华师大七年级下10.1 轴对称测试题
- 格式:doc
- 大小:247.11 KB
- 文档页数:6
初中数学华师大版七年级下学期第10章10.1 轴对称一、单选题1.下面四幅图是我国一些博物馆的标志,其中属于轴对称图形的是()A. B. C. D.2.如图所示,将长方形纸片沿对称轴折叠后,在对称轴处剪下一块,余下部分的展开图为()A. B. C. D.3.如图,是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多反射),则该球最后将落入的球袋是()A. 1 号袋B. 2 号袋C. 3 号袋D. 4 号袋4.用刻度尺分别画下列图形的对称轴,可以不用刻度尺上的刻度画的是()A. ①②③④B. ②③C. ③④D. ①②5.下面各图形中,对称轴最多的是()A. 长方形B. 正方形C. 等边三角形D. 等腰三角形6.如图,在△ABC.AB=AC,∠C=70°,与△ABC关于直线EF对称.∠CAF=15°.连接,则的度数是()A. 45°B. 40°C. 35°D. 30°7.下列说法中正确的是()A. 轴对称图形是由两个图形组成的B. 等边三角形有三条对称轴C. 两个全等三角形组成一个轴对称图形D. 直角三角形一定是轴对称图形8.如图,直线MN是四边形AMBN的对称轴,与对角线交与点Q,点P是直线MN上任意一点,下列判断错误的是( )A. AQ=BQB. AP=BPC. ∠MAP=∠MBPD. ∠ANM=∠NMB二、填空题9.将一张长方形纸片按如上图所示的方式折叠,若,则________.10.如图,四边形ABCD中,∠C=40°,∠B=∠D=90°,E、F分别是BC、DC上的一点,当△AEF的周长最小时,∠EAF的度数为________。
三、解答题11.△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上:(1)画出△ABC关于x轴对称的图形△A1B1C1(2)若点M(a,b)是△ABC内任意一点,则△A1B1C1中与点M对应的点M1的坐标为.12.落在D′,C′的位置上,若∠EFG=55°.求∠1,∠2的度数.四、作图题13.如图,如下图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC 成轴对称、顶点在格点上,且位置不同的三角形.答案解析部分一、单选题1.【答案】A解:A属于轴对称图形,符合题意;B、C、D不属于轴对称图形,不符合题意.故答案为:A.2.【答案】D解:由对称的性质可知,在对称轴处剪下一块,∴排除A,B选项,剪下的是一个三角形,展开后应该是四边形,∴排除C选项,故答案为:D,3.【答案】C解:根据轴对称的性质可知,台球走过的路径为:故答案为:C.4.【答案】A解:②需要量出底边长再平分,①③④直接连接关键点即可.故选A.5.【答案】B解:∵长方形有两条对称轴,正方形有4条对称轴,等边三角形有3条对称轴,等腰三角形有1条对称轴,∴对称轴最多的是:正方形.故答案为:B.6.【答案】C解:连接BB′∵△AB′C′与△ABC关于直线EF对称,∴△BAC≌△B′AC′,∵AB=AC,∠C=70°,∴∠ABC=∠ACB=70°,∴∠BAC=∠B′AC′=40°,∵∠CAF=15°,∴∠C′AF=15°,∴∠BAB′=40°+15°+15°+40°=110°,∴∠ABB′=∠AB′B=35°.故答案为:C.7.【答案】B解:A.轴对称图形可以是1个图形,故不符合题意;B.等边三角形有三条对称轴,即三条中线,故符合题意;C.两个全等的三角形不一定组成一个轴对称图形,故不符合题意;D.直角三角形不一定是轴对称图形,故不符合题意.故答案为:B.8.【答案】D解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AP=BP,AQ=BQ,∵点P是直线MN上的点,∴∠MAP=∠MBP,∴A,B,C不符合题意,D符合题意,故答案为:D.二、填空题9.【答案】52解:如图,由折叠的性质可得∠3=∠1=64°,∴∠4=180°−2×64°=52°,∵长方形的对边平行,∴∠2=∠4=52°.故答案为:52.10.【答案】100°解:作点A关于点D和点B的对称点A",A',作A关于BC和CD的对称点A′,A″,连接A′A″,交BC 于E,交CD于F,作DA延长线AH,根据两点之间线段最短可知A′A″即为△AEF的周长最小值.∵四边形ABCD中,∠C=40°,∠B=∠D=90°,∴∠DAB=360°-∠B-∠D-∠C=360°-90°-90°-40°=140°,∴∠HAA′=180°-140°=40°,∠A′+∠A″=180°-140°=40°∴∠AA′E+∠A″=∠HAA′=40°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=40°,∴∠EAF=140°−40°=100°,故答案为:100°三、解答题11.【答案】解:(1)如图,△A1B1C1为所作;(2)△A1B1C1中与点M对应的点M1的坐标为(a,﹣b).12.【答案】解:如图:∵AD∥BC∴∠DEF=∠EFG=55°,由对称性知∠GEF=∠DEF ∴∠GEF=55°∴∠GED=110°∴∠1=180° 110°=70°,∴∠2=∠GED=110°;四、作图题13.【答案】【解答】解:。
华东师大版七年级数学下册《第十章轴对称、平移与旋转》单元检测卷-带答案(考试时间:120分钟;全卷满分:150分)学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共12个小题,每小题4分,共48分1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字中是轴对称图形的是()2.下列图形中,属于中心对称图形的是()3.如图,已知△ABC与△A′B′C′关于直线l对称,∠B=110°,∠A′=25°,则∠C的度数为()A.25° B.45° C.70° D.110°4.如图,将△ABC绕点C按照顺时针方向旋转35°得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A的度数为()A.45° B.50° C.55° D.60°5.已知△ABC≌△DEF,△DEF的周长为13,AB+BC=7,则AC的长为()A.3 B.4 C.6 D.206.下列说法中正确的是()A.平移不改变图形的形状和大小,旋转则改变图形的形状和大小B.图形可以向某方向平移一定的距离,也可以向某方向旋转一定距离C.