方浩概率强化讲义
- 格式:pdf
- 大小:387.71 KB
- 文档页数:35
强化班讲义(概率统计)第一讲随机事件与概率内容提要(1)事件间的关系与运算(四种关系,三种运算)(2)概率及其简单性质(古典概型,几何概型,求逆公式,加法公式,减法公式)(3)条件概率及三大公式(乘法公式,全概率公式,Bayes公式)(4)事件独立性与Bernoulli概型(独立性的实质及应用,Bernoulli概型的三个模型)典型问题分析问题1: 事件的表示与运算例1.1从一批产品中,每次取出一个(取后不放回),抽取三次,用表示“第i次取到的是正品”,下列结论中不正确的是:A.表示“至少抽到2个正品”B. 表示“至少有1个是次品”C.表示“至少有1个不是正品”D.表示“至少有1个是正品”【B】【解】、和分别表示为至少抽到2个正品,它们的并的运算也应该是至少抽到2个正品,其余选项都正确。
【寓意】本题实质是考查用事件的运算符号来描述一用普通语言表达的随机事件,以便今后运用公式计算概率.问题2: 概率(包括条件概率)的基本公式及应用技巧:利用概率、条件概率的性质、事件间的关系和运算进行求解。
Venn图的直观。
例1.2某城市居民中订阅A报的有45%,同时订阅A报及B报的有10%,同时订阅A报及C报的有8%,同时订阅A,B,C报的有3%,则“只订阅A报”的事件发生的概率为A.0.655 B.0.30 C.0.24 D.0.73 【B】【解】由题用表示订阅A报表示既订阅A报又订阅B表示既订阅A报又订阅C表示既订阅A、B、C三种报则只“只订阅A报”即事件由题意知又因为都是真包含在事件中故选B。
例1.3已知,且,则等于(A) 0.1 (B) 0.2 (C) 0.3 (D) 0.4 【A】【解】所以例1.4 设事件A,B,C满足,, 则A,B,C 中不多于一个发生的概率为多大? 【】【解】“不多于一个发生”等价于事件“A,B,C中有一个发生或者一个都不发生”注:遇到“至少”、“至多”的问题时,利用求逆公式。
例1.5 设事件A, B同时发生时, 事件C一定发生, 则(A)(B)(C)(D)【B】【解析】例1.6 设随机变量X,Y均服从正态分布, 若概率,则【】【解】因为X,Y均服从正态分布,所以二维连续形随机变量有相同的分布律(X,Y)与(Y,X),又连续性随机变量在一点的概率为零,所以的值为。
考研概率与数理统计第一章 随机事件和概率第一节 基本概念例题例1.1:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,没有平局,试问总共输的场次是多少?例1.2:到美利坚去,既可以乘飞机,也可以坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.3:到美利坚去,先乘飞机,后坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.4:10人中有6人是男性,问组成4人组,三男一女的组合数。
例1.5:两线段MN 和PQ 不相交,线段MN 上有6个点A 1,A 2…,A 6,线段PQ 上有7 个点B 1,B 2,…,B 7。
若将每一个A i 和每一个B j 连成不作延长的线段A i B j (i=1,2,…6;j=1,2,…,7),则由这些线段 A i B j 相交而得到的交点最多有A . 315个B . 316个C . 317个D . 318个例1.6:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?例1.7:某市共有10000辆自行车,其牌照号码从00001到10000,求有数字8的牌照号码的个数。
例1.8:3白球,2黑球,先后取2球,放回,至少一白的种数?(有序)151513=∙C C 2112121515=∙-∙C C C C例1.9:3白球,2黑球,先后取2球,不放回,至少一白的种数?(有序)121413=∙C C 1811121415=∙-∙C C C C例1.10:3白球,2黑球,任取2球,至少一白的种数?(无序)121413=∙C C 92225=-C C 例1.11:化简 (A+B)(A+B )(A +B)例1.12:)()()(C B C A C B A = 成立的充分条件为: (1)C A ⊂ (2) C B ⊂例1.13:3白球,2黑球,先后取2球,放回,至少一白的概率?例1.14:3白球,2黑球,先后取2球,不放回,至少一白的概率?例1.15:3白球,2黑球,任取2球,至少一白的概率?例1.16:袋中装有α个白球及β个黑球。
方浩级数讲义
【实用版】
目录
1.方浩级数讲义简介
2.方浩级数的基本概念
3.方浩级数的性质
4.方浩级数的应用
5.总结
正文
【方浩级数讲义简介】
《方浩级数讲义》是一部关于级数理论的教材,作者是我国著名数学家方浩。
该书系统地讲述了级数的基本概念、性质和应用,旨在帮助读者深入理解级数理论并在实际问题中灵活运用。
