圆锥曲线大题训练
- 格式:doc
- 大小:1.77 MB
- 文档页数:21
全国卷高考数学圆锥曲线大题(带答案)1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程.(Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足:①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ⋅= 求点G 的横坐标的取值范围.2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是,425=x 其左、右顶点分别 是A 、B ;双曲线1:22222=-b y a x C 的一条渐近线方程为3x -5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若=. 求证:.0=•4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa.(1)用半焦距c表示椭圆的方程及tanα;(2)若2<tanα<3,求椭圆率心率e的取值范围.5. 已知椭圆2222byax+(a>b>0)的离心率36=e,过点A(0,-b)和B(a,0)的直线与原点的距离为23(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由6. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA MCMB MA ==GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围7. 设R y x ∈,,j i,为直角坐标平面内x 轴.y 轴正方向上的单位向量,若jy i x b j y i x a)2(,)2(-+=++=,且8||||=+b a(Ⅰ)求动点M(x,y)的轨迹C 的方程;(Ⅱ)设曲线C 上两点A .B ,满足(1)直线AB 过点(0,3),(2)若OB OA OP +=,则OAPB 为矩形,试求AB 方程.8. 已知抛物线C :)0,0(),(2>≠+=n m n x m y 的焦点为原点,C 的准线与直线 )0(02:≠=+-k k y kx l 的交点M 在x 轴上,l 与C 交于不同的两点A 、B ,线段AB 的垂直平分线交x 轴于点N (p ,0).(Ⅰ)求抛物线C 的方程; (Ⅱ)求实数p 的取值范围;(Ⅲ)若C 的焦点和准线为椭圆Q 的一个焦点和一条准线,试求Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴AA 1在x 轴上.以A 、A 1为焦点的双曲线交椭圆于C 、D 、D 1、C 1四点,且|CD|=21|AA 1|.椭圆的一条弦AC 交双曲线于E ,设λ=EC AE ,当4332≤≤λ时,求双曲线的离心率e 的取值范围.x10. 已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; 若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.11. 如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于,A B两点,点Q 是点P 关于原点的对称点.(1) 设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;(2) 设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.12. 已知动点P (p ,-1),Q (p ,212p +),过Q 作斜率为2p 的直线l ,P Q 中点M 的轨迹为曲线C.(1)证明:l 经过一个定点而且与曲线C 一定有两个公共点; (2)若(1)中的其中一个公共点为A ,证明:AP 是曲线C 的切线; (3)设直线AP 的倾斜角为α,AP 与l 的夹角为β,证明:βα+或βα-是定值.13. 在平面直角坐标系内有两个定点12F F 、和动点P ,12F F 、坐标分别为)0,1(1-F 、)0,1(F 2,动点P 满足22|PF ||PF |21=,动点P 的轨迹为曲线C ,曲线C 关于直线y x =的对称曲线为曲线'C ,直线3-+=m x y 与曲线'C 交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,(1)求曲线C 的方程;(2)求m 的值。
1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。
(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。
圆锥曲线难题集锦1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.}2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.)3. 已知椭圆的离心率为,点在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.;4. 已知的顶点,在椭圆上,点在直线:上,且.\(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.—5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.¥}6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.:7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;—(2)当的面积等于时,求的值.【8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.【·9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.}10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.【11. 已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值若是,求出该值;若不是,说明理由.&:12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.,13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为的离心率;(2)若直线在轴上的截距为,且,.:14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.)15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.¥16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.,17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.#]18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,.求直线的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.{;20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点若过定点,求出定点的坐标;若不过定点,请说明理由.:21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;·(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.·22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且.(1)求直线的斜率;(2)若的面积为,求抛物线的方程.|—24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3)求证:是一个定值./25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.~(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.~26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.【27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.}\28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.;29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.…(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.!30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.~31. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.'32. 已知点为椭圆:的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.(1)求椭圆的方程;(2)设直线与轴交于,过点的直线与椭圆交于不同的两点,,若的取值范围.^33. 已知点100(,)P x y 为双曲线22221(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12P P 的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN【@34. 如图,已知圆G :222(2)x y r -+=是椭圆2216x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点. (1)求圆G 的半径r ;(2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切.—x35. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线221x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ⎛⎫⎪⎝⎭,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方 程;(2)求证:A M B 、、三点共线."36. 作斜率为13的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示),且P 在直线l 的左上方.(1)证明:PAB ∆的内切圆的圆心在一条定直线上; (2)若60oAPB ∠=,求PAB ∆的面积.《AxyOPB37. 如图,椭圆22122:1(0)x y C a b a b+=>>3x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E .①证明:MD ME ⊥;¥②记MAB ∆,MDE ∆的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =请说明理由.】38. 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设89FA FB =,求BDK ∆的内切圆M 的方程 .!39. (,)()o o o P x y x a ≠±是双曲线2222:1(0,0)x y E a b a b-=>>上一点,,M N 分别是双曲线E 的左、右顶点,直线,PM PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于,A B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.…40.已知以原点O 为中心,F 为右焦点的双曲线C 的离心率e =(1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.41.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. ~(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i)若12AF BF -=1AF 的斜率; (ii )求证:12PF PF +是定值.;42.如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程.(43.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的0k >,都有PQ PH ⊥若存在,求m 的值;若不存在,请说明理由.…44../45. 已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆=2其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得ODE ODG OEG S S S ∆∆∆===判断△DEG 的形状;若不存在,请说明理由.%46.如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D.(I )设12e =,求BC 与AD 的比值;(II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由《47. 平面内与两定点12(,0),(,0)(0)->A a A a a 连线的斜率之积等于非零常数m 的点的轨迹,加 上A 1、A 2两点所在所面的曲线C 可以是圆、椭圆或双曲线.(Ⅰ)求曲线C 的方程,并讨论C 的形状与m 的位置关系;(Ⅱ)当m=-1时,对应的曲线为C 1:对给定的(1,0)(0,)m ∈-+∞,对应的曲线为C2, ;设F 1、F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面 积2S m a =,若存在,求12tan F NF 的值;若不存在,请说明理由.:48.已知一条曲线C 在y 轴右边,每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有0FA FB •<若存在,求出m 的取值范围;若不存在,请说明理由。
圆锥曲线大题训练题1.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.2.(本小题满分12分)在直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.(Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |.4. 若动点(,)P x y 在曲线2221(0)4x y b b+=>上变化,则22x y +的最大值为多少?5. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。
5.(2007全国Ⅱ文、理)在直角坐标系xOy 中,以O 为圆心的圆与直线:相切(1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|PA|、|PO|、|PB|成等比数列,求PA PB ∙的取值范围。
6.(2007北京文、理)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的 外接圆外切,求动圆P 的圆心的轨迹方程.7.设椭圆22a x +22by =1(a >b >0)的左焦点为F 1(-2,0),左准线l 1与x 轴交于点N (-3,0),过点N 且倾斜角为30°的直线l 交椭圆于A 、B 两点.(1)求直线l 和椭圆的方程;(2)求证:点F 1(-2,0)在以线段AB 为直径的圆上;(3)在直线l 上有两个不重合的动点C 、D ,以CD 为直径且过点F 1的所有圆中,求面积最小的圆的半径长.4y 3x =-8.设椭圆2222:1(0)x y C a b a b+=>>过点M,且着焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB =,证明:点Q 总在某定直线上9.已知椭圆的中心在原点,一个焦点是)0,2(F ,且两条准线间的距离为)4(>λλ。
圆锥曲线大题专项练习类型一:直接求解1、(2015·湖南文,20)已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b2=1(a >b >0)的一个焦点,C 1与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC →与BD →同向.(1)求C 2的方程;(2)若|AC |=|BD |,求直线l 的斜率.2、(离心率)[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . 3、(共圆)[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.4、(交点切线)[2014·重庆卷] 如图14所示,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.5、(切线,不对称)[2014·天津卷] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|. (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过原点O 的直线l 与该圆相切,求直线l 的斜率.6、[2014·北京卷] 已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线 AB 与圆x 2+y 2=2的位置关系,并证明你的结论.类型二:证明定值1、(理)(2015·洛阳市期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,一个焦点与抛物线y 2=4x 的焦点重合,直线l :y =kx +m 与椭圆C 相交于A ,B 两点.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,k OA ·k OB =-b 2a 2,判断△AOB 的面积是否为定值?若是,求出定值,若不是,说明理由.2、(理)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.3、[2014·江西卷] 如图17所示,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0xa 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C上移动时,|MF ||NF |恒为定值,并求此定值.4、(多曲线,面积比)[2014·安徽卷] 如图14,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点,记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值.5、【2012高考江苏19】如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和32e ⎛⎫⎪ ⎪⎝⎭,都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i )若1262AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.