平移和旋转的共同点是改变图形的位置D.在平移和旋转图形中,对应角相等,对应线段相等且平行7.如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论中一定正确的是()A.∠CAE=∠BED B.AB=AE C.∠ACE=∠ADE D.CE=BD 8.如图是4×4的网格图,将图中标有①,②,③,④的一个小正方形涂灰,使所有的灰色图形构成中心对称图形,则涂灰的小正方形是()A.① B.② C.③ D.④9.如图,以正六边形ABCDEF的顶点D为旋转中心,按顺时针方向旋转,使得新正六边形A′B′C′D′E′F′的顶点落在直线CD上,则正六边形ABCDEF至少旋转()A.30° B.45° C.60° D.90°10.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数为()A.90° B.135° C.150° D.180°11.如图,某园林内,在一块长33 m,宽21 m的长方形土地上,有两条斜交叉的小路,其余地方种植花卉进行绿化.已知小路的出路口均为1.5 m,则绿化地的面积为()A.693 B.614.25 C.78.75 D.58912.如图,△ABC≌△AEF,点F在BC上,下列结论:①AC=AF;②∠FAB=∠EAB;③∠FAC=∠BAE;④若∠C=50°,∠FAC=80°,则∠BFE=80°.其中错误的有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6个小题,每小题4分,共24分13.如图,如果△ABC和△A′B′C′关于点O中心对称,那么AA′必过点,且被这个点14.如图是一个轴对称图形,AD所在的直线是对称轴,则线段BO,CF的对称线段分别是;△ACE的对称三角形是15.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别是S1,S2,则S1 S2 (选填“>”“<”或“=”)16.如图,在正方形ABCD中,E为边CD上的一点,连接BE,∠BEC=60°,将△BEC绕点C按顺时针方向旋转90°得到△DFC,连接EF,则∠EFD的度数为17.用等腰直角三角尺画∠AOB=45°,并将三角尺沿OB方向平移到如图所示的虚线处,然后将其绕点M按逆时针方向旋转22°,则三角尺的斜边与边OA的夹角α为18.对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持PP′=QQ′,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移;②旋转;③轴对称;④中心对称,其中一定是“同步变换”的有 (选填序号)三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤19.(10分)如图,△ABC和△ADE关于直线MN对称,BC与DE的交点F在直线MN 上.若∠BAC=108°,∠BAE=30°,求∠EAF的度数20.(10分)在如图的方格纸中,每个小正方形的边长都为1,△ABC与△A1B1C1构成的图形是中心对称图形(1)画出此中心对称图形的对称中心;(2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)以点C2为旋转中心将△A2B2C2顺时针方向旋转90°得到△A3B3C2,画出△A3B3C221.(10分)已知△ABC≌△EFG,AB=EF,BC=FG,∠A=58°,∠F-∠G=32°.求∠B与∠C的度数22.(10分)如图,△AOC逆时针旋转到△BOD,其中∠AOC=120°,点A,O,D 在同一直线上.(1)旋转中心是哪一点?(2)旋转了多少度?(3)指出对应线段、对应角及对应点23.(12分)将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE(1)如果AC=6 cm,BC=8 cm,试求△ACD的周长;(2)如果∠CAD∶∠BAD=1∶2,求∠B的度数24.(12分)如图,已知△ABC≌△AEF,∠BAE=25°,∠F=57°(1)请证明∠BAE=∠CAF;(2)△ABC可以经过图形的变换得到△AEF.请描述这个变换;(3)求∠AMB的度数25.(14分)如图,已知直线l1∥l2,点A,B在直线l1上,点C,D在直线l2上,点C在点D的右侧,∠ADC=80°,∠ABC=n°,BE平分∠ABC,DE平分∠ADC,直线BE,DE交于点E,且点E在l1与l2之间(1)写出∠EDC的度数:________;(2)试求∠BED的度数(用含n的代数式表示);(3)将线段BC向右平行移动,使点B在点A的右侧,其他条件不变,请画出图形并直接写出∠BED的度数(用含n的代数式表示)参考答案1.( C )2.( B )3.( B )4.( C )5.( C )6.( C )7.( A )8.( C )9.( C )10.( B )11.( B )12.( A )13.O,平分14.CO,BE;△ABF15.S1=S216.15° 17.22° 18.①19、解:∵∠BAC =108°,∠BAE =30° ∴∠CAE =108°-30°=78° 再根据对称性,得∠EAF =∠CAF∴∠EAF =12∠CAE =39°20解:(1)对称中心点O 如图所示 (2)△A 2B 2C 2如图所示 (3)△A 3B 3C 2如图所示21、解:∵△ABC ≌△EFG ,AB =EF ,BC =FG ∴∠A =∠E ,∠B =∠F ,∠C =∠G∵∠A =58°,∴∠B +∠C =180°-∠A =180°-58°=122° ∵∠F -∠G =32°,即∠B -∠C =32°,∴∠B =77°,∠C =45° 22、解:(1)旋转中心为点O(2)∵∠BOD =∠AOC ,∠AOC =120°,点A ,O ,D 在同一直线上 ∴∠AOB =180°-120°=60°∵线段OA的对应线段为OB∴旋转角为∠AOB=60°.