【方浩级数的基本概念】
方浩级数是指形如 a_n * x^(n-1) 的无穷级数,其中 a_n 是各项的系数,x 是自变量。
方浩级数讲义中主要讨论了以下几种类型的级数:常数项级数、单调项级数、非单调项级数和广义级数。
【方浩级数的性质】
方浩级数具有很多重要的性质,这些性质有助于我们更好地理解级数。
主要包括收敛性、发散性、级数的和、级数的积等。
其中,收敛性是指级数是否有一个有限的和,发散性是指级数没有有限的和。
【方浩级数的应用】
方浩级数在数学和实际问题中有广泛的应用,例如求解微分方程、概率论、数值分析等领域。
通过运用级数理论,我们可以将复杂的问题简化,
从而更容易地解决问题。
【总结】
《方浩级数讲义》是一部关于级数理论的教材,系统地讲述了级数的基本概念、性质和应用。
概率论与数理统计第一章 随机事件和概率1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧-+→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧Ω→贝努利概型贝叶斯公式/)(独立性全概公式和乘法公式条件概率减法加法五大公式几何概型古典概型随机事件样本空间基本事件随机试验BC C B C B C B A P A E ω2、重要公式和结论第二章 随机变量及其分布第一节 基本概念1、概念网络图⎭⎬⎫⎩⎨⎧-→⎭⎬⎫⎩⎨⎧≤<→⎭⎬⎫⎩⎨⎧)()()()(a F b F A P b X a A X 随机事件随机变量基本事件ωω→≤=)()(x X P x F 分布函数: 函数分布正态分布指数分布均匀分布连续型几何分布超几何分布泊松分布二项分布分布离散型八大分布→⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧-102、重要公式和结论第三章 二维随机变量及其分布第一节 基本概念1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=⎭⎬⎫⎩⎨⎧→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧→分布分布分布三大统计分布函数分布正态分布均匀分布常见二维分布独立性条件分布边缘分布连续型分布密度离散型分布律联合分布F t X X X Z Y X Z Y X n 221),,min(max,),(χξ2、重要公式和结论第四章 随机变量的数字特征第一节 基本概念1、概念网络图⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧→切比雪夫不等式矩方差期望一维随机变量⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧→协方差矩阵相关系数协方差方差期望二维随机变量2、重要公式和结论第五章 大数定律和中心极限定理第一节 基本概念1、概念网络图⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→辛钦大数定律伯努利大数定律切比雪夫大数定律大数定律⎭⎬⎫⎩⎨⎧→棣莫弗-拉普拉斯定理列维-林德伯格定理中心极限定理二项定理 泊松定理2、重要公式和结论第六章 数理统计的基本概念第一节 基本概念1、概念网络图正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧ 2、重要公式和结论第七章 参数估计第一节 基本概念1、概念网络图⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎭⎬⎫⎩⎨⎧区间估计一致性有效性无偏性估计量的评选标准极大似然估计矩估计点估计从样本推断总体2、重要公式和结论。
考研概率与数理统计第一章 随机事件和概率第一节 基本概念例题例1.1:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,没有平局,试问总共输的场次是多少?例1.2:到美利坚去,既可以乘飞机,也可以坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.3:到美利坚去,先乘飞机,后坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.4:10人中有6人是男性,问组成4人组,三男一女的组合数。
例1.5:两线段MN 和PQ 不相交,线段MN 上有6个点A 1,A 2…,A 6,线段PQ 上有7 个点B 1,B 2,…,B 7。