类型三:求证恒过定点1、(文)(2014·东北三校二模)已知圆M :x 2+(y -2)2=1,直线l :y =-1,动圆P 与圆M 相外切,且与直线l 相切.设动圆圆心P 的轨迹为E .(1)求E 的方程;(2)若点A ,B 是E 上的两个动点,O 为坐标原点,且OA →·OB →=-16,求证:直线AB 恒过定点.2、2013·陕西卷] 已知动圆过定点A(4,0),且在y 轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知点B(-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明直线l 过定点.类型四:求最值或者范围1、(理)(2014·山东理,21)已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|F A |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形.(1)求C 的方程;(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E , (ⅰ)证明:直线AE 过定点,并求出定点坐标;(ⅱ)△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.2、(文)(2015·辽宁葫芦岛市一模)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆C 的方程;(2)直线l :y =kx +t (t ≠0)与椭圆C 交于M 、N 两点,线段MN 的垂直平分线与y 轴交点P ⎝⎛⎭⎫0,-14,求△MON (O 为坐标原点)面积的最大值.3、(理)(2015·浙江理,19)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).4、[2014·新课标全国卷Ⅰ] 已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.5、[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点);②当|TF ||PQ |最小时,求点T 的坐标.6、[2014·浙江卷] 如图16,设椭圆C :x 2a 2+y 2b2=1(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l l 1的距离的最大值为a -b .7、【2012高考真题浙江理21】(本小题满分15分)如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程.8、已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;(Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.类型五:证明存在1、(2014·福建理,19)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线l 1、l 2于A ,B 两点(A 、B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.2、【2015广东文理.20.】已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由3、【2015全国新课标1理.20】(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由。
圆锥曲线大题综合1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.2.(2022秋·广东江门·高二校考期中)已知抛物线22(0)y px p =>的焦点F 到其准线的距离为4.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .4.(2022秋·广东江门·高二校考期中)椭圆C :22221(0)x y a b a b +=>>2.(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.5.(2022秋·广东江门·高二校考期中)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,2a =.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :22221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点()11,0F -,圆()222116F x y -+=:,点Q 在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.10.(2022秋·广东广州·高二校联考期中)已知两定点()4,0A -,()1,0B -,动点P 满足2PA PB =,直线:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.12.(2022秋·广东江门·高二校考期中)动点N (x ,y )与定点F (1,0)的距离和N 到定直线2x =的距离的比是常数22.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l 的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a b Γ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;15.(2022秋·广东江门·高二校考期中)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在椭圆C 上,点F 是椭圆C 的右焦点.(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于M ,N 两点,则在x 轴上是否存在一点P ,使得直线l 绕点F 无论怎样转动都有0PM PN k k +=?若存在,求出点P 的坐标;若不存在,请说明理由.16.(2022秋·广东广州·高二南海中学校考期中)在平面直角坐标系xOy 中,已知点()4,0A -,()4,0B ,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.17.(2022春·广东汕头·高二校考期中)已知椭圆C :()222210x y a b a b +=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆2222:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.19.(2022春·广东广州·高二二师番禺附中校考期中)已知点A的坐标为()-,点B的坐标为(),且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :22221(0)x y a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.21.(2022春·广东深圳·高二校考期中)已知抛物线()2:20C x py p =>的焦点为F ,过F 的直线与抛物线C 交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为2,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆221:1164x y E +=,()22222:10,4x y E a b a a b+=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).24.(2022秋·广东广州·高二校联考期中)如图,中心在原点O 的椭圆Γ的右焦点为()F ,长轴长为8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()222210x y a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,B ⎛ ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点)P,圆Q :(2216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M 到A (﹣2,0)和到B (2,0)的斜率之积为﹣14.(1)求曲线Γ的轨迹方程;(2)若点P (x 0,y 0)(y 0≠0)为直线x =4上任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()2222:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.圆锥曲线大题综合答案1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .则直线AB 的方程为2,y x =-设()()1122,,,A x y B x y ,联立228y x y x=-⎧⎨=⎩,整理可得21240xx -+=,所以1212x x +=,由抛物线的性质可得12||12416AB x x p =++=+=.3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C 经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点1,圆2,点在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.的比是常数2.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.【详解】(1)因为12||22F F c ==,则c =1,因为2222,3a b a c ==-=,所以椭圆Γ的方程22143x y +=;(2)证明:椭圆Γ的左、右焦点分别为12(1,0),(1,0)F F -,①当直线l 垂直于x 轴时,因为直线l 与椭圆Γ相切,所以直线l 的方程为2x =±,此时点12,F F 到直线l 的距离一个为11d =,另一个为23d =,所以123d d =,②当直线l 不垂直于x 轴时,设直线l 的方程为y =kx +b ,联立2234120y kx b x y =+⎧⎨+-=⎩,消去y ,整理得222(34)84120k x kbx b +++-=,所以,222222644(34)(412)16(9123)k x k b k b ∆=-+-=+-,因为直线l 与椭圆Γ相切,Δ=0,所以,2234b k =+,因为1(1,0)F -到直线l 的距离为12||1-=+k b d k ,2(1,0)F 到直线l 的距离为22||1+=+k b d k ,所以,222221222222|||||||(34)||33|311111k b k b k b k k k d d k k k k k-+--++=⋅====+++++,所以点12,F F 到直线l 的距离之积为定值,且定值为3.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;【详解】(1)因为PA ,PB 为圆M 的切线,所以90PBM PAM ∠=∠=︒,设PM 的中点为N ,所以点A ,B 在以PM 为直径的圆N 上,又点A ,B 在圆M 上,所以线段AB 为圆N 和圆M 的公共弦,因为圆22:430M x x y -++=①,AB的中点设为F点,由HF始终垂直干当P点在x轴上时,F点与H点的重合,M,得HM的中点坐标为⎛(2,0)⎝圆去掉点M,圆C上,点F是椭圆C的右焦点.(1)求椭圆C的方程;(2)过点F的直线l与椭圆C交于M,N两点,则在x轴上是否存在一点P,使得直线l绕点F无论怎样转k k+=?若存在,求出点P的坐标;若不存在,请说明理由.动都有0PM PN,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆22:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :221(0)a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()2210a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为22,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆1:1164x y E +=,()222:10,4E a b a a b +=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ 与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()2210a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,2B ⎛- ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()22:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.)27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点P ,圆Q :216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.(1)因为N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M ,28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M到A(﹣2,0)和到B(2,0)的斜率之积为﹣1 4.(1)求曲线Γ的轨迹方程;(2)若点P(x0,y0)(y0≠0)为直线x=4上任意一点,PA,PB交椭圆Γ于C,D两点,求四边形ACBD 面积的最大值.【点睛】熟练掌握直线与圆锥曲线位置关系及函数单调性是解题关键30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()22:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.。
解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
圆锥曲线大题综合----学而思黎根飞老师一、轨迹方程(10道)1.动圆P 与定圆22:4320B x y y +--=相内切,且过点()02A -,,求动圆圆心P 的轨迹方程.【解析】 如图所示,设动圆P 的半径为r ,圆B 的方程可化为()22236x y +-=.又动圆P 过点()02A -,,从而r PA =, 6PB PA +=.则点P 的轨迹是以A ,B 为焦点的椭圆, 且26a =,24c =, 即3a =,2c =,b =.故所求点P 的轨迹方程为22195y x +=.2.求到两不同定点距离之比为一常数(0)λλ≠的动点的轨迹方程.【解析】 以两不同定点A B ,所在的直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系.设()P x y ,是轨迹上任一点,(0)(0)(0)A a B a a ->,,,. 由题设得PA PB λ==∴22222(1)()(1)20x y a ax λλ-++++=.当1λ=时,方程0x =表示一条直线. 当1λ≠时,方程为2222221211a x a y λλλλ⎛⎫+⎛⎫++= ⎪ ⎪--⎝⎭⎝⎭,表示一个圆. 所以当1λ=时,点的轨迹是一条直线;当1λ≠时,点的轨迹是一个圆.3.已知定点(30),B ,点A 在圆221x y +=上运动,M 是线段AB 上的一点,且13AM MB =,则点M 的轨迹方程是___________.【解析】 设11()(),,,M x y A x y .∵13AM MB = ,∴111()(3)3,,x x y y x y --=--,∴111(3)313x x x y y y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,∴1141343x x y y ⎧=-⎪⎪⎨⎪=⎪⎩.∵点A 在圆221x y +=上运动,∴22111x y +=,∴22441133x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即2239416x y ⎛⎫-+= ⎪⎝⎭,∴点M 的轨迹方程是2239416x y ⎛⎫-+= ⎪⎝⎭.4.已知点A B ,分别是射线()1:0l y x x =≥,()2:0l y x x =-≥上的动点,O 为坐标原点,且OAB ∆的面积为定值2,求线段AB 中点M 的轨迹C 的方程.【解析】 由题可设()11A x x ,,()22B x x -,,()M x y ,,其中1200x x >>,.则121222x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩,①,②∵OAB ∆的面积为定值2,∴)121211222OAB S OA OB x x ∆=⋅===.22-①②,消去12x x ,,得:222x y -=.由于1200x x >>,,∴0x >,所以点M 的轨迹方程为222x y -=(0x >).5.一条变动的直线l 与椭圆24x +22y =1交于P 、Q 两点,M 是l 上的动点,满足关系2MP MQ ⋅=.若直线l 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.【解析】 设动点(,)M x y ,动直线l :y x m =+,并设11(,)P x y ,22(,)Q x y 是方程组22,240y x m x y =+⎧⎨+-=⎩的解,消去y ,得2234240x mx m ++-=, 其中221612(24)0m m ∆=-->,∴m <<且1243m x x +=-,212243m x x -=,又∵1MP x =-,2MQ x =-.由2MP MQ ⋅=,得121x x x x -⋅-=, 也即21212()1x x x x x x -++=,于是有22424133mx m x -++=. ∵m y x =-,∴22243x y +-=.由22243x y +-=,得椭圆222177x x +=夹在直线y x =且不包含端点.由22243x y +-=-,得椭圆2221x y +=.6. 已知点(30)P -,,点A 在y 轴上,点Q 在x 轴的正半轴上,且0PA AQ ⋅=.点M 在直线AQ 上,满足32AM MQ =-.当点A 在y 轴上移动时,求动点M 的轨迹C 的方程.【解析】 设点M 的坐标为()x y ,,则由32AM MQ =- 得(0)2yA -,由0PA AM ⋅= 得23(3)()0422y x y y x -⋅=⇒=,,∴所求动点M 的轨迹C 的方程为24y x =.7.已知ABC ∆中,A B C ∠∠∠,,所对的边分别为a b c ,,,且a c b >>成等差数列,2AB =,求顶点C 的轨迹方程.【解析】 由2c =,2a b c +=得:4a b +=,以AB 所在直线为x 轴,以AB 的中垂线所在的直线为y 轴建立直角坐标系,则A 点坐标为(10)-,,B 点坐标为(10),, 设()C x y ,,则有4AC BC +=,即4+=,4x =-,两边再次平方化简得:223412x y +=;要构成三角形,必须满足C 点不在x 轴上,即0y ≠,故2x ≠±, 又a b >,即BC AC >>,解得0x <, 故所求的C 点的轨迹方程为223412x y +=(0x <且2)x ≠-.8.