即旋转了60°(3)对应角:∠A对应∠OBD; ∠C对应∠D; ∠AOC对应∠ BOD;对应线段:OA对应OB;OC对应OD;CA对应DB;对应点:A对应 B; C对应D23、解:(1)由折叠的性质可得BD=AD,∠B=∠BAD∵△ACD的周长为AC+AD+CD∴△ACD的周长为AC+BD+CD=AC+BC=6+8=14(cm)(2)设∠CAD=x°,则∠BAD=2x°∵∠B=∠BAD,∴∠B=2x°∵∠B+∠DAB+∠CAD=90°,∴2x°+2x°+x°=90°,∴x=18 ∴∠B=36°24、(1)证明:∵△ABC≌△AEF∴∠BAC=∠EAF∴∠BAC-∠PAF=∠EAF-∠PAF∴∠BAE=∠CAF(2)解:由题意知△ABC绕点A顺时针旋转25°可以得到△AEF(3)解:∵△ABC≌△AEF,∠F=57°,∠BAE=25°∴∠C=∠F=57°,∠CAF=∠BAE=25°∴∠AMB=∠C+∠CAF=57°+25°=82°25第 11 页 共 11 页解:(1)∵DE 平分∠ADC ,∠ADC =80°,∴∠EDC =12∠ADC =40°(2)如题图,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ∴∠ABE =∠BEF ,∠CDE =∠DEF∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,∠ADC =80° ∴∠ABE =12n °,∠CDE =40°∴∠BED =∠BEF +∠DEF =12n °+40°(3)如答图①,点A 在点B 的左边时∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,∠ADC =80° ∴∠ABE =12n °,∠CDE =40°,∵AB ∥CD ,∴AB ∥CD ∥EF∴∠BEF =180°-∠ABE =180°-12n °,∠CDE =∠DEF =40°∴∠BED =∠BEF +∠DEF =180°-12n °+40°=220°-12n °;如答图②,∠BED =12n °+140°综上所述,当点B 在点A 右侧时,∠BED 的度数为12n °+140°或220°-12n °。
七年级数学下册第10章轴对称、平移与旋转定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.64°B.52°C.42°D.36°3、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录.2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”.下列四个剪纸图案是轴对称图形的为( )A .B .C .D .4、下列新冠疫情防控标识图案中,中心对称图形是( )A .B .C .D .5、如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,将ABC 绕点C 逆时针旋转90°得到DEC ,则AED ∠的度数为( )A .105°B .120°C .135°D .150°6、下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7、如图,下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.48、下列交通标志中,是轴对称图形的是()A.B.C.D.9、下列图形是轴对称图形的是()A.B. C.D.10、现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把一张三角形纸片(△ABC )进行折叠,使点A 落在BC 上的点F 处,折痕为DE ,点D ,点E 分别在AB 和AC 上,DE ∥BC ,若∠B =70°,则∠BDF 的度数为____.2、平面直角坐标系中,点P (3,1)关于x 轴对称的点的坐标是______.3、如图,ABC 是等边三角形,E 是AC 的中点,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转90°,得到线段EF ,当点D 运动时,若AF 1,则ABC 的面积为______.4、如图,三角形纸片中,6cm AB =,9cm AC =,10cm BC =.沿过点A 的直线折叠这个三角形,使点B 落在AC 边上的E 处,折痕为AD ,则DEC 周长为__________cm .5、如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转角等于 _____度.三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC的顶点A、B、C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A、B的距离之和最短;(3)在直线l上找一点Q,使点Q到边AC、BC所在直线的距离相等.2、如图,平面直角坐标系xOy中,点A,点B的坐标分别为(﹣2,1)和(1,2),将线段AB绕点P 逆时针方向旋转90°得到线段A′B′,点A的对应点为点A′,点B的对应点为点B′,点A′,B′的坐标分别为(﹣2,﹣1)和(﹣3,2).(1)点P的坐标是(填写选项);A.(0,0)B.(1,0)C.(﹣1,0)(2)线段BA的延长线与线段A'B′相交于点M,连接AP,BP,A′P,B′P,请补全图形并求出∠BMA′的度数.3、如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别是A (-4,-1),B (1,1),C (-1,4),点P (x 1,y 1)是三角形ABC 内一点,点P (x 1,y 1)平移到点P 1(x 1+3,y 1-1)时;(1)画出平移后的新三角形A 1B 1C 1并分别写出点A 1B 1C 1的坐标;(2)求出三角形A 1B 1C 1的面积.4、综合与实践问题情境:数学活动课上,同学们将()Rt 90ABC C ∠=︒△绕点A 顺时针旋转得到Rt AB C ''△,点C '落在边AB 上,连接BB ',过点B '作B D AC '⊥于点D .特例分析:(1)如图1,若点D 与点A 重合,请判断线段AC 与BC 之间的数量关系,并说明理由;探索发现:(2)如图2,若点D 在线段CA 的延长线上.且B AD ABB ''∠=∠,请判断线段AD 与BC '之间的数最关系,并说明理由.5、如图,在22的正方形格纸中,ABC是以格点为顶点的三角形,也称为格点三角形,请你在该正方形格纸中画出与ABC成轴对称的所有的格点三角形(用阴影表示).-参考答案-一、单选题1、D【解析】【详解】解:A.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;B.不是轴对称图形,是中心对称图形,故本选项不符合题意;C.是轴对称图形,不是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、B【解析】【分析】先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.