若将每一个A i 和每一个B j 连成不作延长的线段A i B j (i=1,2,…6;j=1,2,…,7),则由这些线段 A i B j 相交而得到的交点最多有A . 315个B . 316个C . 317个D . 318个例1.6:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?例1.7:某市共有10000辆自行车,其牌照号码从00001到10000,求有数字8的牌照号码的个数。
例1.8:3白球,2黑球,先后取2球,放回,至少一白的种数?(有序)151513=∙C C 2112121515=∙-∙C C C C例1.9:3白球,2黑球,先后取2球,不放回,至少一白的种数?(有序)121413=∙C C 1811121415=∙-∙C C C C例1.10:3白球,2黑球,任取2球,至少一白的种数?(无序)121413=∙C C 92225=-C C 例1.11:化简 (A+B)(A+B )(A +B)例1.12:)()()(C B C A C B A = 成立的充分条件为: (1)C A ⊂ (2) C B ⊂例1.13:3白球,2黑球,先后取2球,放回,至少一白的概率?例1.14:3白球,2黑球,先后取2球,不放回,至少一白的概率?例1.15:3白球,2黑球,任取2球,至少一白的概率?例1.16:袋中装有α个白球及β个黑球。
2015考研数学综合强化课概率论与数理统计主讲老师:方浩第一章随机事件与概率(一)随机试验和样本空间1.[随机试验]2.[样本空间]: 随机试验所有可能发生的结果组成的集合[样本点]: 随机试验的每个可能结果3.[基本事件]:样本空间中的一个样本点组成的单点集4.[随机事件]:样本空间 的子集5.[必然事件]:随机试验中必然发生的事件,记作Ω.6.[不可能事件]:每次试验中一定不发生,记为φ.(二) 事件的关系和运算1.事件间的关系(1) 包含:A B⊃(2) 相等:.=A B(3) 和:A B.(4) 积:A B(5) 差: =-A B AB(6)互斥(互不相容):ABφ=.(7)对立(互逆):A B=Ω,A Bφ=. 对立事件记为B A=.2.运算律(1)交换律:;==A B B A A B B A(2)结合律:()()=A B C A B C=()()A B C A B C(3)分配律:()()()=A B C A B A C(4)对偶律(摩根律):,==A B A B A B A B(三)概率的定义与性质 1.概率的定义(1)非负性: ()0P A ≥.(2)规范性: ()1P Ω=.(反之不成立) (3)可列可加性:12,,A A 两两互不相容 1212()()()P A A P A P A =++2.概率的性质(1)非负性: 0()1P A ≤≤.(2)规范性: ()0,()1P P ∅=Ω=.(3)有限可加性:12,,,n A A A 两两互不相容1212()()()()n n P A A A P A P A P A =+++.(4) ()1()P A P A =-.3.基本公式[加法公式]()()()()P A B P A P B P AB =+-()()()31231231,j()i i j i i P A A A P A P A A P A A A ==-+∑∑[减法公式]()()()()P A B P A P AB P AB -=-=[逆事件] ()1()P A P A =-(四)三大概型 1.古典概型()AA n P A n=Ω中基本事件的个数中基本事件总数 2.几何概型()A P A =Ω的长度(或面积、体积)的长度(或面积、体积)3.伯努利概型[定义]:随机试验只有两个可能结果:A 和A ;每次试验A 发生概率相等()P A p =[结论]:n 重伯努利试验,事件A 发生k 次的概率:(,)(1)(0,1,2,,)kkn kk nB n pC p p k n -=-= .(五)条件概率,乘法公式,独立性1.条件概率:()0P A >,A 发生条件下B 发生的概率()()()P AB P B A P A =2.条件概率的性质(1) 非负性:0(|)1P B A ≤≤ (2) 规范性:(|)1P A Ω=(3) 逆事件:(|)1(|)P A B P A B =- (4) 加法公式:121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-减法公式:12112(|)()(|)P A A B P A B P A A B -=-3.乘法公式()()()P AB P B A P A = 12121211()()()()n n n P A A A P A A A A P A A P A -=4.两个事件的独立性定义:()()()P AB P A P B =,称事件,A B 相互独立. 推论:设0()1P A <<,,A B 独立()(|)(|)P B P B A P B A ⇔==性质:,A B 独立,则A 与B ,A 与B ,A 与B 也相互独立5.