设()0A a -,,()0B a ,()0a >,已知直线MA 与MB 的斜率乘积为定值m ,求动点M 的轨迹方程,并根据m 地不同值讨论曲线的形状.【解析】 设动点M 的坐标为()x y ,,则直线MA 与MB 的斜率分别为MA yk x a=+, MB yk x a=-,依题意,得 222MA MBy y y k k m x a x a x a ⋅=⋅==+--, 化简,得222mx y a m -=,即为所求. 显然,当0m =时,方程表示直线0y =; 当0m <时,方程可化为22221x y a a m +=;1m =-时,方程表示圆222x y a +=; 1m <-时,方程表示焦点在y 轴上的椭圆; 10m -<<时,方程表示焦点在x 轴上的椭圆.当0m >时,方程可化为22221x y a a m-=,方程表示焦点在x 轴上的双曲线.9.如图,过()24P ,作互相垂直的直线1l 、2l ,若1l 交x 轴于点A ,2l 交y 轴于点B ,求线段AB 的中点轨迹方程.【解析】 解法一:(直接法)设()M x y ,是所求轨迹上任意一点,则A 、B 两点的坐标分别为()20A x ,、()02B y ,,∵M 为线段AB 的中点,连接PM ,∵PA PB ⊥,∴2PM AB =,∴=250x y +-=,即为所求轨迹方程. 解法二:(直接法)设M 的坐标为()x y ,,∵M 为线段AB 的中点,∴A B 、两点的坐标分别为()20A x ,、()02B y ,,∵PA PB ⊥,∴1PA PB k k ⋅=-,即()404211220yx x --⋅=-≠-2-整理得:()2501x y x +-=≠,当1x =时,A 、B 两点的坐标分别为()20A ,、()04B ,,线段AB 的中点为()12,仍满足250x y +-=.综上所述,所求轨迹方程为250x y +-=. 解法三:(直接法)设M 的坐标为()x y ,,∵PA PB ⊥,OA OB ⊥,且M 为线段AB 的中点,∴四边形OAPB 是圆内接四边形,且M 为圆心,∴OM MP =,∴x=,整理得:250x y +-=,即为所求轨迹方程. 解法四:(相关点法)设M 的坐标为()x y ,,A 、B 两点的坐标分别为()0A a ,,()0B b ,,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩,∴22a xb y =⎧⎨=⎩, ∵PA PB ⊥,∴222PA PB AB +=,∴()()()()22222222422422x y x y -+++-=+,整理得:250x y +-=,即为所求轨迹方程. 解法五:(参数法)设直线1l 的方程为:()()420y k x k -=-≠,因为12l l ⊥,且2l 过点()24P ,,所以2l 的方程为:()142y x k -=--,所以420A k ⎛⎫- ⎪⎝⎭,、204B k ⎛⎫+ ⎪⎝⎭,,设A B 、的中点M 的坐标为()x y ,,则42022242k x k y ⎧-+⎪=⎪⎪⎨⎪++⎪=⎪⎩,即2112x k y k⎧=-⎪⎪⎨⎪=+⎪⎩消去参数k 得:250x y +-=,即为所求轨迹方程.10.已知动点P 与双曲线221x y -=的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值为13-,求动点P 的轨迹方程.【解析】∵221x y-=,∴c . 设1PF m =,2PF n =,则2m n a +=(常数0a >),所以点P 是以12F F 、为焦点,2a 为长轴的椭圆,22a c>=,∴a >. 由余弦定理,有()222222121212224cos 122m n F F m n mn F F a F PF mn mn mn +=+---===-∠.∵222m n mn a +⎛⎫= ⎪⎝⎭≤,∴当且仅当m n -时,mn 取得最大值2a .此时12cos F PF ∠取得最小值22241a a --.由题意2224113a a --=-,解得23a =. ∴222321b a c =-=-=.∴P 点的轨迹方程为2213x y +=.二、弦长面积(30道)11.已知椭圆22:14y C x +=,过点(03)M ,的直线l 与椭圆C 相交于不同的两点A 、B .⑴若l 与x 轴相交于点N ,且A 是MN 的中点,求直线l 的方程;⑵设P 为椭圆上一点, 且OA OB OP λ+=(O 为坐标原点).求当AB <时,实数λ的取值范围.【解析】 ⑴设11()A x y ,,因为A 为MN 的中点,且M 的纵坐标为3,N 的纵坐标为0,所以, 又因为点11()A x y ,在椭圆C 上所以221114y x +=,即219116x +=,解得1x =,则点A的坐标为342⎛⎫ ⎪ ⎪⎝⎭,或42⎛⎫3 ⎪ ⎪⎝⎭,, 所以直线l的方程为7210y -+=或7210y +-=.⑵设直线AB 的方程为3y kx =+或0x =,11()A x y ,,22()B x y ,,33()P x y ,,当AB 的方程为0x =时,4AB => 当AB 的方程为3y kx =+时:由题设可得A 、B 的坐标是方程组22314y kx y x =+⎧⎪⎨+=⎪⎩的解,消去y 得22(4)650k x kx +++=,所以22(6)20(4)0k k =-+>△即25k >,则12264k x x k -+=+,12254x x k ⋅=+,1212224(3)(3)4y y kx kx k +=+++=+,因为AB =<<,解得216813k -<<, 所以258k <<.因为OA OB OP λ+=,即112233()()()x y x y x y λ+=,,,,所以当0λ=时,由0OA OB +=,得122604k x x k -+==+,1222404y y k +==+, 上述方程无解,所以此时符合条件的直线l 不存在;当0λ≠时,12326(4)x x k x k λλ+-==+,123224(4)y y y k λλ+==+, 因为点33()P x y ,在椭圆上,所以222261241(4)4(4)k k k λλ⎡⎤⎡⎤-+=⎢⎥⎢⎥++⎣⎦⎣⎦, 化简得22364k λ=+,因为258k <<,所以234λ<<,132y =则()22λ∈-,.综上,实数λ的取值范围为()22-,.12.设椭圆22221(0)x y C a b a b+=>>∶,其相应于焦点(20)F ,的准线方程为4x =.⑴求椭圆C 的方程;⑵已知过点()120F -,倾斜角为θ的直线交椭圆C 于A B ,两点,求证:22cos AB θ=-;⑶过点()120F -,作两条互相垂直的直线分别交椭圆C 于A B 、和D E 、,求AB DE +的最小值.【解析】 ⑴由题意得:222224c a c a b c=⎧⎪⎪=⎨⎪⎪=+⎩∴2284a b ⎧=⎪⎨=⎪⎩∴椭圆C 的方程为22184x y +=⑵方法一:由⑴知()120F -,是椭圆C的左焦点,离心率e 设l 为椭圆的左准线.则4l x =-∶作1AA l ⊥于1A ,1BB l ⊥于1B ,l 与x 轴交于点H (如图) ∵点A 在椭圆上∴11AF =)11cos 2F H AF θ=+1cos θ=∴1AF =,同理1BF =∴1122cos AB AF BF θ=+=+=-. 方法二:当π2θ≠时,记tan k θ=,则直线AB 方程为(2)y k x =+将其代入方程:2228x y +=得:2222(12)88(1)0k x k x k +++-= 设()11A x y ,,()22B x y , ,则1x ,2x 是此二次方程的两个根. ∴2122812k x x k +=-+,()21228112k x x k -=+AB ===)22112k k +==+① B A∵22tan k θ=,代入①式得AB =②当π2θ=时,AB =仍满足②式.∴AB = ⑶设直线AB 的倾斜角为θ,由于DE AB ⊥,由⑵可得AB =,DE =22sin 24AB DE θ+===+ 当π4θ=或3π4θ=时,AB DE +取得最小值3.13.设A 、B分别是直线5y x =和5y x =-上的两个动点,并且AB = 点P 满足OP OA OB =+.记动点P 的轨迹为C .⑴ 求轨迹C 的方程;⑵ 若点D 的坐标为()016,,M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.【解析】 ⑴ 设()P x y ,,∵A ,B分别为直线5y x =和5y x =-上的点,故可设11A x x ⎛⎫ ⎪ ⎪⎝⎭、22B x ⎛⎫⎪ ⎪⎝⎭,. ∵OP OA OB =+ ,∴)1212x x x y x x =+⎧⎪⎨-⎪⎩,∴12122x x x x x y +=⎧⎪⎨-=⎪⎩又AB =∴()()2212124205x x x x -++=. ∴22542045y x +=, 即轨迹C 的方程为2212516x y +=.⑵ 设()N s t ,,()M x y ,,则由DM DN λ=,可得()()1616x y s t λ-=-,,.故x s λ=,()1616y t λ=+-. ∵点M 、N 在曲线C 上, ∴()2222212516161612516s t t s λλλ⎧+=⎪⎪⎨-+⎪+=⎪⎩ 消去s 得()()22216161611616t t λλλ--++=.由题意知0λ≠,且1λ≠, 得17152t λλ-=. 又4t ≤, ∴171542λλ-≤,解得()35153λλ≠≤≤. 故实数λ的取值范围是()35153λλ≠≤≤.14.已知:圆221x y +=过椭圆22221x y a b+=(0a b >>)的两焦点,与椭圆有且仅有两个公共点;直线y kx m =+与圆221x y +=相切,与椭圆22221x y a b+=相交于A ,B 两点.记OA OB λ=⋅ ,且2334λ≤≤.(1)求椭圆的方程;(2)求k 的取值范围;(3)求OAB △的面积S 的取值范围.【解析】 (Ⅰ)由题意知22c =,1c =,因为圆与椭圆有且只有两个公共点,从而1b =.故a所求椭圆方程为2212x y +=(Ⅱ)因为直线l :y kx m =+与圆221x y +=相切所以原点O 到直线l1=,即:221m k =+又由2212y kx m x y =+⎧⎪⎨+=⎪⎩,()222124220k x kmx m +++-=设()11A x y ,,()22B x y ,,则122412km x x k -+=+,21222212m x x k -=+()()22121212121OA OB x x y y k x x km x x m λ=⋅=+=++++22112k k λ+=+,且2334λ≤≤,故2112k ≤≤, 即k的范围为1122⎡⎤--⎢⎢⎥⎣⎦⎣⎦,∪, (Ⅲ)()()()()222221212121214AB x x y y k x x x x ⎡⎤=-+-=++-⎣⎦()222221k =-+,由2112k ≤≤,得:423AB ≤ 1122S AB d AB ==,所以:243S ≤≤ 15.已知点M 、N的坐标分别是()0、)0,直线PM 、PN 相交于点P ,且它们的斜率之积是12-.⑴ 求点P 的轨迹方程;⑵ 直线:l y kx m =+与圆22:1O x y +=相切,并与点P 的轨迹交于不同的两点A 、B.当43AB ⎫∈⎪⎪⎣⎭,时,求OA OB ⋅ 的取值范围. 【解析】 ⑴设()P x y ,,则(12MP NP k k x ⋅==-≠,整理得(2212x y x +=≠⑵∵圆O 与直线l 相切,1=,即221m k =+当直线l 过M 或N点时,有0k m +=,由2201k m m k ⎧+=⎪⎨=+⎪⎩,,解得1k =±, ∵直线l 与点P 的轨迹交于不同的两点A 、B ,且M 、N 不在点P 的轨迹上, ∴1k ≠± ①由2212x y y kx m ⎧+=⎪⎨⎪=+⎩消去y ,得222(12)4220k x kmx m +++-=,设11()A x y ,,22()B x y ,,122412km x x k +=-+,21222212m x x k -⋅=+,AB ===将221m k =+代入上式得AB =又43AB ⎫∈⎪⎪⎣⎭,,424238()1624()19k k k k +<++≤,得 424242428()164()198()34()12k k k k k k k k ⎧+<⎪++⎪⎨+⎪⎪++⎩,,≥22220(2)(1)0(21)(23)k k k k ⎧+-<⎪⇒⎨-+⎪⎩,,≥2112k ⇒<≤.② 由①和②得2112k <≤,22121212121212()()(1)()+OA OB x x y y x x kx m kx m k x x km x x m ⋅=+=+++=+++22222224(1)1212m mkk km m k k--=+⋅+⋅+++,将221m k =+代入,得 222111112221k OA OB k k +⎛⎫⋅==+ ⎪++⎝⎭,∵2112k <≤∴2334OA OB ⎛⎤⋅∈ ⎥⎝⎦,.16.已知圆C 的方程为224x y +=,过点(24)M ,作圆C 的两条切线,切点分别为A 、B 直线恰好经过椭圆2222:1(0)x y T a b a b+=>>的右顶点和上顶点.⑴ 求椭圆T 的方程⑵已知直线:0)l y kx k =+>与椭圆T 相交于P ,Q 两点,O 为坐标原点,求OPQ △面积的最大值.【解析】 ⑴由题意:一条切线方程为:2x =,设另一条切线方程为:4(2)y k x -=-则2=,解得:34k =,此时切线方程为:3542y x =+切线方程与圆方程联立得:65x =-,85y =,则直线AB 的方程为22x y +=令0x =,解得1y =,∴1b =;令0y =,得2x =,∴2a = 故所求椭圆方程为2214x y +=⑵联立221.4y kx x y ⎧=+⎪⎨+=⎪⎩整理得22(14)80k x +++=,令11()P x y ,,22()Q x y ,,则12214x x k -+=+,122814x x k=+,()2232(14)0k =-+>△,即:2210k ->原点到直线l的距离为d =,12PQ x =-,∴1212OPQS PQ d x =⋅=-==△1==当且仅当2k =时取等号,则OPQ △面积的最大值为117.如图,已知定点(10)F -,,(10)N ,,以线段FN为对角线作周长是边形MNEF .平面上的动点G 满足2OG =(O 为坐标原点). ⑴ 求点E 、M 所在曲线1C 的方程及动点G 的轨迹2C 的方程;⑵ 已知过点F 的直线l 交曲线1C 于点P 、Q ,交轨迹2C 于点A 、B,若(||AB ∈,求NPQ △的内切圆的半径的取值范围.【解析】 ⑴因为四边形MNEF为周长为E 到点F 、N的距离之和是又2NF =<,故由椭圆的定义知,曲线1C为椭圆,a 1c =,1b =.故曲线1C 的方程为2212x y +=.由2OG =,动点G 的轨迹为以坐标原点O 为圆心,2为半径的圆,其方程为224x y +=.⑵当l x ⊥轴时,将1x =-代入224x y +=得y =所以(AB =, 所以直线l 不垂直于x 轴,设直线l 的方程为(1)y k x =+, 圆2C 的圆心(00)O ,到直线l的距离d =,由圆的几何性质得,||AB ===由(||AB ∈,解得213k >. 联立方程22(1)12y k x x y =+⎧⎪⎨+=⎪⎩,消去x 得2212210y y k k ⎛⎫+--= ⎪⎝⎭.设11()P x y ,,22()Q x y ,,NPQ 内切圆半径为R , 则1222221122k ky y k k +==++,2122211122k y y k k-=-=++,因为()121122NF y y R PN PQ QN ⋅-=⋅⋅++, 其中,2NF =,PN PQ QN ++=,所以12R y -.而12y y -=== 因为213k >,所以221161(12)25k ->+,所以,NPQ △的内切圆半径的取值范围为2152⎛⎫⎪⎝⎭,.18.已知1F 、2F 是椭圆22221(0)x y a b a b +=>>的左、右焦点,且离心率12e =,点P 为椭圆上的一个动点,12PF F △的内切圆面积的最大值为4π3. ⑴ 求椭圆的方程;⑵ 若A 、B 、C 、D 是椭圆上不重合的四个点,满足向量1F A 与1FC共线,1F B 与1F D 共线,且0AC BD ⋅=,求AC BD + 的取值范围.【解析】 ⑴由几何性质可知:当12PF F △内切圆面积取最大值时,即12PF F S △取最大值,且12max 1()22PF F S c b bc ⋅⋅=△. 由24ππ3r =得3r =又1222PF F C a c =+△为定值,12122PF F PF F rS C =△△,综上得22bc a c =+;又由12c e a ==,可得2a c =,即b =,经计算得2c =,b =4a =, 故椭圆方程为2211612x y +=.①⑵当直线AC 与BD 中有一条直线垂直于x 轴时,6814AC BD +=+=. ②当直线AC 斜率存在但不为0时,设AC 的方程为:(2)y k x =+,由22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222(34)1616480k x k x k +++-=,代入弦长公式得:2224(1)34k AC k +=+ ,同理由221(2)11612y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 可得2222111341616480x x k k k ⎛⎫+++-= ⎪⎝⎭, 代入弦长公式得:2224(1)34k BD k +=+ ,所以2222222168(1)16811(34)(43)121(1)k AC BD k k k k ++==+++-++ 令21(01)1t k =∈+,,则24912124t t ⎛⎤-++∈ ⎥⎝⎦,,所以96147AC BD ⎡⎫+∈⎪⎢⎣⎭,,由①②可知,AC BD + 的取值范围是96147⎡⎤⎢⎥⎣⎦,.19.已知点A是圆(221:16F x y ++=上任意一点,点2F 与点1F 关于原点对称.线段2AF 的中垂线m 分别与12,AF AF 交于M 、N 两点.⑴ 求点M 的轨迹C 的方程;⑵ 设不过原点O 的直线l 与该椭圆交于P 、Q 两点,满足直线OP 、PQ 、OQ 的斜率依次成等比数列,求OPQ △面积的取值范围.【解析】 ⑴由题意得,()10F,)20F ,圆1F 的半径为4,且2MF MA =从而121112||||||||||4||MF MF MF MA AF F F +=+==>∴点M 的轨迹是以1F 、2F 为焦点的椭圆,其中长轴24a =,得到2a =,焦距2c =1b =, 椭圆方程为:2214x y +=⑵由题意可知,直线l 的斜率存在且不为0,故可设直线l 的方程为(0)y kx m m =+≠,11()P x y ,,22()Q x y ,,由22440y kx m x y =+⎧⎨+-=⎩,消去y 得222(14)8km 4(1)0k x x m +++-=, 则22222226416(14)(1)16(41)0k m k m m k m =-+-=-+>△,且122814km x x k -+=+,21224(1)14m x x k -=+,故2212111212()()()y y kx m kx m k x x km x x m =++=+++, 因为直线OP ,PQ ,OQ 的斜率依次成等比数列,所以2221212121212()y y k x x km x x m k x x x x +++⋅==,即22228014k m m k-+=+,又0m ≠, 所以214k =,即12k =±, 由于直线OP ,OQ 的斜率存在,且0>△,得202m <<且21m ≠, 原点到O 到PQ的距离d,1122OPQ S PQ d =⋅⋅=△12m ==202m <<∵且21m ≠,∴OPQ S △的取值范围为(01),.