【详解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面内绕点A旋转到△AB′C′的位置,∴∠CAC′等于旋转角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋转角为52°.故选:B.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3、A【解析】【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可.【详解】解:根据轴对称图形的定义可得:只有A 选项符合轴对称图形的定义,故选:A .【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键.4、A【解析】【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:选项B 、C 、D 不能找到这样的一个点,使图形绕某一点旋转180°后与原图重合,所以不是中心对称图形;选项A 能找到这样的一个点,使图形绕某一点旋转180°后与原图重合,所以是中心对称图形; 故选:A .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、B【解析】【分析】由题意易得30,90A D ACB DCE ∠=∠=︒∠=∠=︒,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:30,90A D ACB DCE ∠=∠=︒∠=∠=︒,∴120AED D DCE ∠=∠+∠=︒;故选B .【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.6、C【解析】【详解】解:选项A 是轴对称图形,不是中心对称图形,故A 不符合题意;选项B 不是轴对称图形,是中心对称图形,故B 不符合题意;选项C 既是轴对称图形,也是中心对称图形,故C 符合题意;选项D 是轴对称图形,不是中心对称图形,故D 不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转180︒后能与自身重合.7、B【解析】【分析】如果一个图形沿着某条直线对折,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据轴对称图形的概念逐一分析即可判断.第一、三个图形是轴对称图形,第二、四个图形不是轴对称图形,故符合题意的有两个;故选:B【点睛】本题考查了轴对称图形的概念,掌握概念是关键.8、C【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可.【详解】解:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误;故选C.【点睛】本题考查了轴对称图形的知识,属于基础题,掌握轴对称的定义是关键.9、C【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.10、C【解析】【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.【点睛】本题主要考查了轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题1、40°【解析】【分析】利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.解:∵DE∥BC,∴∠ADE=∠B=70°,由折叠的性质可得∠ADE=∠EDF=70°,∴∠BDF=180°﹣∠ADE-∠EDF=40°,故答案为:40°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.-,2、(31)【解析】【分析】根据关于x轴的对称点的坐标特征求解即可;【详解】P,关于x轴对称的解:根据关于x轴的对称点的特征,横坐标不变,纵坐标变为相反数可得:点(31)-,;点的坐标是(31)-,.故答案是(31)【点睛】本题主要考查了平面直角坐标系中点的对称性,掌握关于x轴对称的点的特征,准确计算是解题的关键.3、【解析】【分析】过点A作AJ⊥BC于J,过点F作FG⊥BC交BC的延长线于G,过点E作EM⊥BC于M,EN⊥FG于N,过点A作AH⊥FG于H.得到△EDM≌△EFN(AAS),进一步得到EM=EN,由此得到当D在直线BC上运动时,点F必在直线FG上运动,再由点到直线的距离垂线段最短可知AH⊥HG,此时AF最小值为AH,由此即可求解.【详解】解:过点A作AJ⊥BC于J,过点F作FG⊥BC交BC的延长线于G,过点E作EM⊥BC于M,EN⊥FG于N,过点A作AH⊥FG于H.如下图所示:∵线段ED绕点E逆时针旋转90°,得到线段EF,∴∠DEF=∠MEN=90°,∴∠DEM=∠FEN,且∠DME=∠FNE=90°,ED=EF,∴△EDM≌△EFN(AAS),∴EM=EN,由于E为定点,BC为定直线,故EM为一个定值,∴当D在直线BC上运动时,点F必在直线FG上运动,∴当AF⊥FG时,由点到直线的距离垂线段最短可知,此时AF的最小值为AH1,∵EM=EN,∴四边形EMGN为正方形,且EM为△AJC的中位线,EN为梯形AHGC的中位线,设CG=x,∴EN =2+=AH CG EM ,∴AJ =2EM 1+x ,JC =JG-CG =AH-CG 1-x∵△ABC 为等边三角形,∴∠ACB=60°,∴=AJ ,11)+-x x ,解得1x =,∴JC 1-x =2,∴等边△ABC 的边长为4,∴11422∆=⋅=⨯⨯ABC S BC AJ故答案为:【点睛】本题考查了旋转的性质,旋转前后对应的边、角相等,三角形全等的判定方法等,本题属于三角形的综合题,难度较大,得出F 点的运动轨迹是解决本题的关键.4、13【解析】【分析】由对折可得:6,,ABAE BD DE 再求解3,CE 从而可得答案.【详解】解:由对折可得:6,,AB AE BD DE9,ACCE AC AE963,C CD DE CE BD DC CE BC CE10313,DEC故答案为:13.【点睛】AB AE BD DE是解本题的关键.本题考查的是轴对称的性质,根据轴对称的性质得到6,5、60【解析】【分析】根据题意由旋转的性质可得∠BAD=∠CAP,即可求∠BAC=∠DAP=60°,即可求解.