晋级”的结果有4种,故P (A 晋级)=48=12. 评注:此题为三步试验概率题,只能通过画树状图列举出所有等可能的结果数,再利用概率计算公式求解.考点5 概率与统计综合题例6(2015·阜新)为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图2所示.根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了 名学生,两幅统计图中的m= ,n= ; (2)已知该校共有960名学生,请估计该校喜欢阅读A 类图书的学生约有多少人;(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男l 女的概率是多少.解析:(1)这次调查共抽查的学生人数为42÷35%=120. m=120-42-18-12=48.18120×100%=15%,所以n=15. 故分别填120,48,15. (2)960×35%=336(人).调查问卷你最喜欢阅读的图书类型是( ) A.文学名著 B.名人传记 C.科学技术 D.其他 (注:每人只选一项)n %40%35%B A DC 人数图书类型m181242DCBA6040200图2(3)将2名男生分别记作“男1”“男2”,列表如下:男1 男2 女男1 (男1,男2)(男1,女)男2 (男2,男1)(男2,女)女(女,男1)(女,男2)共有6种等可能的结果,其中选送的2名参赛同学是1男1女的结果有4种:(男1,女)(男2,女)(女,男1)(女,男2),所以P(1男1女)=46=23.考点6 概率与代数、几何的综合例7(2015·巴彦淖尔)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y.(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=6x的图象上的概率;(3)求小兰、小田各取一次小球所确定的数x,y满足y<6x的概率.解析:(1)列表如下:小兰小田1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)(2)由(1)知,点(x,y)共有16种等可能的结果,其中落在反比例函数y=6x的图象上的结果有(2,3),(3,2),共2种,所以P(落在反比例函数y=6x的图象上)=21=168.(3)满足y<6x的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(3,1),(4,1),共8种,所以P(y<6x)=81=162.误区点拨1.不识“或”字真面目例1有一个正六面体,6个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是 .错解:填13或13.剖析:错解不理解“或”字在此问题中的意义. 投掷这个正六面体一次,所有等可能发生的结果共有6种,向上一面的数字是2的倍数或3的倍数的结果有4种,因此概率为46=23.正解:填23.2.搞不清“放回”与“不放回”例2 一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有数字1,2,3,4.小林从布袋中随机摸取两个乒乓球,求取得的两个乒乓球的数字之积为奇数的概率.错解:列表如下:1 2 3 4共有16种等可能的结果,其中两个乒乓球上的数字之积为奇数的结果有4种,所以P (数字之积为奇数)=416=14. 剖析:小林从布袋中随机摸取两个乒乓球相当于两步试验中的“不放回”问题,错解认为是“放回”问题,导致错误.正解:列表如下:1 2 3 4 1 (1,2)(1,3) (1,4) 2 (2,1) (2,3)(2,4) 3 (3,1) (3,2) (3,4)4(4,1)(4,2)(4,3)共有12种等可能的结果,其中两个乒乓球上的数字之积为奇数的结果有2种,所以P (数字之积为奇数)=212=16. 跟踪训练1.(2015·龙岩)下列事件中,属于随机事件的是( ) A.63的值比8大B.购买一张彩票,中奖C.地球自转的同时也在绕日公转D.袋中只有5个黄球,摸出一个球是白球2. 已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )** B.2 C.3 D.43.(2015·株洲)从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b )在函数y=12x图象上的概率是( )A.12 B.13C.14D.16 4.(2015·湖州)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A .49B .13C .16D .195.(2015·荆门)在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是( )A.12B.14C.38D.586.(2015·深圳)从1,2,3这三个数中,任意抽取两个不同..数字组成一个两位数,则这个两位数能被3整除的概率是 .7.(2015·贵阳)“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖,若直角三角1 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4)3 (3,1) (3,2) (3,3) (3,4)4 (4,1) (4,2) (4,3) (4,4) 第7题图形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是.8.(2015·常州)甲、乙、丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.9. 随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价在40万元以上;B:车价在20~40万元;C:车价在20万元以下;D:暂时不购车)进行了统计,并将统计结果绘制成条形统计图和扇形统计图.