综上所述OPQ S △的取值范围为(]01,.20.已知椭圆C :22221x y a b +=(0a b >>)的离心率2e =,以坐标原点O 为圆心,半径为c (c 为椭圆的半焦距)的圆与直线l:3y =+相切.(1)求椭圆的方程;(2)若直线l 与圆O 的公共点为M ,与椭圆C 的公共点为N ,求OMN △的面积.【解析】 根据题意,圆的方程为222x y c +=.于是可得圆心()00O ,到直线l30y +-=的距离为c , 2分c =,c =.又∵c e a ==,∴2a =. 4分 ∴2221b a c =-=.6分 ∴椭圆的方程为2214x y +=.6分(Ⅱ)由22314y x y ⎧=+⎪⎨+=⎪⎩,,得29320x -+=.8分设()11N x y ,,则13x =,113y =,即直线与椭圆相切,N 为切点.∴3ON =.又OM =∴3MN ===, 10分∴112232OMN S MN OM =⋅⋅=⨯=△.12分21.已知点()44P ,,圆C :()()2253x m y m -+=<与椭圆E :22221x y a b+=(0a b >>)有一个公共点()31A ,,1F ,2F 分别是椭圆的左、右焦点,直线1PF 与圆C 相切. (Ⅰ)求m 的值与椭圆E 的方程;(Ⅱ)设Q 为椭圆E 上的一个动点,求AP AQ ⋅的范围.【解析】 (Ⅰ)点A 代入圆C 方程,得()2315m -+=.∵3m <,∴1m =圆C :()2215x y -+=.设直线1PF 的斜率为k ,则1PF :()44y k x =-+,即440kx y k --+=. ∵直线1PF 与圆C=.解得112k =,或12k =. 当112k =时,直线1PF 与x 轴的交点横坐标为3611,不合题意舍去. 当12k =时,直线1PF 与x 轴的交点横坐标为4-, ∴4c =.()140F -,,()240F ,.122a AF AF =+==,a =,218a =,22b =.椭圆E 的方程为:221182x y += (Ⅱ)()13AP = ,,设()Q x y ,,()()33136AP AQ x y x y ⋅=-+-=+-.∵221182x y +=,即()22318x y +=, 而()22323x y x y +⋅≥,∴18618xy -≤≤.则()()22336186x y x y xy xy 2+=++=+的取值范围是[]036,3x y +的取值范围是[]66-,.∴36AP AQ x y ⋅=+-的取值范围是[]120-,22. 已知椭圆22:14y C x +=,过点(01)M ,的直线l 与椭圆C 相交于两点A 、B .⑴若l 与x 轴相交于点P ,且P 为AM 的中点,求直线l 的方程;⑵设点102N ⎛⎫ ⎪⎝⎭,,求NA NB + 的最大值.【解析】 ⑴设11()A x y ,,因为P 为AM 的中点,且P 的纵坐标为0,M 的纵坐标为1,所以1102y +=,解得11y =-,又因为点11()A x y ,在椭圆C 上,所以221114y x +=,即21114x +=,解得12x =,则点A的坐标为1⎫-⎪⎪⎝⎭或1⎛⎫- ⎪ ⎪⎝⎭,所以直线l的方程为330y -+=,或330y +-=.⑵设11()A x y ,,22()B x y ,,则1112NA x y ⎛⎫=- ⎪⎝⎭ ,,2212NB x y ⎛⎫=- ⎪⎝⎭ ,,所以1212(1)NA NB x x y y +=++-,,则NA NB +=,当直线AB 的斜率不存在时,其方程为0x =,(02)A ,,(02)B -,,此时1NA NB +=;当直线AB 的斜率存在时,设其方程为1y kx =+, 由题设可得A 、B 的坐标是方程组22114y kx y x =+⎧⎪⎨+=⎪⎩的解,消去y 得22(4)230k x kx ++-=所以22(2)12(4)0k k =++>△,12224kx x k -+=+,则121228(1)(1)4y y kx kx k +=+++=+, 所以22222222281211144(4)k k NA NB k k k --⎛⎫⎛⎫+=+-=+ ⎪ ⎪+++⎝⎭⎝⎭≤, 当0k =时,等号成立,即此时NA NB +取得最大值1.综上,当直线AB 的方程为0x =或1y =时,NA NB +有最大值1.23.如图,四边形ABCD 的顶点都在椭圆22163x y +=上,对角线AC 、BD 互相垂直且平分于原点O .⑴若点A 在第一象限,直线AB 的斜率为1,求直线AB 的方程; ⑵求四边形ABCD 面积的最小值.【解析】 ⑴设()11A x y ,,()22B x y ,,直线AB 的方程为y x b =+∵四边形ABCD 的顶点都在椭圆22163x y +=上∴2226y x b x y =+⎧⎨+=⎩,∴()2226x x b ++=, 即2234260x bx b ++-=则()()222161226890b b b ∆=--=-> 1243b x x +=-,212263b x x -=∴()()()212121212y y x b x b x x b x x b =++=+++ 2222264633b b b b ---=+=又OA OB ⊥,所以12120OA OB x x y y ⋅=+=∴231203b -=∴24b =,2b =±∵点A 点在第一象限∴2b =- 所以直线AB 的方程为2y x =-⑵①若直线AB x ⊥轴,设其方程为0x x =,此时易知直线AC 、BD 的方程分别为y x =,y x =-,且四边形ABCD 是正方形,则()00A x x ,,()00B x x -,,2200163x x +=,202x =,四边形ABCD 的面积()2200248S x x ===②若直线AB 的斜率存在,设其方程为y kx m =+,()11A x y ,,()22B x y ,,2226y kx m x y =+⎧⎨+=⎩,∴()2226x kx m ++=, 即()222214km 260k x x m +++-=则()()()2222222222164212682263k m k m k m k m m k ⎡⎤∆=-+-=-+--⎣⎦()228630k m =+->122421km x x k +=-+,21222621m x x k -=+∴()()()2212121212km y y kx m kx m k x x x x m =++=+++()22222222222264262121k m k m k m m m k k k --++-==++又OA OB ⊥,所以2222212122226636602121m m k m k OA OB x x y y k k -+---⋅=+===++∴2222m k =+所以12AB x x ==-===直角三角形OAB 斜边AB 上的高h =所以12OABS h AB ∆===2==, 当且仅当0k =时取得此最小值,此时min 8S =综上所述,四边形ABCD 面积的最小值为8.24.已知椭圆2222:1x y M a b +=(0)a b >>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+.⑴求椭圆M 的方程;⑵设直线l 与椭圆M 交于A B ,两点,且以AB 为直径的圆过椭圆的右顶点C ,求ABC △面积的最大值.【解析】 ⑴因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+所以226a c +=+,又椭圆的离心率为3,即3c a =,所以3c =,所以3a =,c =所以1b =,椭圆M 的方程为2219x y +=.⑵法一:不妨设BC 的方程()()30y n x n =->,,则AC 的方程为1(3)y x n=--.由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得2222169109n x n x n ⎛⎫+-+-= ⎪⎝⎭, 设()11A x y ,,()22B x y ,,因为222819391n x n -=+,所以22227391n x n -=+,同理可得2122739n x n -=+,所以26||91BC n =+,22266||99n AC n n =++, 2222121136(1)||||22(91)(9)1649ABC n n n n S BC AC n n n n ⎛⎫+ ⎪+⎝⎭=⋅⋅=⋅=++⎛⎫++⎪⎝⎭△, 设12t n n =+≥,则22236464899t S t t t ==++≤,当且仅当83t =时取到等号,所以ABC △面积的最大值为38.法二:不妨设直线AB 的方程x ky m =+.由2219x ky m x y =+⎧⎪⎨+=⎪⎩,消去x 得222(9)290k y kmy m +++-=, 设11()A x y ,,22()B x y ,,则有12229km y y k +=-+,212299m y y k -=+. ①因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=.由 ()()112233CA x y CB x y =-=- ,,,,得 1212(3)(3)0x x y y --+=. 将1122x ky m x ky m =+=+,代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍)所以125m =(此时直线AB 经过定点1205D ⎛⎫⎪⎝⎭,,与椭圆有两个交点),所以121||||2ABC S DC y y ∆=-12= 设211099t t k =<+,≤,则ABC S ∆. 所以当25102889t ⎛⎤=∈ ⎥⎝⎦,时,ABC S △取得最大值38.25.已知椭圆W 的中心在原点,焦点在x 轴上,离心率为3,两条准线间的距离为6.椭圆W 的左焦点为F ,过左准线与x 轴的交点M 任作一条斜率不为零的直线l 与椭圆W 交于不同的两点A 、B ,点A 关于x 轴的对称点为C . ⑴求椭圆W 的方程;⑵求证:CF FB λ=(λ∈R ); ⑶求MBC ∆面积S 的最大值.【解析】 ⑴ 设椭圆W 的方程为22221x y a b+=,由题意可知2222,26,c a a b c a c ⎧=⎪⎪⎪=+⎨⎪⎪⋅=⎪⎩解得a =,2c =,b , 所以椭圆W 的方程为22162x y +=.⑵ 解法1:因为左准线方程为23a x c=-=-,所以点M 坐标为(30)-,.于是可设直线l 的方程为(3)y k x =+.22(3),162y k x x y =+⎧⎪⎨+=⎪⎩得2222(13)182760k x k x k +++-=. 由直线l 与椭圆W 交于A 、B 两点,可知2222(18)4(13)(276)0k k k ∆=-+->,解得223k <.设点A ,B 的坐标分别为11(,)x y ,22(,)x y ,则21221813k x x k -+=+,212227613k x x k-=+,11(3)y k x =+,22(3)y k x =+. 因为(2,0)F -、11(,)C x y -,所以11(2,)FC x y =+- ,22(2,)FB x y =+.又因为1221(2)(2)()x y x y +-+- 1221(2)(3)(2)(3)x k x x k x =+++++ 1212[25()12]k x x x x =+++2222541290[12]1313k k k k k --=++++2222(5412901236)013k k k k k --++==+,所以CF FB λ=.解法2:因为左准线方程为23a x c=-=-,所以点M 坐标为(30)-,.于是可设直线l 的方程为(3)y k x =+,点A ,B 的坐标分别为11(,)x y ,22(,)x y , 则点C 的坐标为11(,)x y -,11(3)y k x =+,22(3)y k x =+. 由椭圆的第二定义可得 22113||||||3||x y FB FC x y +==+, 所以B ,F ,C 三点共线,即CF FB =. ⑶ 由题意知1211||||||||22S MF y MF y =+121||||2MF y y =⋅+ 121|()6|2k x x k =++ 23||13k k =+313||||k k =≤=+,当且仅当213k =时“=”成立,所以MBC ∆面积S的最大值为2.26.如图,椭圆()222210x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A 、B 两点,当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. ⑴ 求该椭圆的离心率;⑵ 设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于D 、E 两点,记GFD △的面积为1S ,OED △(O 为原点)的面积为2S ,求12S S 的取值范围.【解析】 ⑴依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒设 (,0)F c -,则tan 60bc︒==.将 b = 代入 222a b c =+,解得 2a c =. 所以椭圆的离心率为 12c e a ==.⑵由⑴,椭圆的方程可设为2222143x y c c+=.设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得222222(43)84120k x ck x k c c +++-=.则 2122843ck x x k -+=+, 121226(2)43ck y y k x x c k +=++=+,22243(,)4343ck ckG k k -++.因为 GD AB ⊥,所以 2223431443Dck k k ck x k +⨯=---+,2243D ck x k -=+. 因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ 222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>.所以12S S 的取值范围是(9,)+∞. 27.已知1F ,2F 分别是椭圆15:22=+y x E 的左、右焦点,1F ,2F 关于直线02=-+y x 的对称点是圆C 的一条直径的两个端点.⑴求圆C 的方程;⑵设过点2F 的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程.【解析】 ⑴ 先求圆C 关于直线02=-+y x 对称的圆D,由题知圆D 的直径为12F F ,所以圆D 的圆心0,0D (),半径2r c ===,圆心0,0D ()与圆心C 关于直线02=-+y x 对称(2,2)C ⇒⇒圆C 的方程为:22(2)(2)4x y -+-=.⑵由⑴知2F (2,0), ,据题可设直线l 方程为: x = my +2,m∈R. 这时直线l 可被圆和椭圆截得2条弦,符合题意.圆C:4)2()2(22=-+-y x 到直线l 的距离=.⇒在圆中,有勾股定理得: 22222444(41m 1m m b =-=++.设直线与椭圆相交于点1122(,),(,)E x y F x y ,联立直线和椭圆方程,整理得:5204544)(0145(22212122+=++-=++=+⇒=-++m m m my y m x x my y m )由椭圆的焦半径公式 得:51525)(210)(5252222121++⋅=+-=+-=m m x x x x a5158m 14515222222++⋅=+⋅++⋅=∴m m m m ab .令()0()5f x x y f x x =≥⇒=+在[0,3]上单调递增,在[3,)+∞上单调递减令()(3)f x f ≤⇒当23m =时,ab 取最大值,这时直线方程为: 2.x =+所以当ab 取最大值,直线方程为2x =+。
圆锥曲线经典大题1.过点A (-4,0)的动直线l 与抛物线G :*2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC→=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值围.2.如图,(10)F ,,直线:1l x =-,点P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅.〔Ⅰ〕求动点P 的轨迹C 的方程。
〔Ⅱ〕过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . 〔1〕1MA AF λ=,2MB BF λ=,求12λλ+的值; 〔2〕求MA MB ⋅的最小值. 3.设点F 是抛物线G :*2=4y 的焦点.〔1〕过点P 〔0,-4〕作抛物线G 的切线,求切线的方程;〔2〕设A ,B 为抛物线G 上异于原点的两点,且满足0·=FB FA ,分别延长AF ,BF 交抛物线G 于C ,D 两点,求四边形ABCD 面积的最小值.4.设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,.〔Ⅰ〕求证:A M B ,,三点的横坐标成等差数列;〔Ⅱ〕当M 点的坐标为(22)p -,时,AB = 5.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,假设112OF AF +=0〔其中O 为坐标原点〕. 〔1〕求椭圆M 的方程;〔2〕设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径〔E 、F 为直径的两个端点〕,求PF PE ⋅的最大值.6.双曲线C 的方程为22221(0,0)y x a b a b -=>>,离心率2e =,顶点到渐近线的距离为5。
(I ) 求双曲线C 的方程;(II)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,假设1,[,2]3AP PB λλ=∈,求AOB ∆面积的取值围。
解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
圆锥曲线典型训练100题1.如图,已知A ,B 是椭圆22143x y +=的长轴顶点,P ,Q 是椭圆上的两点,且满足2AP QB k k =,其中AP k 、QB k 分别为直线AP 、QB 的斜率.(1)求证:直线AP 和BQ 的交点R 在定直线上; (2)求证:直线PQ 过定点; (3)求PQB ∆和PQA ∆面积的比值.2.已知椭圆C :)0(12222>>=+b a by a x 上的点到焦点的最大距离为3,离心率为21.(1)求椭圆C 的标准方程;(2)设直线l :01=+-my x 与椭圆C 交于不同两点A ,B ,与x 轴交于点D ,且满足DB DA λ=,若3121-<≤-λ,求实数m 的取值范围.3.已知椭圆)0(1:2222>>=+b a b y a x C 的离心率是22,且经过抛物线y x 42=的焦点。
(1)求椭圆C 的标准方程;(2)经过原点作直线l (不与坐标轴重合)交椭圆于A ,B 两点,AD x ⊥轴于点D ,点E 为椭圆C 上的点,且0=⋅AB AE 。
若直线BE ,BD 的斜率均存在,且分别记为BD BE k k ,,求证:BDBEk k 为定值;并求出该值。