【详解】解:∵△ABC是等边三角形,∴∠BAC=60°,∵将△ABD经过一次逆时针旋转后到△ACP的位置,∴∠BAD=∠CAP,∵∠BAC=∠BAD+∠DAC=60°,∴∠PAC+∠CAD=60°,∴∠DAP=60°;故旋转角度60度.故答案为:60.【点睛】本题考查旋转的性质,注意掌握变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.三、解答题1、 (1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)连接A1B交直线l于点P,点P即为所求作.(3)∠ACB的角平分线与直线l的交点Q即为所求作.(1)解:如图,分别作出A,B,C的对应点A1,B1,C1,△A1B1C1即为所求作.(2)解:如图连接A1B交直线l于点P,点P即为所求作,点P即为所求作.(3)解:如图∠ACB的角平分线与直线l的交点Q即为所求作,点Q即为所求作.本题考查作图-轴对称变换,角平分线的性质,轴对称-最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、(1)C ;(2)图见解析,90°【解析】【分析】(1)线段AA ′,BB ′的垂直平分线的交点P 即为所求;(2)根据要求作出图形,根据旋转的性质,即可解决问题.【详解】解:(1)如图,旋转中心P 的坐标为(﹣1,0).故答案为:C ;(2)图形如图所示,由旋转的性质可得,90APA BPB ∠'=∠='︒,AP A P '=,BP B P ='∴()APB A PB SAS ''≌∴ABP A B P ∠=∠''∴90BMA BPA ∠=∠='︒90BMA ∠'=︒.此题考查了旋转的性质,寻找旋转中心,全等三角形的判定与性质,解题的关键是理解题意,画出图形,结合有关性质正确求解.3、(1)见解析;A 1(-1,-2),B 1(4,0),C 1(2,3);(2)三角形A 1B 1C 1的面积为192.【解析】【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)利用分割法求面积即可.【详解】(1)∵点1(,)P x y 平移到点111(31),P x y +-,∴平移的规律为:向右平移3个单位,向下平移1个单位,∴1A 为(1-,2-),1B 为(4,0),1C 为(2,3);平移后的三角形如图所示:(2)面积为:11111119555253232222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=本题考查作图-复杂作图,三角形的面积,坐标与图形变化-平移等知识,解题的关键是理解题意,灵活运用所学知识解决问题.4、(1)AC BC =,见解析;(2)AD =BC ',见解析.【解析】【分析】(1)根据旋转性质得到CAC BAB ''∠=∠,当点D 与点A 重合时,+=90CAC BAB ''∠∠︒,据此得到Rt ABC △是等腰直角三角形,继而解得AC BC =;(2)先证明ABB '为等边三角形,再理由AAS 证明t R ADB '≅t R BC B '',最后由全等三角形对应边相等解题.【详解】解:(1)AC BC =,理由如下:()Rt 90ABC C ∠=︒△绕点A 顺时针旋转得到Rt AB C ''△Rt Rt ABC AB C ''∴≅△△CAC BAB ''∴∠=∠B D AC '⊥,点D 与点A 重合,+=90CAC BAB ''∴∠∠︒=45CAC BAB ''∴∠=∠︒45CAB CBA ∴∠=∠=︒AC BC ∴=;(2)AD =BC ',理由如下:由旋转得,AB =AB ',AB B ABB ''∴∠=∠B AD ABB ''∠=∠AB B B AD ''∴∠=∠//CD BB '∴CAB ABB '∴∠=∠又CAB BAB '∴∠=∠1180603CAB BAB B AD ''∴∠=∠=∠=⨯︒=︒ ABB '∴为等边三角形,AB BB ''∴=.在t R ADB '与t R BC B ''中,90D BC B B AD B BC AB BB ∠=∠=︒⎧⎪∠=''''∠''⎨='⎪⎩t R ADB '∴≅t R BC B ''()AAS∴AD =BC '.【点睛】本题考查旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质,是重要考点,掌握相关知识是解题关键.5、见详解【解析】【分析】先找对称轴,再得到个点的对应点,即可求解.【详解】解:根据题意画出图形,如下图所示:【点睛】本题主要考查了画轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.。
华东师大版七年级数学下册10.1 1.生活中的轴对称(含答案)一、选择题1.下列图形中,是轴对称图形的是()图12.下列图案中不是轴对称图形的是()图23.如图3,一种滑翔伞的形状是左右对称的四边形ABCD,∠BAD=150°,∠D=∠B=40°,则∠ACB 的度数是()图3A.130°B.65°C.60°D.70°4.一张菱形(四条边都相等的四边形是菱形)纸片按图4①②依次对折,再按图③打出1个圆形小孔,则展开铺平后的图案是()图4图5二、填空题5.如图6,∠A=30°,∠C'=60°,若△ABC与△A'B'C'关于直线l对称,则∠B=°.图66.图7是小亮制作的风筝的示意图,为了平衡做成轴对称图形,已知OC所在直线是对称轴,∠A=35°,∠ACO=30°,那么∠BOC=°.图77.如图8,正方形ABCD的边长为4 cm,则图中阴影部分的面积为cm2.图8三、解答题8.如图9,△ABC与△A'B'C'关于直线MN对称,AC'与A'C交于点B,其中∠A=90°,AC=8 cm,A'C=12 cm.(1)求△A'B'C'的周长;(2)连结CC',求△A'CC'的面积.图99.如图10,在△ABC中,AD是BC边上的高,将△ABD沿AD折叠得到△AED,点E落在CD上,∠B=50°,∠C=30°.(1)填空:∠BAD=°;(2)求∠CAE的度数.图10答案1. D2. A3. B4. C5. 906. 1157. 88.解:(1)∵△ABC 与△A'B'C'关于直线MN 对称,AC=8 cm,A'C=12 cm,∴AB=A'B',BC=B'C',AC=A'C',∴△A'B'C'的周长为A'C'+B'C'+A'B'=AC+BC+A'B'=AC+A'C=8+12=20(cm).(2)由(1)得A'C'=AC=8 cm . 又∵∠A'=∠A=90°,∴△A'CC'的面积为12A'C ·A'C'=12×12×8=48(cm 2).9.解:(1)40(2)根据题意,△ABD 与△AED 关于直线AD 对称,则∠AED=∠B=50°. 由三角形外角的性质,得∠AED=∠C+∠CAE , 所以∠CAE=50°-30°=20°.。