请结合图中信息解答下列问题:(1)调查样本人数为__________,样本中B类人数百分比是__________,其所在扇形统计图中的圆心角度数为__________;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从这5个人中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.** 频率与概率基础盘点对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的规稳定性,这个固定数就是这个随机事件发生的概率. 因此我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.考点呈现考点1 频率与概率的关系例1(2015·巴中)下列说法正确的是()A.“打开电视,正在播放新闻节目”是必然事件B.“抛一枚硬币,正面朝上的概率为12”表示每抛两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在16附近D.为了解某种节能灯的使用寿命,选择全面调查解析:A项中的事件为随机事件,该项错误;B项,“抛一枚硬币,正面朝上”是随机事件,不能得出确定性结论,该项错误;C项,由频率与概率的意义知该项正确;D项中的调查具有破坏性,不适合全面调查,该项错误.综上,选C.考点2 用频率估计概率第9题图例2 (2015·本溪)在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()**个 B.20个 C.25个 D.30个解析:由频率估计概率,知从盒子中摸到黄球的概率约为0.2,则盒子中红球的个数为440.2=16(个).故选A.评注:根据频率与概率的关系,我们可以用试验次数较大时的频率估计概率,从而借助概率计算公式估计物体的数目.例3(2015·扬州)色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表:抽取的体检表数(n)50 100 200 400 500 800 1000 1200 1500 2000色盲患者的频数(m) 3 7 13 29 37 55 69 85 105 138色盲患者的频率(m/n)** ** ** ** ** ** ** ** ** **根据上表,估计在男性中男性患色盲的概率为 .(结果精确到0.01)解析:观察表格,知随着试验次数的增加,频率越来越稳定于0.07,由此可估计男性患色盲的概率约为0.07.评注:对于生活中的随机事件,或一些较为复杂的随机事件,无法用理论方法计算概率时,一般通过大量的重复试验或模拟试验,利用频率估计概率.误区点拨例在一个不透明的盒子里装有只有颜色不同的黑、白两种球若干个,(1)班做摸球试验,每位同学将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.下表是试验中的一组统计数据:摸球的次数(n)100 200 300 500 800 1000 3000摸到白球的次数(m)65 124 178 302 481 599 1803摸到白球的频率(mn)** ** ** ** ** ** **试估计摸到白球的概率是多少.错解:(0.65+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.61,所以估计摸到白球的概率约是0.61.剖析:观察表中数据可以发现,随着摸球次数的增加,摸到白球的频率越来越接近0.6,所以可以估计摸到白球的概率约是0.6. 错解对频率、概率的关系理解不透,误认为平均数更准确,导致错误.正解:0.6.跟踪训练1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.下列说法正确的是()A.“明天降雨的可能性是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的可能性是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的可能性是1%”表示买100张彩票一定会中奖D.“抛一枚正方体骰子,朝上的数为奇数的可能性大小是0.5”,表示如果这骰子抛很多很多次,那么平均每2次就有1次出现朝上的数为奇数3. 某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽到的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上一面的点数是44.(2015·兰州)在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数4648725065008 2499650007根据列表,可以估计出n的值是.5.(2015·广州)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少.第3题图参考答案** 随机事件与概率1. B2. A3. D4. D5. B6.137.158.(1)13.(2)共有6种等可能的结果,分别为:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,其中甲比乙先出场的结果有3种,所以P(甲比乙先出场)=36=12.9. 解:(1)50,20%,72°(2)略.(3)列表如下(①、②表示甲科室人员,1、2、3表示乙科室人员,“√”表示来自同一科室,“○”表示来自不同科室):①② 1 2 3①√○○○②√○○○1 ○○√√2 ○○√√3 ○○√√共有20种等可能的结果,其中来自不同科室的结果有12种,所以P(2人来自不同科室)=1220=35.** 频率与概率1. D2. D3. D4. 105.(1)14.(2)12.(3)16.。