4.已知椭圆:C )0(12222>>=+b a by a x 的左焦点为)0,3(1-F ,椭圆C 与直线022=-+y x 交于A ,B 两点,线段AB 中点为)21,1(M . (1)求椭圆C 的方程;(2)设直线l 不经过点)1,0(N 且与C 相交于E ,F 两点.若直线NE 与直线NF 的斜率的 和为-1,证明:l 过定点.5.已知顶点是坐标原点的抛物线Γ的焦点F 在y 轴正半轴上,圆心在直线12y x =上的圆E 与x 轴相切,且EF 关于点()1,0M -对称. (Ⅰ)求E 和Γ的标准方程;(Ⅱ)过点M 的直线l 与E 交于A ,B ,与Γ交于C ,D ,求证:CD AB >.6.已知椭圆C :2222=1x y a b+(a >b >0)的右焦点为F (2,0),过点F 的直线交椭圆于M 、N 两点且MN 的中点坐标为(1,22) . (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过点P (0,b )且与C 相交于A ,B 两点,若直线PA 与直线PB 的斜率的和为1,试判断直线 l 是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.7.已知(2,0),(2,0)A B -,动点M 满足2AMB θ∠=,24||||cos AM BM θ⋅=uuu r uuu r. (1)求||||AM BM +u u u r u u u r的值,并写出M 的轨迹曲线C 的方程;(2)动直线:l y kx m =+与曲线C 交于P ,Q 两点,且OP OQ ⊥,是否存在圆222x y r +=使得直线l 恰好是该圆的切线,若存在,求出圆的方程;若不存在,说明理由.8.已知椭圆1:C 22221(0)x y a b a b +=>>的离心率为,20P -(,)是它的一个顶点,过点P 作圆2222:C x y r +=的切线PT ,T为切点,且PT =(1)求椭圆C 1及圆C 2的方程;(2)过点P 作互相垂直的两条直线l 1,l 2,其中l 1与椭圆的另一交点为D ,l 2与圆交于A ,B 两点,求△ABD 面积的最大值.9.已知椭圆2222:1(0)x y E a b a b +=>>的右顶点为A ,上顶点为B,离心率2e =,O 为坐标原点,圆224:5O x y +=与直线AB 相切. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知四边形ABCD 内接于椭圆E ,AB ∥DC .记直线AC ,BD 的斜率分别为12,k k ,试问12k k ⋅是否为定值?证明你的结论.10.已知直线l :y x =与圆225x y +=相交的弦长等于椭圆C :22219x y b+=(03b <<)的焦距长. (1)求椭圆C 的方程;(2)已知O 为原点,椭圆C 与抛物线22y px =(0p >)交于M 、N 两点,点P 为椭圆C 上一动点,若直线PM 、PN 与x 轴分别交于G 、H 两点,求证:||||OG OH ⋅为定值.11.已知椭圆C :12222=+b y a x (0>>b a )的左、右焦点分别为F 1,F 2,过点F 2作直线l与椭圆C 交于M ,N 两点.(1)已知M ,椭圆C 的离心率为12,直线l 交直线4x =于点P , 求1F MN ∆的周长及1F MP ∆的面积;(2)当224a b +=且点M 在第一象限时,直线l 交y 轴于点Q ,11F M FQ ⊥, 证明:点M 在定直线上.12.已知离心率为22的椭圆C : 22a x +22by =1(a >b >0)过点P (﹣1,22).(1)求椭圆C 的方程;(2)直线AB :y=k (x+1)交椭圆C 于A 、B 两点,交直线l :x=m 于点M ,设直线PA 、PB 、PM 的斜率依次为k 1、k 2、k 3,问是否存在实数t ,使得k 1+k 2=tk 3?若存在,求出实数t 的值以及直线l 的方程;若不存在,请说明理由.13.在平面直角坐标系xOy 中,设动点M 到坐标原点的距离到x 轴的距离分别为d 1,d 2,且221234d d +=,记动点M 的轨迹为Ω.(1)求Ω的方程;(2)设过点(0,-2)的直线l 与Ω相交于A ,B 两点,当△AOB 的面积最大时,求|AB |.14.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(1,0),F 左顶点为(2,0).A -(1)求椭圆E 的方程;(2)过点A 作两条相互垂直的直线分别与椭圆E 交于(不同于点A 的)M ,N 两点.试判断直线MN 与x 轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.15.已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,F 为该椭圆的右焦点,过点F 任作一直线l 交椭圆于,M N 两点,且||MN 的最大值为4. (1)求椭圆C 的方程;(2)设椭圆C 的左顶点为A ,若直线AM ,AN 分别交直线2x a =于P ,Q 两点,求证:FP FQ ⊥.16.已知椭圆Ma>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+(1)求椭圆M的方程;(2)设直线l:x ky m=+与椭圆M交于A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.17.已知椭圆C:22221(0)x ya ba b+=>>,圆Q:()(222=2x y-+的圆心Q在椭圆C上,点P(0C(I)求椭圆C的方程;(II)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.18.设椭圆E 的方程为2221x y a +=(1a >),点O 为坐标原点,点A ,B 的坐标分别为(,0)a ,(0,1),点M 在线段AB 上,满足||2||BM MA =,直线OM 的斜率为14. (1)求椭圆E 的方程;(2)若斜率为k 的直线l 交椭圆E 于C ,D 两点,交y 轴于点(0,)T t (1t ≠),问是否存在实数t 使得以CD 为直径的圆恒过点B ?若存在,求t 的值,若不存在,说出理由.19.设椭圆22221x x a b +=(a >b >0)的左焦点为F ,上顶点为B . A的坐标为(,0)b ,且FB AB ⋅=. (I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若AQ AOQ PQ=∠(O 为原点) ,求k 的值.20.已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.21.已知离心率为12的椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,,F F A 是椭圆C的左顶点,且满足124AF AF +=. (1)求椭圆C 的标准方程;(2)若M ,N 是椭圆C 上异于A 点的两个动点,且满足AM AN ⊥,问直线MN 是否恒过定点?说明理由.22.已知椭圆()01:2222>>=+b a b y a x C 的离心率为23, A 1,A 2分别为椭圆C 的左、右顶点点()1,2-P 满足121=⋅PA PA . (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 经过点P 且与C 交于不同的两点M ,N ,试问:在x 轴上是否存在点Q ,使得QM 与直线QN 的斜率的和为定值?若存在,请求出点Q 的坐标及定值;若不存在,请说明理由.23.已知椭圆Γ:22142x y +=,过点(1,1)P 作倾斜角互补的两条不同直线1l ,2l ,设1l 与椭圆Γ交于A 、B 两点,2l 与椭圆Γ交于C ,D 两点. (1)若(1,1)P 为线段AB 的中点,求直线AB 的方程; (2)记AB CDλ=,求λ的取值范围.24.已知椭圆22221(0)x y a b a b+=>> 的上、下、左、右四个顶点分别为A 、B 、C 、D ,x轴正半轴上的某点G 满足432===GC GA GD ,, (1)求椭圆的方程;(2)设该椭圆的左、右焦点分别为F 1、F 2,点M 在圆222x y b +=上, 且M 在第一象限,过M 作圆222x y b +=的切线交椭圆于P ,Q 两点, 求证:△PF 2Q 的周长是定值.25.设,,,P Q R S 是椭圆2222:x y M a b+=1(0)a b >>的四个顶点,菱形PQRS 的面积与其内切圆面积分别为367π.椭圆M 的内接ABC ∆的重心(三条中线的交点)为坐标原点O .(I)求椭圆M 的方程;(Ⅱ) ABC ∆的面积是否为定值?若是,求出该定值,若不是,请说明理由.26.已知椭圆Γ:22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,且焦距为2,直线l 交椭圆Γ于E 、F 两点(点E 、F 与点A 不重合),且满足AE AF ⊥.(1)求椭圆的标准方程;(2)O 为坐标原点,若点P 满足2OP OE OF =+,求直线AP 的斜率的取值范围.27.已知椭圆()2222:10x y C a b a b+=>>错误!未找到引用源。
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=由得所以⎪⎩⎪⎨⎧=-=.)1(00a y ea x λλ 因为点M 在椭圆上,所以 ,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1|1|0)(|||21221c eec e a c e d PF =+=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是 即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形.[来源:Z,xx,]3.设R y x ∈,,j i、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长.[来源学+科+网][启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由y y x x +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •=0,求直线PQ 的方程;(3)设AP =λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且3,3OF FP t OM OP j ⋅==+ .(I )设443,t OF FP θ<<求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,0MA AP ⋅=. (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8. 已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
高三数学文科圆锥曲线大题训练(含详细解答)1.已知椭圆22:416C x y +=. (1)求椭圆C 的离心率;(2)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y +=的位置关系.2.已知椭圆的中心在坐标原点O,长轴长为离心率2e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求POQ ∆的面积;(3)若以,OP OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程.3.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的一个顶点为(2,0)A -(1)求椭圆C 的标准方程;(2)直线l 过点A ,过O 作l 的平行线交椭圆C 于P ,Q 两点,如果以PQ 为直径的圆与直线l 相切,求l 的方程.4.已知离心率为2的椭圆2222:1(0)x y C a b a b +=>>与直线2x =相交于,P Q 两点(点P 在x 轴上方),且2PQ =.点,A B 是椭圆上位于直线PQ 两侧的两个动点,且APQ BPQ ∠=∠. (1)求椭圆C 的标准方程;(2)求四边形APBQ 面积的取值范围.5.已知椭圆的一个顶点为)1,0(-A ,焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. (1)求椭圆的标准方程;(2)设直线()0y kx m k =+≠与椭圆相交于不同的两点M 、N ,当AM AN =时,求m 的取值范围.6.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1)求椭圆1C 的方程; (2)求点Q 的轨迹方程;(3)求ABQ ∆面积的最大值及此时点Q 的坐标.7.如图,B A ,分别是椭圆C :)0(12222>>=+b a by a x 的左右顶点,F 为其右焦点,2是AF 与FB 的等差中项,3是AF 与FB 的等比中项. (1)求椭圆C 的方程;(2)已知点P 是椭圆C 上异于B A ,的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ 垂直于AP ,并交直线l 于点Q .证明:B P Q ,,三点共线.8.已知椭圆()2222:10x y C a b a b +=>>()0,1.圆22221:C x y a b +=+.(1)求椭圆C 的方程;(2)若直线l ():0y kx m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问AM BM +=0是否成立?请说明理由.9.已知抛物线C :22(0)y px p =>的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于,M N 两点,且8MN =.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM PN ⋅的最小值.10.已知动圆C 过定点)(2,0M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C . (1)求曲线C 方程;(2)点A 为直线l :20x y --=上任意一点,过A 作曲线C 的切线,切点分别为P 、 Q ,APQ ∆面积的最小值及此时点A 的坐标.11.已知点)1,2(A 在抛物线:E 2x ay =上,直线1:l 1y kx =+(R k ∈,且0k ≠)与抛物线E 相交于C B ,两点,直线AC AB ,分别交直线2:l 1y =-于点S ,T .(1)求a 的值;(2)若S T =1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.12.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2(1)求椭圆C 的方程;(2)B A ,为椭圆C 上满足AOB ∆E 为线段AB 的中点,射线OE 交椭圆C 于点P ,设OP tOE =,求实数t 的值.13.已知点()2,1P 在抛物线()21:20C x py p =>上,直线l 过点()0,2Q 且与抛物线1C 交于A 、B 两点。
圆锥曲线大题集锦1.在平面直角坐标系xOy 中,F 是椭圆2222:1(0)x y a b a bΓ+=>>的右焦点,已知点A (0,-2)与椭圆左顶点关于直线y x =对称,且直线AF 的斜率为3. (1)求椭圆Γ的方程;(2)过点Q (-1,0)的直线l 交椭圆Γ于M ,N 两点,交直线x =-4于点E ,,MQ QN ME EN λμ==,证明:λμ+为定值.2已知定圆M :16)3(22=++y x ,动圆N 过点)0,3(F 且与圆M 相切,记圆心N 的轨迹为E 。
(1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且CB AC =,当ABC ∆的面积最小时,求直线AB 的方程。
3.已知1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,)221(,P 是椭圆上一点,且12PF ,21F F ,22PF成等差数列. (1)求椭圆C 的标准方程;(2)已知动直线l 过点2F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.(2)假设在x 轴上存在点0Q m (,),使得716QA QB ⋅=-恒成立.①当直线l 的斜率不存在时,A ,(1,B ,由于(7(1,(1,2216m m ---=-,解得54m =或34m =;4.已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点. (1)若线段AB 中点的横坐标是-12,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA MB 为常数?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)依题意,直线AB 的斜率存在,设直线AB 的方程为y =k (x +1), 将y =k (x +1)代入x 2+3y 2=5,消去y 整理得(3k 2+1)x 2+6k 2x +3k 2-5=0. 设A (x 1,y 1),B (x 2,y 2),则⎪⎩⎪⎨⎧+-=+>-+-=∆②.136①,0)53)(13(4362221224k k x x k k k由线段AB 中点的横坐标是21-,得21221-=+x x ,解得33±=k 都满足① 所以直线AB 的方程为013=+-y x 或013=++y x (2)假设在x 轴上存在点M (m ,0),使MA MB ⋅为常数.(ⅰ)当直线AB 与x 轴不垂直时,由(1)知x 1+x 2=-6k 23k 2+1,x 1x 2=3k 2-53k 2+1. ③所以MA MB ⋅=(x 1-m )(x 2-m )+y 1y 2=(x 1-m )(x 2-m )+k 2(x 1+1)(x 2+1) =(k 2+1)x 1x 2+(k 2-m )(x 1+x 2)+k 2+m 2. 将③代入,整理得MA MB ⋅=(6m -1)k 2-53k 2+1+m 2=222114(2)(31)23331m k m m k -+--++=m 2+2m -13-6m +143(3k 2+1). 注意到MA MB ⋅是与k 无关的常数,从而有6m +14=0,此时73m =-,此时49MA MB ⋅=. (ⅱ)当直线AB 与x 轴垂直时,此时点A 、B 的坐标分别为(1-、(1-,),当73m =-时,也有49MA MB ⋅=.综上,在x 轴上存在定点7(,0)3M -使MA MB ⋅为常数.5设椭圆C :12222=+by a x (a >b >0)的一个顶点与抛物线C :x 2=43y 的焦点重合,F 1,F 2分别是椭圆的左、右焦点,且离心率e =12,过椭圆右焦点F 2的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的方程;(2)若OM →·ON →=-2,求直线l 的方程;(3)若AB 是椭圆C 经过原点O 的弦,MN ∥AB ,求证:|AB |2|MN |为定值.(1)解 由题意知,椭圆的一个顶点为(0,3),即b =3,e =c a =12,∴a =2,∴椭圆的标准方程为x 24+y 23=1.(2)解 由题意可知,直线l 与椭圆必相交. ①当直线斜率不存在时,经检验不合题意.②当斜率存在时,设直线l 的方程为y =k (x -1)(k ≠0),且M (x 1,y 1),N (x 2,y 2).由⎪⎩⎪⎨⎧-==+)1(13422x k y y x ,得(3+4k 2)x 2-8k 2x +4k 2-12=0, x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2,OM →·ON →=x 1x 2+y 1y 2=x 1x 2+k 2[x 1x 2-(x 1+x 2)+1]=4k 2-123+4k 2+k 2(4k 2-123+4k 2-8k 23+4k 2+1)=-5k 2-123+4k2=-2, 解得k =±2,故直线l 的方程为y =2(x -1)或y =-2(x -1), 即2x -y -2=0或2x +y -2=0.(3)证明 设M (x 1,y 1),N (x 2,y 2),A (x 3,y 3),B (x 4,y 4),由(2)可得 |MN |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]= (1+k 2)[(8k 23+4k 2)2-4(4k 2-123+4k2)]=12(k 2+1)3+4k2, 由⎪⎩⎪⎨⎧==+kx y y x 13422, 消去y 并整理得x 2=123+4k 2, |AB |=1+k 2|x 3-x 4|=43(1+k 2)3+4k 2,∴|AB |2|MN |=48(1+k 2)3+4k 212(k 2+1)3+4k2=4,为定值.。