第10章轴对称、平移与旋转单元测试卷一、选择题(每题3分,共30分)1.下列说法中,正确的有( )①△ABC在平移过程中,对应线段一定相等;②△ABC在旋转过程中,对应线段一定不平行;③△ABC在旋转过程中,周长和面积均不变;④任何图形在旋转过程中,形状一定不变.A.1个B.2个C.3个D.4个2.如图所示的“数字”图形中,有且仅有一条对称轴的是( )3.如图,△ABC经过平移到达△DEF的位置,则下列四个说法中,正确的有( )①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC∥EF,BC=EF.A.1个B.2个C.3个D.4个4.如图,把长方形ABCD沿直线EF折叠,若∠1=20°,则∠2等于( )A.80°B.70°C.40°D.20°5.如图①是3×3的正方形网格,若将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )A.4种B.5种C.6种D.7种6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5 cm,△ADC的周长为17 cm,则BC的长为( )A.7 cmB.10 cmC.12 cmD.22 cm7.如图所示的图形变换中,不是旋转变换的是( )A B C D8.如图所示的四个图形中,既是轴对称图形又是中心对称图形的是( )A B C D9.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是( )A.1B.2C.3D.410.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB'C'的位置,使CC'∥AB,则旋转角的度数为( )A.35°B.40°C.50°D.45°二、填空题(每题3分,共24分)11.请写出一个是中心对称图形的几何图形的名称: .12.如图,△ABC沿BC方向平移得到△DEF,CE=2,CF=3,则平移的距离是___________.(13.如图,△ABC是等边三角形,点P是△ABC内一点.△APC按逆时针方向旋转后与△AP'B重合,则旋转中心是点___________,最小旋转角等于__________度.14.在角、等边三角形、线段、平行四边形、圆这些图形中,既是轴对称图形又是中心对称图形的有__________.15.数轴上的A点表示-2,将数轴上到点A的距离为3的点B向右平移5个单位长度得到点C,再把点C绕点A旋转180°,得到点D,则AD的长为__________.16.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,则格纸中与△ABC成轴对称且也以格点为顶点的三角形有__________个.17.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为________.18.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示).把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F,C两点的距离为_________.三、解答题(19题8分,20、21题每题6分,22题9分,23题7分,24题10分,共46分)19.在边长为1个单位长度的正方形网格中,有4个相同的八边形组成的“十字”形图案,小明为了发现该图案的变化过程,以八边形A为“基本图形”设计了以下三种变换方案(图中EF,GH分别为水平线AB和铅垂线CD的夹角的平分线),请你将他的方案补充完整:(1)把“基本图形A”绕点O顺时针连续旋转3个_______度得到图案C,B,D;(2)把“基本图形A”分别以直线_______为对称轴,顺时针依次翻转得到图案C,B,D;(3)把“基本图形A”沿_______的方向平移_______个单位长度得到“图案B”,将“图案C”用同样的方法平移得到“图案D”;(4)求八边形A的内角和.20.如图,已知△ABC是直角三角形,DE⊥AC于点E,DF⊥BC于点F.(1)请简述图①变换为图②的过程;(2)若AD=3,DB=4,则△ADE与△BDF的面积之和为_______.21.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请至少写出三个结论)22.如图所示,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点画出△ABC,请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:(1)图①中所画的三角形与△ABC组成的图形是轴对称图形;(2)图②中所画的三角形与△ABC组成的图形是中心对称图形;(3)图③中所画的三角形与△ABC的面积相等,但不全等.23.如图,△ABC≌△ADE,∠B=40°,∠E=30°,∠BAE=80°,求∠BAC、∠DAC的度数.24.新源公司为了节约开支,购买了两种同种质量但颜色不同的残缺地板砖,准备用来装饰地面,现在已经把它们加工成如图①所示的等腰直角三角形地板砖.李兵同学设计出了图②③④⑤四种图案.(1)你喜欢其中的哪个图案?试叙述该图案的形成过程;(2)请你利用图形的平移、旋转或轴对称等知识,再设计一幅与上述图案不同的图案.参考答案一、1.【答案】C解:①③④正确.2.【答案】A解:A.有一条对称轴,故本选项正确;B.没有对称轴,故本选项错误;C.有两条对称轴,故本选项错误;D.有两条对称轴,故本选项错误.故选A.3.【答案】D解:此题考查平移的性质.图形经过平移后得到的图形与原图形的对应角、对应线段分别相等,各对对应点所连线段平行且相等.对应线段平行(或在同一条直线上).4.【答案】B解:过G点作GH∥AD,如图,∴∠2=∠4,∵长方形ABCD沿直线EF折叠,∴∠3+∠4=∠B=90°,∵AD∥BC,∴HG∥BC,∴∠3=∠1=20°,∴∠4=90°-20°=70°,∴∠2=70°.故选B.5.【答案】C解:如图,得到的不同图案共6种.故选C.6.【答案】C解:根据折叠可得:AD=BD,∵△ADC的周长为17 cm,AC=5 cm,∴AD+DC=17-5=12(cm),∵AD=BD,∴BC=BD+CD=12 cm.7.