三个事件的独立性1)()()()=;P AB P A P B2)()()()P AC P A P C=;3)()()()=;P BC P B P C4)()()()()=;P ABC P A P B P C满足1-3:称三个事件,,A B C两两独立. 满足1-4:称三个事件,,A B C相互独立.(六)全概率公式与贝叶斯公式 1.完备事件组:若事件1,n A A =Ω,1i j A A i j n φ=≤≠≤,称事件1,,n A A 是一个完备事件组.2.全概率公式:1()()()ni i i P B P A P B A ==∑.3.贝叶斯公式:()1()()()()j jj niii P B A P A P A B P A P B A ==∑[题型一概率的基本计算] 【例1.1】()___A B C=()()A AB C()()B A B C()()()C A B A C()()()D A B A C【P332,例1】事件,A B ,满足1()()2P A P B ==和()1P A B =则有( )(A )A B =Ω (B )AB φ= (C )()1P A B = (D )()0P A B -=【例】设事件,A B互不相容,则()()()0A P AB=()()()()=B P AB P A P B()()()=-C P A P B1()()1D P A B=【P332,例2】设,Y X 为2个随机变量,且{}30,Y 07P X ≥≥=,{}{}4007P X P Y ≥=≥=则(){}max ,0=___P X Y ≥【P328,4】设,,A B C 是随机事件,且()()()14P A P B P C ===,()()0P AB P BC ==,()18P AC =,求,,A B C 都不发生的概率【例】()()===,则P A P B P AB()0.3,0.4,0.5()___P B A B=【例】设相互独立的事件A,B都不发生的概率是1,且A发生B不发生的概率与B发生A不发生9的概率相等,求A发生的概率【例】()()111(),,432P A P B A P A B ===,则()___P A B =[题型二三大概型]【例】()0,1之间任取两个数,乘积小于12的概率____【例】区域()22:20D x y x y +≤≥内任取一点,求该点与坐标原点的连线和X 轴正方向所围成的夹角小于3π的概率【P329,7】设一厂家生产的每台仪器以概率0.7可直接出厂,以概率0.3需进一步调试,经调试后,以概率0.8出厂,以概率0.2定为不合格,不能出厂,现该厂生产了(2)台仪器(设各台n n≥生产过程相互独立).求(I)所有机器都能出厂的概率α.(II)其中恰好有两件能出厂的概率β.(III)至少有两件不能出厂的概率θ.[题型三 条件概率与独立性]【P328,例1】设,A B 是两个随机事件,()()01,0P A P B <<> ()()P B A P B A =则下列选项中正确的是___()()() A A B A B =P P ()()()B A B A B ≠P P ()()()()C AB A P B =P P ()()()()D AB P A P B ≠P【例】设0()1,0()1P A P B <<<<,(|)(|)1P A B P A B += 则( )(A )A,B 互不相容 (B )A,B 互逆 (C )A,B 相互独立 (D )A,B 不独立【P329,例3】将一枚硬币连续投掷两次,定义事件1A :第一次出现正面,2A :第二次出现正面,3A :正反面各出现一次,4A :两次都是出现正面,则下列说法正确的是( )(A )123,,A A A 相互独立(B )234,,A A A 相互独立(C )123,,A A A 两两独立(D )234,,A A A 两两独立【例】设,,A B C是三个相互独立的随机事件,且<<,则下列给定的四对事件中不一定相互0()1P C独立的是 ( )()A A B与C()B A C与C-与CC A B()D AB与C()【题型四全概率公式与贝叶斯公式】【P327,例4】在1,2,3,4中任取1个数为X,再从1,X中任取一个数为Y,则{}2___P Y==【P326,例3】设工厂A,B的产品的次品率分别为1%和2%,现在从由产品A和B的产品分别占60%和40%的一批产品中随机抽取1件(1)求该产品是次品的概率(2)已知取出为次品,求该次品属于A生产的概率【例 1.9】设有甲、乙两个箱子,甲箱中有m只白球,n个红球,乙箱中有a个白球,b个红球,现从甲箱中任意取出一只放入乙箱,再从乙箱中任取出一球,求(1)从乙中取出的是白球的概率(2)已知从乙中取出的是白球,从甲放入乙中的是白球的概率(3)已知从乙中取出的是白球,从甲放入乙中的是红球的概率【例】甲乙两名运动员进行打靶训练,每次打靶甲中靶的概率为0.5,乙中靶的概率为0.3,甲乙两人都中靶的概率为0.2,每次打靶中只要有一人中靶就称为此次打靶合格,第n次()3n>打靶α=合格恰好是第3次合格的概率___63。