圆锥曲线基础大题20道一、解答题1.(1)已知椭圆()22122:10x y C a b a b+=>>的焦距为x =±,求椭圆1C 的方程;(2)已知双曲线()22222:10,0x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,求双曲线2C 的方程. 2.已知椭圆22149x y +=,一组平行直线的斜率是1. (1)这组直线何时与椭圆有公共点?(2)当它们与椭圆相交时,求这些直线被椭圆截得的线段的中点所在的直线方程. 3.过原点O 作圆x 2+y 2-8x=0的弦OA .(1)求弦OA 中点M 的轨迹方程;(2)延长OA 到N ,使|OA|=|AN|,求N 点的轨迹方程.4.已知动圆经过点F (2,0),并且与直线x =-2相切(1)求动圆圆心P 的轨迹M 的方程;(2)经过点(2,0)且倾斜角等于135°的直线l 与轨迹M 相交于A ,B 两点,求|AB | 5.已知抛物线2:2(0)C y px p =>的焦点为F ,点(1,2)P 在抛物线C 上.(1)求点F 的坐标和抛物线C 的准线方程;(2)过点F 的直线l 与抛物线C 交于,A B 两个不同点,若AB 的中点为(3,2)M -,求OAB 的面积.6.已知双曲线2222:1(0,0)x y C a b a b -=>>与双曲线22142-=y x 有相同的渐近线,且经过点M .(1)求双曲线C 的方程;(2)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.7.焦点在x 轴上的椭圆的方程为2214x y m +=,点(2,1)P 在椭圆上. (1)求m 的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率. 8.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过23(2,),(2,)A B ---两点 9.如图,若12,F F 是双曲线221916x y -=的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且12·32PF PF =,试求12F PF ∆的面积. 10.已知条件p :空间向量(1,0,)a n =,(1,1,1)b =-,满足0a b ⋅>;条件q :方程2212x y n k -=-表示焦点在x 轴上的双曲线. (1)求使条件p 成立的n 的取值范围;(2)若p 成立是q 成立的充分条件,求实数k 的取值范围.11.已知椭圆的两个焦点坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭. (1)求椭圆的标准方程;(2)若直线1y x =+与椭圆交于A 、B 两点,求AB 中点的坐标和AB 长度. 12.已知双曲线22221x y a b-=的离心率为2e =(2,3)P (1)求双曲线的方程;(2)求双曲线的焦点到渐近线的距离13.已知椭圆()222210x y a b a b +=>>⎛ ⎝⎭,1F ,2F 是椭圆的左、右焦点.(1)求椭圆C 的方程;(2)点P 在椭圆上,且122PF PF -=,求12PF PF ⋅的值. 14.已知双曲线22:12x C y -=. (1)求与双曲线C有共同的渐近线,且过点((2)若直线l 与双曲线C 交于A 、B 两点,且A 、B 的中点坐标为(1,1),求直线l 的斜率.15.已知中心在原点的双曲线C 的右焦点为()2,0,实轴长为2.(1)求双曲线C 的标准方程;(2)若直线l:y kx =+C 的左支交于A 、B 两点,求k 的取值范围.16.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为6,离心率为23. (1)求椭圆C 的方程;(2)直线y x m =+与椭圆C 交于A ,B 两点,求AB 的最大值.17.已知椭圆2222:1(0)x y a b a bΩ+=>>的焦距为4,短半轴长为2. (1)求椭圆Ω的方程;(2)若直线l 与椭圆Ω相交于A ,B 两点,点()2,1P -是线段AB 的中点,求直线l 的方程.18.已知双曲线C 的中心是原点,右焦点为F ,一条渐近线方程为0x =,直线:0l x y -+=与双曲线交于点A , B 两点.记F A , FB 的斜率分别为12,.k k (1)求双曲线C 的方程;(2)求1211k k +的值. 19.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,下顶点为A ,O 为坐标原点,O 到直线2AF 的距离为3,12AF F △为等边三角形. (1)求椭圆C 的标准方程; (2)若倾斜角为60 的直线经过椭圆C 的右焦点2F ,且与椭圆C 交于M ,N 两点(M 点在N 点的上方)求线段2MF 与2NF 的长度之比.20.已知抛物线C :y 2=2px (p >0)的焦点为F ,点M (2,m )为其上一点,且|MF |=4.(1)求p 与m 的值;(2)如图,过点F 作直线l 交抛物线于A 、B 两点,求直线OA 、OB 的斜率之积.参考答案1.(1)22196x y +=;(2)22145x y -= 【分析】(1)由已知可得c =2a c±=± (2)由已知可得b a =,29c =,计算即可得出结果. 【详解】 (1)焦距为c =x =±,则2a c±=±3a =, 由222a b c =+,可得:26b =,所以椭圆1C 的方程为22196x y +=; (2)由双曲线的一条渐近线方程为2y x =可知,b a =, 且与椭圆221123x y +=有公共焦点,则29c =, 又因为222a c b =-,即2223c b a a c b =⎧⎪⎪=⎨⎪=-⎪⎩,解得:2a =,b =3c =, 所以双曲线2C 的方程为22145x y -=. 【点睛】本题考查椭圆的标准方程及双曲线的标准方程,考查计算能力,属于基础题.2.(1)截距在[范围内;(2)940x y +=.【分析】(1)由已知设直线方程y x b =+结合椭圆方程,根据有公共点即所得方程的判别式2264208(9)0b b ∆=--≥即可知直线截距在[上有交点;(2)结合(1)由中点坐标可得49(,)1313b b -,而其中必有原点即可求直线方程; 【详解】 (1)设平行直线的方程为y x b =+,若直线与椭圆有公共点,则:将y x b =+代入22149x y +=,整理得:221384360x bx b ++-=,∴2264208(9)0b b ∆=--≥解得:b ≤≤;(2)令交点坐标分别为1122(,),(,)x y x y ,由(1)知:12813b x x +=-,而121218213b y y x x b +=++=, 所以线段中点坐标为49(,)1313b b -,其中必有一个中点为坐标原点,故直线的斜率为94k =-, ∴所在的直线方程:940x y +=;【点睛】本题考查了直线与椭圆的位置关系,计算确定何时它们会有公共点,以及求交点弦的中点所构成直线的方程.3.(1)x 2+y 2-4x="0;" (2)x 2+y 2-16x=0【解析】试题分析:(1)设M 点坐标为(x ,y ),那么A 点坐标是(2x ,2y ),A 点坐标满足圆x 2+y 2-8x=0的方程,所以, (2x )2+(2y )2-16x=0,化简得M 点轨迹方程为x 2+y 2-4x=0.(2)设N 点坐标为(x ,y ),那么A 点坐标是(,22x y ), A 点坐标满足圆x 2+y 2-8x=0的方程,得到:(2x )2+(y 2)2-4x=0, N 点轨迹方程为:x 2+y 2-16x=0.考点:轨迹方程点评:中档题,本题利用“相关点法”(“代入法”),较方便的使问题得解.4.(1)28y x =(2)16【分析】(1)设(,)P x y ,根据题目条件列方程可求得结果;(2)联立直线与抛物线方程,根据弦长公式可得结果.【详解】(1)设(,)P x y |(2)|x =--,化简得28y x =,所以动圆圆心P 的轨迹M 的方程为28y x =(2)直线l 的方程为(2)y x =--,即2y x =-+, 联立228y x y x=-+⎧⎨=⎩,消去y 并整理得21240x x -+=, 设11(,)A x y ,22(,)B x y ,则1212x x +=,124x x =,由弦长公式可得||AB =16==.所以|16|AB =【点睛】本题考查了求动点的轨迹方程,考查了直线与抛物线的位置关系,考查了韦达定理和弦长公式,属于基础题.5.(1)()1,0,1x =-;(2)【分析】(1)因为()1,2P 在抛物线C 上,可得2p =,由抛物线的性质即可求出结果;(2)由抛物线的定义可知1226AB x x =++=,根据点斜式可求直线AB 的方程为1y x =-+ ,利用点到直线距离公式求出高,进而求出面积.【详解】(1)∵()1,2P 在抛物线C 上,422p P ∴=∴=,, ∴点F 的坐标为()1,0,抛物线C 的准线方程为1x =-;(2)设,A B 的坐标分别为()()1122,,x y x y ,,则1228AB x x =++=,1MF k =-,∴直线AB 的方程为1y x =-+ ,点O 到直线AB 的距离2d =, 12OAB S AB d ∴=⋅=【点睛】本题主要考查了抛物线的基本概念,直线与抛物线的位置关系,属于基础题.6.(1)2212y x -=;(2)实轴长2 【分析】(1)由共渐近线双曲线方程的求法求解即可;(2)由双曲线方程及点到直线的距离求解即可.【详解】解:(1)解:在双曲线22142-=y x 中,2a '=,b '=,则渐近线方程为a y x b''=±=, ∵双曲线2222:1x y C a b -=与双曲线22142-=y x 有相同的渐近线,b a∴=, ∴方程可化为222212x y a a-=,又双曲线C 经过点M ,代入方程,222212a a∴-=,解得1a =,b = ∴双曲线C 的方程为2212y x -=.(2)解;由(1)知双曲线22:12y C x -=中,1a =,b =c =∴实轴长22a =,离心率为==c e a设双曲线C 的一个焦点为(,一条渐近线方程为y =,d ∴==,.【点睛】本题考查了共渐近线双曲线方程的求法,重点考查了点到直线的距离,属基础题.7.(1)2(2)长轴长4、短轴长2【分析】(1)根据题意,代入点P ,即可求解.(2)由(1),写出椭圆方程,求解,,a b c ,根据椭圆长轴长、短轴长、焦距、离心率定义,即可求解.【详解】(1)由题意,点P 在椭圆上,代入,得2114m +=,解得2m =(2)由(1)知,椭圆方程为22142x y +=,则2,a b c ===椭圆的长轴长24a =;’短轴长2b =焦距2c =;离心率c e a ==. 【点睛】 本题考查(1)代入点求椭圆方程(2)求解长轴长、短轴长、焦距、离心率;考查概念辨析,属于基础题.8.(1)22143x y +=(2)2218x y += 【分析】(1)利用已知椭圆可得焦点的坐标,结合椭圆的定义可求a ,从而可得椭圆标准方程: (2)利用待定系数法,设出方程,代入两点的坐标,解方程可求.【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±, ∵椭圆过点3(1,)2,∴24a ==,∴2,a b ==, ∴椭圆的标准方程为22143x y +=. (2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, 得:14213241m n m n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=. 【点睛】本题主要考查椭圆方程的求解,待定系数法和定义法是常用的求解方法,侧重考查数学运算的核心素养.9.(1)10或22(2)1216F PF S ∆= 【分析】(1)设点M 到另一个焦点的距离为m ,由双曲线定义即可求得m 的值.(2)由双曲线定义及12·32PF PF =,可证明2221212PF PF F F +=,即12F PF ∆为直角三角形,即可求得12F PF ∆的面积. 【详解】(1)12,F F 是双曲线221916x y -=的两个焦点,则3,4,5,a b c ===设点M 到另一个焦点的距离为m , 由抛物线定义可知1626m a -==, 解得10m =或22m =,即点M 到另一个焦点的距离为10或22. (2)P 是双曲线左支上的点,1226PF PF a -==,则2211222·36PF PF PF PF -+=,代入12·32PF PF =, 可得221232321006PF PF +=+⨯=,即2212122100PF PF F F +==,所以12F PF ∆为直角三角形,所以12121·1232162F PF S PF PF ∆⨯===. 【点睛】本题考查了双曲线定义及性质的的简单应用,交点三角形面积求法,属于基础题.10.(1)1n >;(2)1k ≤ 【分析】(1)因为空间向量(1,0,)a n =,(1,1,1)b =-,可得(1,0,)(1,1,1)1a b n n ⋅=⋅-=-,即可求得答案;(2)方程2212x y n k -=-表示焦点在x 轴上的双曲线, 0n k ->,解得n k >,即可求得答案. 【详解】 (1)空间向量(1,0,)a n =,(1,1,1)b =-可得(1,0,)(1,1,1)1a b n n ⋅=⋅-=-,∴要使p 成立,只需1n >(2)方程2212x y n k -=-表示焦点在x 轴上的双曲线,∴0n k ->,解得n k >,若p 成立是q 成立的充分条件,∴k 的取值范围为1k ≤.【点睛】本题主要考查了根据命题成立求参数范围和根据充分条件求参数范围,解题关键是掌握充分条件定义,考查了分析能力和计算能力,属于基础题.11.(1)221106x y +=;(2)中点坐标为53,88⎛⎫- ⎪⎝⎭,4AB =. 【分析】(1)由题意设出椭圆方程并求得c ,由椭圆定义求得a ,再由隐含条件求得b ,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x 的一元二次方程,利用根与系数的关系及中点坐标公式求得AB 的中点坐标,再由弦长公式求弦长. 【详解】解:(1)由于椭圆的焦点在x 轴上,所以设它的标准方程为()222210x ya b a b+=>>,由椭圆定义知2c =,2a ==,所以a =,所以222104b a c =-=-, 所求椭圆标准方程为221106x y +=.(2)设直线与椭圆的交点为()11,A x y ,()22,B x y ,联立方程2211061x y y x ⎧+=⎪⎨⎪=+⎩,得2810250x x +-=,得1254x x +=-,12258x x =-. 设AB 的中点坐标为()00,x y ,则120528x x x +==-,038y =, 所以中点坐标为53,88⎛⎫- ⎪⎝⎭.由弦长公式4AB ===. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.12.(1)221x y -=;(2)1.【分析】(1)由条件得22431caa b ⎧=⎪⎪⎨⎪-=⎪⎩,从而可得方程;(2)分别写出焦点坐标和渐近线方程,再由点到直线距离公式可得解. 【详解】(1)双曲线22221x y a b-=的离心率为e =(2,P ,可得22431caa b⎧=⎪⎪⎨⎪-=⎪⎩ ,解得:2211a b ⎧=⎨=⎩,所以221x y -=;(2)双曲线的焦点为(,渐近线为0x y ±=,1=,13.(1)2214x y +=;(2)1-. 【分析】(1)根据离心率公式,可得c a =222c a b =-,即可求得a ,b 的值,即可求得答案;(2)根据椭圆定义,结合条件,可得12,PF PF 的值,根据余弦定理,可求得12cos F PF ∠的值,带入数量积公式,即可求得答案. 【详解】 (1)依题意有2c a =,221314a b +=,222c a b =-, 解得2a =,1b =,则椭圆的方程为2214x y +=.(2)因为点P 在椭圆上,由椭圆定义得:1224PF PF a +==所以121242PF PF PF PF ⎧+=⎪⎨-=⎪⎩,解得13PF = ,21PF =,在12PF F △中,由余弦定理222121212121cos 23PF PF F F F PF PF PF +-∠==-,221112co 1s 3113PF PF PF PF F PF ⎛⎫⋅=⋅⋅⋅-=- ⎪⎝∠=⎭.14.(1)2212x y -=;(2)12. 【分析】(1)设所求双曲线方程为22(0)2x y k k -=≠,代入点坐标,求得k ,即可得答案;(2)设1122(,),(,)A x y B x y ,利用点差法,代入A 、B 的中点坐标为(1,1),即可求得斜率. 【详解】(1)因为所求双曲线与双曲线C有共同的渐近线,所以设所求双曲线方程为22(0)2x y k k -=≠,代入(1k =-,所以所求双曲线方程为2212x y -=;(2)设1122(,),(,)A x y B x y ,因为A 、B 在双曲线上,所以221122221(1)21(2)2x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,(1)-(2)得12121212()()()()2x x x x y y y y -+=-+,因为A 、B 的中点坐标为(1,1),即12122,2x x y y +=+=, 所以1212121212()2l y y x x k x x y y -+===-+.15.(1)2213x y -=;(2)13k <<.【分析】(1)由条件可得a =2c =,然后可得答案;(2)联立直线与双曲线的方程消元,然后可得()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩,解出即可. 【详解】(1)设双曲线方程为22221x y a b-=(0a >,0b >).由已知得:a =2c =,再由222+=a b c ,∴21b =,∴双曲线方程为2213x y -=.(2)设()A A A x y ,,()B B B x y ,,将y kx =+2213x y -=,得()221390k x ---=,由题意知()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩解得13k <<.1k <<时,l 与双曲线左支有两个交点. 16.(1)22195x y +=;(2)maxAB =. 【分析】(1)由题意得2623a c a =⎧⎪⎨=⎪⎩,求出,a c ,从而可求出b 的值,进而可得椭圆C 的方程;(2)设()()1122,,A x y B x y ,直线方程与椭圆方程联立方程组,消去y ,利用根与系数的关系得1297m x x +=- 21294514m x x -=,再利用弦长公式可得AB==【详解】解:(1)由题意可得2623aca=⎧⎪⎨=⎪⎩,解得3,2a c==,所以2225b a c,所以椭圆C的方程为22195x y+=;(2)设()()1122,,A x yB x y222214189450195y x mx mx mx y=+⎧⎪⇒++-=⎨+=⎪⎩,由22(18)414(945)0m m∆=-⨯⨯->,得2140m-<1297mx x+=-,21294514mx x-=AB∴==≤所以当0m=时,max7AB=.17.