【答案】C解:A.半圆形OA'B'绕O逆时针旋转90°,即可得到半圆形OAB,故是旋转变换;B.△ABC绕O旋转180°,即可得到△A'B'C',故是旋转变换;C.四边形AOCB经过旋转不能得到四边形OA'C'B',故不是旋转变换;D.四边形AOBC绕O旋转∠AOA'即可得到四边形A'OB'C',故是旋转变换.故选C.8.【答案】D9.【答案】B解:∵△ABC≌△AEF,AB=AE,∠B=∠E.∴EF=BC,∠EAF=∠BAC.∴∠EAF-∠BAF=∠BAC-∠BAF.即∠EAB=∠FAC.AC与AE不是对应边,不能求出二者相等,也不能求出∠FAB=∠EAB.∴①②错误,③④正确.10.【答案】C二、11.【答案】平行四边形解:答案不唯一.12.【答案】3解:∵△ABC沿BC方向平移得到△DEF,∴平移的距离等于BE或CF的长,∵CF=3,∴平移的距离为3.13.【答案】A;300解:关键是分清旋转中心、旋转方向,根据图形的特征求旋转角.△APC 按逆时针方向旋转后与△AP'B重合,则旋转中心是点A,最小旋转角等于360°-60°=300°.14.【答案】线段、圆 15.【答案】8或216.【答案】5解:与△ABC成轴对称且也以格点为顶点的三角形有5个,如图,分别为△BCD,△BFH,△ADC,△AEF,△CGH.17.【答案】30°解:∵△ACB≌△A'CB',∴∠ACB=∠A'CB',∴∠ACB-∠A'CB=∠A'CB'-∠A'CB,即∠ACA'=∠BCB'=30°.18.【答案】1或5解:如图,有两种情况:点F在线段BC上和点F在CB的延长线上.三、19.解:(1)90 (2)EF,CD,GH (3)从A到B;7 (4)八边形A的内角和为(8-2)×180°=1 080°.分析:本题考查图形的变换及多边形的内角和公式,注意仔细观察各图形的位置是解答此题的关键.20.解:(1)把△ADE绕点D逆时针旋转90°得到△A'DF,就能将题图①变换为题图②.(2)621.解:得出结论:AF∥ED,AC=BD,BF∥CE.解:答案不唯一.22.解:(1)如图①所示,所画的三角形与△ABC组成的图形是轴对称图形;(2)如图②所示,所画的三角形与△ABC组成的图形是中心对称图形;(3)如图③所示,所画的三角形与△ABC的面积相等,但不全等.解:(1)、(3)题答案不唯一.23.解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∠C=∠E=30°,∴∠BAC=180°-∠B-∠C=110°,∴∠DAE=∠BAC=110°.∵∠BAE=80°,∴∠BAD=∠DAE-∠BAE=30°,∴∠DAC=∠BAC+∠BAD=110°+30°=140°.24.解:(1)我喜欢题图中的图案②,其形成过程为:同色地板砖以其中的一块为“基本图形”,经过平移得到;(2)可设计如图所示的图案. 解:这是一道典型的以实际生产、生活为背景的应用型开放题,答案不唯一,考查了学生运用数学知识分析、解决问题的能力.。
华师大版七年级数学下册《第十章轴对称、平移与旋转》达标测试卷-带参考答案一、选择题(每题3分,共24分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看成是轴对称图形的是()2.下列四组图形中,不能视为由一个基本图形通过平移得到的是()3.美丽的雪花呈现出浪漫空灵的气质.如图,雪花图案可以看成是由自身的一部分围绕它的中心依次旋转一定角度得到的,这个角的度数可以是()A.30°B.45°C.60°D.90°(第3题)(第5题)4.下列图形中既是轴对称图形又是中心对称图形的是()5.如图,点A,E,C在同一直线上,△ABC≌△DEC,AE=3,CD=8,则BC 的长为()A.3 B.5 C.8 D.116.如图,在长方形ABCD中,E是CD上一点,连结AE,将△ADE沿AE折叠,使点D的对应点F落在BC上,若AB=3,BC=5,BF=4,则CE的长为()(第6题)A.2 B.1 C.53 D.437.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把其中一张扑克牌旋转180°.魔术师解除蒙具后,看到4张牌如图②所示.那么被旋转过的牌是()(第7题)A.方块4 B.黑桃5 C.梅花6 D.红桃7 8.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移将长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为()(第8题)A.407 B.406 C.405 D.404二、填空题(每题3分,共18分)9.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________°.(第9题)(第11题)10.把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.11.如图,方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A′B′C′,使各顶点仍在格点上,则其旋转角的最小度数是________°.12.如图,直角三角形DEF是由直角三角形ABC沿BC平移得到的,若AB=8,BE=3,DH=2,则图中阴影部分的面积是________.(第12题)(第13题)13.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C的对应点C′落在△ABC内,则∠1+∠2=________°.14.如图,在锐角三角形ABC中,AB=8,△ABC的面积为40,BD平分∠ABC,若M、N分别是BD、BC上的动点,则CM+MN的最小值为________.(第14题)三、解答题(共78分)15.(6分)如图是正方形纸片ABCD,点E、F分别在边BC、CD上,连结AF,AE,将△ABE,△ADF分别沿AE、AF折叠,折叠后边AB与AD恰好重叠于AG,求∠EAF的大小.(第15题)第3 页共12 页16.(6分)如图,在边长均为1的小正方形组成的网格中,△AOB的顶点均在格点上.(1)将△AOB向下平移2个单位后得到△A1O1B1,请画出△A1O1B1;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请画出△A2OB2;(3)△A3OB3与△AOB关于点O中心对称,请画出△A3OB3.(第16题)17.