(1)22184x y+=;(2)30x y-+=.【分析】(1)直接求出,b c,即可求解;(2)利用点差法,设()11,A x y,()22,B x y,由题意得22112222184184x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,然后,得到斜率()121212122y y x xkx x y y-+==--+,再代入中点,即可出k,进而求出直线l的方程【详解】(1)由题意可知24c =,2b = 所以24b =,24c =,2228a b c =+=所以椭圆Ω的方程为22184x y +=.(2)设()11,A x y ,()22,B x y ,由题意得22112222184184x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减,得22221212084x x y y --+=,即()()()()12121212084x x x x y y y y +-+-+=,所以直线l 的斜率()121212122y y x x k x x y y -+==--+.因为点(2,1)P -是线段AB 的中点, 所以124x x +=-,122y y +=,所以1k =所以直线l 的方程为1(2)y x -=+,即30x y -+=. 【点睛】关键点睛:利用点差法和中点求出斜率k 是解题关键,属于基础题18.(1)2212x y -=;(2)10-. 【分析】(1)设双曲线方程,由焦点及渐近线方程运算即可得解;(2)设()()1122,,,A x y B x y ,联立方程组,结合韦达定理可得12y y +=-121y y =-,再由斜率公式即可得解. 【详解】(1)设双曲线的方程为()22221,0,0x y a b a b-=>>,由题意,223a b +=,该双曲线的渐近线方程by x a=±,又双曲线的一条渐近线方程为0x +=,所以2b a =, 所以222,1a b ==,所以双曲线C 的方程为2212x y -=;(2)设()()1122,,,A x y B x y ,由22120x y x y ⎧-=⎪⎨⎪-+=⎩,消去x化简可得210y +-=,0∆>,所以12y y +=-121y y =-,所以12121212121211112x x y y k k y y y y y y ⎛⎫--+=+=+=-+ ⎪⎝⎭121222101y y y y +-=-=-=--. 【点睛】关键点点睛:解决本题的关键是联立方程组,结合韦达定理对1211k k +变形.19.(1)22143x y +=;(2)35. 【分析】(1)由椭圆的定义结合平面几何的知识可直接求得a 、b ,即可得解; (2)联立直线方程与椭圆方程,求得点8,55M ⎛⎫ ⎪ ⎪⎝⎭,(0,N ,再由22MN MF y NF y =即可得解. 【详解】(1)因为12AF F △为等边三角形,1OA =即b =,又O 到直线2AF的距离d =2b d ==2a =, 则椭圆C 的标准方程为22143x y +=;(2)倾斜角为60°的直线经过椭圆C 的右焦点()21,0F ,则直线的方程为)1y x =-,联立)221143y x x y ⎧=-⎪⎨+=⎪⎩,解得0x y =⎧⎪⎨=⎪⎩85x y ⎧=⎪⎪⎨⎪=⎪⎩, 因为M 点在N点的上方,所以8,55M ⎛ ⎝⎭,(0,N , 所以2235M N MF y NF y ==. 20.(1)p =4,m =±4;(2)-4. 【分析】(1)利用抛物线的定义及题干条件,可求得p 的值,将M 点坐标代入,即可求得m 值; (2)当直线l 的斜率不存在时,方程为:x =2,代入抛物线方程,求得A 、B 点坐标,即可求得OA OB k k ⋅的值,当直线l 的斜率存在时,设直线为y =k (x -2),与抛物线联立,利用韦达定理,求得12y y ,12x x 的值,即可求得OA OB k k ⋅的值,综合即可得答案. 【详解】(1)抛物线C :y 2=2px (p >0)的焦点为(,0)2pF ,准线为2p x =-, 由抛物线定义知:点M (2,m )到F 的距离等于M 到准线的距离, ∴||242pMF =+=,∴p =4, 故抛物线C 的方程为y 2=8x , ∵点M (2,m )在抛物线C 上,∴m 2=16,∴m =±4,∴p =4,m =±4;(2)由(1)知:抛物线C 的方程为y 2=8x ,焦点为F (2,0),答案第17页,总17页 若直线l 的斜率不存在,则其方程为:x =2,代入y 2=8x ,可得:A (2,4),B (2,-4), 从而404042020OA OB k k ---=⨯=---⋅; 若直线l 的斜率存在,设为k (k ≠0),则其方程可表示为:y =k (x -2),由2(2)8y k x y x=-⎧⎨=⎩,消去x ,得:21(2)8y k y =-,即ky 2-8y -16k =0(k ≠0), Δ=64+64k 2>0,设A (x 1,y 1),B (x 2,y 2),则121616k y y k-==-, ∴22221212121111(()(16)4886464)()x x y y y y ===⨯-=⋅, 从而OA k ⋅1212121200164004OB y y y y k x x x x ---=⨯===---, 综上所述:直线OA 、OB 的斜率之积为-4.【点睛】处理抛物线问题,需熟练应用抛物线定义,在联立直线与抛物线方程时,消x 得到关于y 的一元二次方程为常用办法,可简化计算,提高正确率,属基础题.。
..圆锥曲线练习一、选择题(本大题共13小题,共65.0分)1.若曲线表示椭圆,则k的取值范围是()A.k>1B.k<-1C.-1<k<1D.-1<k<0或0<k<12.方程表示椭圆的必要不充分条件是()A.m∈(-1,2)B.m∈(-4,2)C.m∈(-4,-1)∪(-1,2)D.m∈(-1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3B.1C.3D.64.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B. C. D.5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么( )A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6.“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件7.方程+=10,化简的结果是()A.+=1B.+=1C.+=1D.+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A. B. C. D.9.若点P到点F(4,0)的距离比它到直线x+5=0的距离小1,则P点的轨迹方程是()A.y2=-16xB.y2=-32xC.y2=16xD.y2=32x10.抛物线y=ax2(a<0)的准线方程是()A.y =-B.y =-C.y =D.y =11.设抛物线y2=4x上一点P到直线x=-3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812.已知点P是抛物线x =y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为()A.2B.C.-1D.+113.若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=()A.2B.-1C.2或-1D.1±二、填空题(本大题共2小题,共10.0分)14.在平面直角坐标系x O y中,已知△ABC顶点A(-4,0)和C(4,0),顶点B 在椭圆上,则= ______ .15.已知椭圆,焦点在y轴上,若焦距等于4,则实数k=____________.三、解答题(本大题共6小题,共72.0分)16.已知三点P (,-)、A(-2,0)、B(2,0).求以A、B为焦点且过点P的椭圆的标准方程.17.已知椭圆+=1(a>b>0)的离心率为,短轴长为4.椭圆与直线y=x+2相交于A、B两点.(1)求椭圆的方程;(2)求弦长|AB|高中数学试卷第2页,共10页..18.设焦点在y轴上的双曲线渐近线方程为y=±x,且焦距为4,已知点A(1,)(1)求双曲线的标准方程;(2)已知点A(1,),过点A的直线L交双曲线于M,N两点,点A为线段MN的中点,求直线L方程.19.已知抛物线的标准方程是y2=6x,(1)求它的焦点坐标和准线方程,(2)直线L过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为A、B,求AB 的长度.20.已知椭圆的离心率,直线y=bx+2与圆x2+y2=2相切.(1)求椭圆的方程;(2)已知定点E(1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使得以CD为直径的圆过定点E?若存在,求出k的值;若不存在,请说明理由.21.已知椭圆C:4x2+y2=1及直线L:y=x+m.(1)当直线L和椭圆C有公共点时,求实数m的取值范围;(2)当直线L被椭圆C截得的弦最长时,求直线L所在的直线方程.答案和解析【答案】1.D2.B3.A4.B5.B6.C7.C8.D9.C10.B11.A12.C13.A14.15.816.解:(1)2a =PA+PB=2,所以a =,又c=2,所以b2=a2-c2=6则以A、B为焦点且过点P的椭圆的标准方程为:+=1.17.解:(1)∵椭圆+=1(a>b>0)的离心率为,短轴长为4,∴,解得a=4,b=2,∴椭圆方程为=1.(2)联立,得5x2+16x=0,解得,,∴A(0,2),B(-,-),∴|AB|==.18.解:(1)设双曲线的标准方程为(a>0,b>0),则∵双曲线渐近线方程为y=±x,且焦距为4,∴,c=2∵c2=a2+b2∴a=1,b =∴双曲线的标准方程为;(2)设M(x1,y1),N(x2,y2),代入双曲线方程可得,两式相减,结合点A(1,)为线段MN 的中点,可得∴=∴直线L 方程为,即4x-6y-1=0.高中数学试卷第4页,共10页..19.解:(1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,∴=∴焦点为F(,0),准线方程:x=-,(2)∵直线L过已知抛物线的焦点且倾斜角为45°,∴直线L的方程为y=x-,代入抛物线y2=6x化简得x2-9x+=0,设A(x1,y1),B(x2,y2),则x1+x2=9,所以|AB|=x1+x2+p=9+3=12.故所求的弦长为12.20.解:(1)因为直线l:y=bx+2与圆x2+y2=2相切,∴,∴b=1,∵椭圆的离心率,∴,∴a2=3,∴所求椭圆的方程是.(2)直线y=kx+2代入椭圆方程,消去y可得:(1+3k2)x2+12kx+9=0∴△=36k2-36>0,∴k>1或k<-1,设C(x1,y1),D(x2,y2),则有,,若以CD为直径的圆过点E,则EC⊥ED,∵,,∴(x1-1)(x2-1)+y1y2=0∴(1+k2)x1x2+(2k-1)(x1+x2)+5=0∴,解得,所以存在实数使得以CD为直径的圆过定点E.21.解:(1)由方程组,消去y,整理得5x2+2mx+m2-1=0.(2分)∴△=4m2-20(m2-1)=20-16m2(4分)因为直线和椭圆有公共点的条件是△≥0,即20-16m2≥0,解之得-.(5分)(2)设直线L和椭圆C相交于两点A(x1,y1),B(x2,y2),由韦达定理得,(8分)∴弦长|AB|===,-,∴当m=0时,|AB|取得最大值,此时直线L方程为y=x.(10分)【解析】1. 解:∵曲线表示椭圆,∴,解得-1<k<1,且k≠0.故选:D.曲线表示椭圆,可得,解出即可得出.本题考查了椭圆的标准方程及其性质、不等式的解法,考查了推理能力与计算能力,属于基础题.2. 解:方程表示椭圆的充要分条件是,即m∈(-4,-1)∪(-1,2).由题意可得,所求的m的范围包含集合(-4,-1)∪(-1,2),故选:B.由条件根据椭圆的标准方程,求得方程表示椭圆的充要条件所对应的m的范围,则由题意可得所求的m的范围包含所求得的m范围,结合所给的选项,得出结论.本题主要考查椭圆的标准方程,充分条件、必要条件,要条件的定义,属于基础题.3. 解:①椭圆+=1,中a2=2,b2=k,则c =,∴2c =2=2,解得k=1.高中数学试卷第6页,共10页..②椭圆+=1,中a2=k,b2=2,则c=,∴2c=2=2,解得k=3.综上所述,k的值是1或3.故选:A.利用椭圆的简单性质直接求解.本题考查椭圆的简单性质,考查对椭圆的标准方程中各字母的几何意义,属于简单题.4. 解:设椭圆方程为=1(a>b>0),由题意可得c=1,a=2,b=,即有椭圆方程为+=1.故选:B.设椭圆方程为=1(a>b>0),由题意可得c=1,a=2,再由a,b,c的关系,可得b,进而得到椭圆方程.本题考查椭圆的方程的求法,注意运用待定系数法,考查椭圆的焦点的运用,属于基础题.5. 解:命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆∵当一个动点到两个顶点距离之和等于定值时,再加上这个和大于两个定点之间的距离,可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分条件故选B.6. 解:a>0,b>0,方程ax2+by2=1不一定表示椭圆,如a=b=1;反之,若方程ax2+by2=1表示椭圆,则a>0,b>0.∴“a>0,b>0”是“方程ax2+by2=1表示椭圆”的必要分充分条件.故选:C.直接利用必要条件、充分条件及充分必要条件的判断方法结合椭圆标准方程得答案.本题考查必要条件、充分条件及充分必要条件的判断方法,考查了椭圆的标准方程,是基础题.7. 解:由+=10,可得点(x,y)到M(0,-3)、N(0,3)的距离之和正好等于10,再结合椭圆的定义可得点(x,y)的轨迹是以M、N为焦点的椭圆,且2a=10、c=3,∴a=5,b=4,故要求的椭圆的方程为+=1,故选:C.有条件利用椭圆的定义、标准方程,以及简单性质,求得椭圆的标准方程.本题主要考查椭圆的定义、标准方程,以及简单性质的应用,属于中档题.8. 解:椭圆的左焦点为F(-,0),右焦点为(,0),∵P 为椭圆上一点,其横坐标为,∴P 到右焦点的距离为∵椭圆的长轴长为4∴P到左焦点的距离|PF|=4-=故选D.确定椭圆的焦点坐标,利用椭圆的定义,即可求得P到左焦点的距离.本题考查椭圆的标准方程与几何性质,考查椭圆的定义,属于中档题.9. 解:∵点P到点(4,0)的距离比它到直线x+5=0的距离少1,∴将直线x+5=0右移1个单位,得直线x+4=0,即x=-4,可得点P到直线x=-4的距离等于它到点(4,0)的距离.根据抛物线的定义,可得点P的轨迹是以点(4,0)为焦点,以直线x=-4为准线的抛物线.设抛物线方程为y2=2px,可得=4,得2p=16,∴抛物线的标准方程为y2=16x,即为P点的轨迹方程.故选:C根据题意,点P到直线x=-4的距离等于它到点(4,0)的距离.由抛物线的定义与标准方程,不难得到P点的轨迹方程.本题给出动点P到定直线的距离比到定点的距离大1,求点P的轨迹方程,着重考查了抛物线的定义与标准方程和动点轨迹求法等知识,属于基础题.10. 解:抛物线y=ax2(a<0)可化为,准线方程为.故选B.抛物线y=ax2(a<0)化为标准方程,即可求出抛物线的准线方程.本题考查抛物线的性质,考查学生的计算能力,抛物线方程化为标准方程是关键.11. 解:抛物线y2=4x的准线为x=-1,∵点P到直线x=-3的距离为5,∴点p到准线x=-1的距离是5-2=3,根据抛物线的定义可知,点P到该抛物线焦点的距离是3,故选A.先根据抛物线的方程求得抛物线的准线方程,根据点P到直线x=-3的距离求得点到准线的距离,进而利用抛物线的定义可知点到准线的距离与点到焦点的距离相等,从而求得答案.本题主要考查了抛物线的定义.充分利用了抛物线上的点到准线的距离与点到焦点的距高中数学试卷第8页,共10页..离相等这一特性.12. 解:抛物线x=y2,可得:y2=4x,抛物线的焦点坐标(1,0).依题点P到点A(0,2)的距离与点P到y轴的距离之和的最小值,就是P到(0,2)与P到该抛物线准线的距离的和减去1.由抛物线的定义,可得则点P到点A(0,2)的距离与P到该抛物线焦点坐标的距离之和减1,可得:-1=.故选:C.先求出抛物线的焦点坐标,再由抛物线的定义转化求解即可.本小题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.13. 解:联立直线y=kx-2与抛物线y2=8x,消去y,可得k2x2-(4k+8)x+4=0,(k≠0),判别式(4k+8)2-16k2>0,解得k>-1.设A(x1,y1),B(x2,y2),则x1+x2=,由AB中点的横坐标为2,即有=4,解得k=2或-1(舍去),故选:A.联立直线y=kx-2与抛物线y2=8x,消去y,可得x的方程,由判别式大于0,运用韦达定理和中点坐标公式,计算即可求得k=2.本题考查抛物线的方程的运用,联立直线和抛物线方程,消去未知数,运用韦达定理和中点坐标公式,注意判别式大于0,属于中档题.14. 解:利用椭圆定义得a+c=2×5=10b=2×4=8由正弦定理得=故答案为先利用椭圆的定义求得a+c,进而由正弦定理把原式转换成边的问题,进而求得答案.本题主要考查了椭圆的定义和正弦定理的应用.考查了学生对椭圆的定义的灵活运用.15. 解:将椭圆的方程转化为标准形式为,显然k-2>10-k,即k>6,,解得k=8故答案为:8.16.利用椭圆定义,求出2a,得出a,可求得椭圆的标准方程.本题考查了椭圆方程的求法,是基础题,解题时要注意椭圆的简单性质的合理运用.17.(1)由椭圆的离心率为,短轴长为4,列出方程组,能求出椭圆方程.(2)联立,得5x2+16x=0,由此能求出弦长|AB|.本题考查椭圆方程的求法,考查弦长的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.18.(1)设出双曲线的标准方程,利用双曲线渐近线方程为y=±x,且焦距为4,求出几何量,即可求双曲线的标准方程;(2)利用点差法,求出直线的斜率,即可求直线L方程.本题考查双曲线的标准方程,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.19.(1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,即可求出抛物线的焦点坐标和准线方程,(2)先根据题意给出直线l的方程,代入抛物线,求出两交点的横坐标的和,然后利用焦半径公式求解即可.本题考查了直线与抛物线的位置关系中的弦长问题,因为是过焦点的弦长问题,所以利用了焦半径公式.属于基础题.20.(1)利用直线l:y=bx+2与圆x2+y2=2相切,求出b,利用椭圆的离心率求出a,得到椭圆方程.(2)直线y=kx+2代入椭圆方程,消去y可得:(1+3k2)x2+12kx+9=0,设C(x1,y1),D(x2,y2),则利用韦达定理结合EC⊥ED,求解k ,说明存在实数使得以CD为直径的圆过定点E.本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的应用,考查存在性问题的处理方法,设而不求的应用,考查计算能力.21.(1)由方程组,得5x2+2mx+m2-1=0,由此利用根的判别式能求出实数m的取值范围.(2)设直线L和椭圆C相交于两点A(x1,y1),B(x2,y2),由韦达定理求出弦长|AB|=,由此能求出当m=0时,|AB|取得最大值,此时直线L方程为y=x.本题考查实数的取值范围的求法,考查直线方程的求法,解题时要认真审题,注意根的判别式、韦达定理、弦长公式的合理运用.高中数学试卷第10页,共10页。
3. (本小题共13分)已知椭圆22221(0)1y xa ba+=>>的离心率为22,斜率为(0)k k≠的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点(0,)M m.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)试用表示△MPQ的面积,并求面积的最大值.4.(本小题共14分)已知椭圆2222:1x yCa b+=(0)a b>>经过点3(1,),2M其离心率为12.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线1:(||)2l y kx m k=+≤与椭圆C相交于A、B两点,以线段,OA OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点.求OP的取值范围.(Ⅰ)求椭圆C的方程;⋅的取值范围;BM BN(Ⅲ)设直线AM和直线解析几何大题参考答案: 1.(共13分)(Ⅰ)解:由已知,动点P 到定点1(0,)4F 的距离与动点P 到直线14y =-的距离相等. 由抛物线定义可知,动点P 的轨迹为以1(0,)4为焦点,直线14y =-为准线的抛物线. 所以曲线C 的方程为2y x =. ………………3分(Ⅱ)证明:设11(,)A x y ,22(,)B x y .由2,1,y x y kx ⎧=⎨=+⎩得210x kx --=. 所以12x x k +=,121x x =-. 设00(,)M x y ,则02k x =. 因为MN x ⊥轴, 所以N 点的横坐标为2k . 由2y x =,可得'2y x = 所以当2kx =时,'y k =. 所以曲线C 在点N 处的切线斜率为k ,与直线AB 平行.………………8分 (Ⅲ)解:由已知,0k ≠. 设直线l 的垂线为'l :1y x b k=-+. 代入2y x =,可得210x x b k+-= (*) 若存在两点3344(,),(,)D x y E x y 关于直线l 对称,则34122x x k +=-,342122y y b k +=+又3434(,)22x x y y ++在l 上, 所以211()122b k k k +=-+, 21122b k =-. 由方程(*)有两个不等实根所以21()40b k∆=+>,即221220k k+-> 所以212k <,解得2k <-或2k >. ………………13分 2.(本小题满分14分)解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为246+,所以24622+=+c a , ……………1分又椭圆的离心率为3,即3c a =,所以3c =, ………………2分 所以3a =,c = ………………4分所以1b =,椭圆M 的方程为1922=+y x . ………………5分 (Ⅱ)方法一:不妨设BC 的方程(3),(0)y n x n =->,则AC 的方程为)3(1--=x ny . 由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得0196)91(2222=-+-+n x n x n , ………………6分 设),(11y x A ,),(22y x B ,因为222819391n x n -=+,所以19327222+-=n n x , ………………7分 同理可得2219327n n x +-=, ………………8分所以1961||22++=n n BC ,222961||n n n n AC ++=, ………………10分964)1()1(2||||212+++==∆n n n n AC BC S ABC , ………………12分设21≥+=n n t ,则22236464899t S t t t ==≤++, ………………13分当且仅当38=t 时取等号,所以ABC ∆面积的最大值为83. ………………14分 方法二:不妨设直线AB 的方程x ky m =+.由22,1,9x ky m x y =+⎧⎪⎨+=⎪⎩ 消去x 得222(9)290k y kmy m +++-=, ………………6分 设),(11y x A ,),(22y x B ,则有12229kmy y k +=-+,212299m y y k -=+. ① ………………7分因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=. 由 1122(3,),(3,)CA x y CB x y =-=-,得 1212(3)(3)0x x y y --+=. ………………8分 将1122,x ky m x ky m =+=+代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍). ………………10分 所以125m =(此时直线AB 经过定点12(,0)5D ,与椭圆有两个交点),所以121||||2ABC S DC y y ∆=-12==……………12分 设211,099t t k =<≤+,则ABC S ∆= 所以当251(0,]2889t =∈时,ABC S ∆取得最大值83. ……………14分3.(共13分)解:(Ⅰ)依题意可得,22=a c ,c b =, 又222c b a +=,可得1,b a ==所以椭圆方程为2212y x +=. (Ⅱ)设直线l 的方程为1y kx =+,由221,1,2y kx y x =+⎧⎪⎨+=⎪⎩可得22(2)210k x kx ++-=.设1122(,),(,)P x y Q x y , 则12222k x x k -+=+,12212x x k =-+. 可得121224()22y y k x x k +=++=+. 设线段PQ 中点为N ,则点N 的坐标为222(,)22k k k -++, 由题意有1-=⋅k k MN ,可得222212m k k k k -+⋅=-+. 可得212m k =+, 又0k ≠, 所以102m <<. (Ⅲ)设椭圆上焦点为F ,则1212MPQ S FM x x ∆=⋅⋅-.12x x -== 由212m k =+,可得212k m+=.所以12x x -==又1FM m =-,所以MPQ S ∆=所以△MPQ 的面积为3)1(2m m -(210<<m ). 设3)1()(m m m f -=, 则)41()1()('2m m m f --=.可知)(m f 在区间)41,0(单调递增,在区间)21,41(单调递减. 所以,当41=m 时,)(m f 有最大值6427)41(=f . 所以,当41=m 时,△MPQ 的面积有最大值863.4. (本小题满分14分) 解:(Ⅰ)由已知(,0)2pF ,设11(,)A x y ,则2112y px =, 圆心坐标为112(,)42x p y +,圆心到y 轴的距离为124x p+, …………………2分 圆的半径为1121()2224FA x p px +=⨯--=, …………………4分 所以,以线段FA 为直径的圆与y 轴相切. …………………5分 (Ⅱ)解法一:设022(0,),(,)P y B x y ,由1FA AP λ=,2BF FA λ=,得111101(,)(,)2p x y x y y λ-=--,22211(,)(,)22p px y x y λ--=-, …………………6分 所以1111101,()2px x y y y λλ-=-=-,221221(),22p px x y y λλ-=-=-, …………………8分 由221y y λ=-,得222221y y λ=. 又2112y px =,2222y px =,所以 2221x x λ=. …………………10分代入221()22p p x x λ-=-,得22121()22p p x x λλ-=-,2122(1)(1)2px λλλ+=+, 整理得122p x λ=, …………………12分代入1112px x λ-=-,得122222p p p λλλ-=-, 所以12211λλλ=-, …………………13分 因为1211[,]42λλ∈,所以2λ的取值范围是4[,2]3. …………………14分 解法二:设),(),,(2211y x B y x A ,:2pAB x my =+, 将2p x my =+代入22y px =,得2220y pmy p --=, 所以212y y p =-(*), …………………6分由1FA AP λ=,2BF FA λ=,得111101(,)(,)2p x y x y y λ-=--,22211(,)(,)22p px y x y λ--=-, …………………7分 所以,1111101,()2px x y y y λλ-=-=-,221221(),22p px x y y λλ-=-=-, …………………8分 将122y y λ-=代入(*)式,得2212p y λ=, …………………10分所以2122p px λ=,122p x λ=. …………………12分代入1112px x λ-=-,得12211λλλ=-. …………………13分因为1211[,]42λλ∈,所以2λ的取值范围是4[,2]3. …………………14分6.解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① ……………1分 又点3(1,)2M 在椭圆C 上,所以221914a b+= ② ……………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ) 由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③ ……………8分 设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则 012012122286,()23434km mx x x y y y k x x m k k=+=-=+=++=++. ……………9分 由于点P 在椭圆C 上,所以 2200143x y +=. ……………10分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………11分又||OP ===== ………………………12分因为12k ≤,得23434k <+≤,有2331443k ≤<+,2OP ≤≤. 即所求OP的取值范围是2. ………………………14分 (Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、, 由,A B 在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①②………………………6分 ①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ ………………………7分由已知可得OP OA OB =+,所以120120x x x y y y +=⎧⎨+=⎩④⑤……………………8分由已知当1212y y k x x -=- ,即1212()y y k x x -=- ⑥ ………………………9分把④⑤⑥代入③整理得0034x ky =- ………………………10分与22003412x y +=联立消0x 整理得202943y k =+ ……………………11分 由22003412x y +=得2200443x y =-, 所以222222000002413||4443343OP x y y y y k =+=-+=-=-+ ……………………12分 因为12k ≤,得23434k ≤+≤,有2331443k ≤≤+,OP ≤≤………………………13分 所求OP的取值范围是. ………………………14分 5.(本小题共14分)解:(Ⅰ)由椭圆的定义可知,动点P 的轨迹是以A ,B为焦点,长轴长为∴1c =,a =22b =. ∴W 的方程是22132x y +=. ………………4分(Ⅱ)设C ,D 两点坐标分别为11(,)C x y 、22(,)D x y ,C ,D 中点为00(,)N x y .当0k =时,显然0m =; 当0k ≠时,由221132y kx x y =+⎧⎪⎨+=⎪⎩得 22(32)630k x kx ++-=.所以122632k x x k +=-+, ∴12023232x x k x k +==-+, 从而0022132y kx k =+=+. ∴MN 斜率2002232332MN y k k k x m m k +==---+. 又∵CM DM =, ∴CD MN ⊥,∴222132332k k k mk +=---+ 即 212323k m k k k =-=-++6[(0,]12∈.故所求m的取范围是[. ……………… 6.(本小题满分14分)解:(Ⅰ)由题意得22222411,,a b a b c c a⎧+=⎪⎪⎪=+⎨⎪⎪=⎪⎩解得a =b =故椭圆C 的方程为22163x y +=. ……………………………………4分 (Ⅱ)由题意显然直线l 的斜率存在,设直线l 方程为(3)y k x =-,由22(3),1,63y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)121860k x k x k +-+-=. …………………5分因为直线l 与椭圆C 交于不同的两点M ,N ,所以42221444(12)(186)24(1)0k k k k ∆=-+-=->,解得11k -<<. ……6分 设M ,N 的坐标分别为11(,)x y ,22(,)x y ,则21221212k x x k +=+,212218612k x x k-=+,11(3)y k x =-,22(3)y k x =-.… 7分 所以1212(3)(3)BM BN x x y y ⋅=--+ ……………………………………8分21212(1)[3()9]k x x x x =+-++223312k k+=+ 23322(12)k =++. ……………………………………9分 因为11k -<<,所以2332322(12)k <++≤.故BM BN ⋅的取值范围为(2, 3]. ……………………………………10分 (Ⅲ)由(Ⅱ)得AM AN k k +12121122y y x x --=+-- ……………………………………11分 122112(31)(2)(31)(2)(2)(2)kx k x kx k x x x ---+---=--121212122(51)()1242()4kx x k x x k x x x x -++++=-++2222222(186)(51)12(124)(12)186244(12)k k k k k k k k k --+⋅+++=--++2244222k k -+==--. 所以AM AN k k +为定值2-. ……………………………………14分7.石景山一模8. 顺义2 解(1)因为23=a c ,且3=c ,所以1,222=-==c a b a 所以椭圆C 的方程为1422=+y x …………………………………………….3分 (2 ) 易知椭圆C 的左,右顶点坐标为)0,2(),0,2(B A -,直线AS 的斜率k 显然存在,且0>k 故可设直线AS 的方程为)2(+=x k y ,从而)34,310(k M --由⎩⎨⎧14)2(22=++=y x x k y 得041616)41(2222=-+++k x k x k 设),(11y x S ,则22141416)2(k k x +-=-,得2214182k k x +-= 从而21414kky +=,即)414,4182(222k k k k S ++- 又)0,2(B ,故直线BS 的方程为)2(41--=x ky 由⎪⎩⎪⎨⎧-=--=310)2(41x x k y 得⎪⎩⎪⎨⎧==-=k y x 34310,所以)34,310(k N - 故kk MN 3434+=又0>k ,所以38343423434=⋅≥+=k k k k MN 当且仅当kk 3434=时,即1=k 时等号成立 所以1=k 时,线段MN 的长度取最小值38………………………………..9分(3)由(2)知,当线段MN 的长度取最小值时,1=k此时AS 的方程为02=+-y x ,)54,56(-S ,所以524=AS ,要使TSA ∆的面积为51,只需点T 到直线AS 的距离等于42, 所以点T 在平行于AS 且与AS 距离等于42的直线'l 上 设0:'=+-t y x l ,则由4222=-t ,解得2523==t t 或① 当23=t 时,由⎪⎩⎪⎨⎧=+-=+0231422y x y x 得051252=++x x由于044>=∆,故直线'l 与椭圆C 有两个不同交点②25=t 时,由⎪⎩⎪⎨⎧=+-=+0251422y x y x 得0212052=++x x由于020<-=∆,故直线'l 与椭圆C 没有交点综上所求点T 的个数是2. ……………………………………………..14分9.解:(Ⅰ) a c e ==22, 12122=+ab ,222c b a += ∴2=a ,2=b ,2=c∴14222=+y x --------------------------------------------------------------------------------------5分(Ⅱ)设直线BD 的方程为b x y +=2∴⎩⎨⎧=++=42222y x b x y 0422422=-++⇒b bx x ∴06482>+-=∆b 2222<<-⇒b,2221b x x -=+ ----① 44221-=b x x -----② 222128264864343)2(1b b x x BD -=-=∆=-+= ,设d 为点A 到直线BD :b x y +=2的距离, ∴3b d =∴2)8(422122≤-==∆b b d BD S ABD ,当且仅当2±=b 时取等号. 因为2±)22,22(-∈,所以当2±=b 时,ABD ∆的面积最大,最大值为2--------10分(Ⅲ)设),(11y x D ,),(22y x B ,直线AB 、AD 的斜率分别为:AB k 、AD k ,则=+AB AD k k 122122121222112211--++--+=--+--x b x x b x x y x y =]1)(2[22212121++--++x x x x x x b ------* 将(Ⅱ)中①、②式代入*式整理得]1)(2[22212121++--++x x x x x x b =0,即=+AB AD k k 0----------------------------------------------------------------------------------------------14分 10.(Ⅰ)设椭圆方程为22221,(0)x y a b a b+=>> , …………… 1分∵ 抛物线24y x =的焦点坐标为(0,1) ∴1b = ……………… 2分由已知得2c a =, ∴ 222212a c a c⎧-=⎪⎨=⎪⎩ ,………………………… 3分解得1a c == …………………………………… 4分∴ 椭圆方程为2212x y += …………………………………… 5分 (Ⅱ)设1122(,),(,),M x y B x y (1,0),(0,1),F B ,∴ 1BF k =-∵F 是垂心,∴ 1MN K =∴ 设MN 的方程为y x t =+, ……………………………… 7分 代入椭圆方程后整理得:2234220x tx t ++-= ……………………8分∴ 21212422,33t t x x x x -+=-= ……………………………… 9分 将x y t =-代入椭圆方程后整理得:223220y ty t -+-=∴ 2121222,33t t y y y y -+==…………………………………… 10分 ∵ F 是垂心,∴ MF BN ⊥, 1122(1,),(,1)MF x y BN x y =--=- ∴ 1212(1)(1)0x x y y ---=, ………………………………… 11分 整理得:1212120x x x x y y t +--+=∴ 2242220333t t t t -----+=∴ 2340t t +-= ………… 12分 ∴ 43t =-或1t =(舍) ∴存在直线 l ,其方程为43y x =-使题设成立。