(6分)如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.(第17题)18.(7分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用3种不同的方法分别在下图方格内涂黑2个小正方形,使它们成为轴对称图形.(第18题)19.(7分)如图,△ABD≌△EBC,AB=3 cm,BC=6 cm.(1)求DE的长;(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?(第19题)20.(7分)如图,E是正方形ABCD的边AB上一点,AB=4,AE=1.5,△DAE逆时针旋转后能够与△DCF重合.第5 页共12 页(1)旋转中心是哪一点,旋转角为多少度?(2)请你判断△DFE的形状,并说明理由.(3)求四边形ABFD的面积.(第20题)21.(8分)如图①②均为上底为1,下底为2,高为1的直角梯形.(1)用实线把图①分割成六个全等图形;(2)用实线把图②分割成四个全等图形.(第21题)22.(9分)如图,小丽将直角三角形ABC沿某条直线折叠,使斜边的两个端点A 与B重合,折痕为DE.(1)如果AC=6,BC=8,试求△ACD的周长;(2)如果∠CAD∶∠BAD=4∶7,求∠B的度数.(第22题)23.(10分)如图①,将一副直角三角尺OCD、PMN放在同一条直线AB上,其中∠PNM=30°,∠OCD=45°.(1)【观察猜想】将图①中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN=________.(2)【操作探究】将图①中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图③,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)【深化拓展】将图①中的三角尺OCD绕点O按顺时针方向旋转一周,在旋转的过程中,若边CD恰好与边MN平行,请你求出此时旋转的角度.(第23题)第7 页共12 页24.(12分)将一副直角三角尺按如图①所示的方式摆放在直线MN上(∠DEC=60°,∠BAC=45°),保持三角尺EDC不动,将三角尺ABC绕点C以每秒5°的速度顺时针旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转.(1)如图②,当CA平分∠DCE时,求此时t的值;(2)当AC旋转至∠DCE的内部时,求∠DCA与∠ECB之间的数量关系,并说明理由;(3)在旋转过程中,当三角尺ABC的某一边平行于三角尺EDC的某一边时,求此时t的值.(第24题)答案一、1.B 2.C 3.C 4.A 5.B6.D思路点睛:根据长方形的面积列方程求解.7.A点拨:观察发现旋转之前和旋转之后扑克牌的图案没变化,所以旋转的扑克牌转180°后图案与原来相同,只有方块4符合题意,故选A.8.D思路点睛:根据平移的性质得出AA1=5,A1A2=5,A1B1=6,A2B2=6,进而求出AB1和AB2的长,然后总结规律,得出AB n=(n+1)×5+1,求出n 即可.二、9.12010.6011.9012.2113.8014.10三、15.解:∵四边形ABCD是正方形,∴∠BAD=90°由折叠的性质得,∠DAF=∠GAF=12∠DAG,∠BAE=∠GAE=12∠BAG,∴∠EAF=∠GAF+∠GAE=12∠DAG+12∠BAG=12(∠DAG+∠BAG)=12∠BAD=45°.16.解:(1)如图,△A1O1B1即为所作.(2)如图,△A2OB2即为所作.(3)如图,△A3OB3即为所作.(第16题) 17.解:由旋转的性质可得,AB=AD,∠ADE=∠B=70°∴∠ADB=∠B=70°∴∠CDE=180°-∠ADB-∠ADE=40°.18.解:如图.(方法不唯一)(第18题)第9 页共12 页19.解:(1)∵△ABD ≌△EBC ∴AB =BE ,BD =BC∴DE =BD -BE =BC -AB =6-3=3(cm).(2)垂直.∵△ABD ≌△EBC ,且A 、B 、C 在一条直线上 ∴∠ABD =∠CBE ,∠ABD +∠CBE =180° ∴∠ABD =∠CBE =90°,即DB ⊥AC . 20.解:(1)旋转中心是点D ,旋转角为90°.(2)△DFE 是等腰直角三角形.理由如下: ∵四边形ABCD 是正方形,∴∠ADC =90°.根据旋转的性质可得DE =DF ,∠EDF =∠ADC =90° ∴△DFE 是等腰直角三角形.(3)∵四边形ABCD 是正方形,∴∠A =90°,AD =AB =4,S正方形ABCD=4×4=16,根据旋转的性质可得S △CDF =S △ADE =12AD ·AE =12×4×1.5=3 ∴S 四边形ABFD =S 正方形ABCD +S △CDF =16+3=19. 21.解:(1)如图①所示. (2)如图②所示.(第21题)22.解:(1)由折叠的性质可得BD =AD ,∴△ACD 的周长=AC +AD +CD =AC+BD +CD =AC +BC =6+8=14. (2)可设∠CAD =4x °,∠BAD =7x °由折叠的性质可得∠B =∠BAD ,∴∠B =7x ° ∵∠C =90°,∴∠B +∠DAB +∠CAD =90° ∴7x °+7x °+4x °=90°,解得x =5,∴∠B =35°. 23.解:(1)105°(2)∵OD 平分∠MON ,∴∠DON =12∠MON =12×90°=45°,∴∠DON =∠D =45°,∴CD ∥AB∴∠CEN =180°-∠MNO =180°-30°=150°.(3)设直线MO 与CD 相交于点F 如图①,当CD 在AB 上方时(第23题)∵CD∥MN,∴∠OFD=∠M=60°在△ODF中,∠MOD=180°-∠D-∠OFD=180°-45°-60°=75°,∴旋转角为75°;如图②,当CD在AB的下方时∵CD∥MN,∴∠DFO=∠M=60°,在△DOF中,∠DOF=180°-∠D-∠DFO=180°-45°-60°=75°∴旋转角为75°+180°=255°.综上所述,旋转的角度为75°或255°时,边CD恰好与边MN平行.24.解:(1)∵CA平分∠DCE,∴∠ACE =12∠DCE=15°∴t=15°÷5°=3.(第24题)(2)∠ECB-∠DCA=15°.理由如下:如图①,由旋转得∠ACE=5°t,∴∠DCA=30°-5°t,∠ECB=45°-5°t,∴∠ECB-∠DCA=(45°-5°t)-(30°-5°t)=15°.(3)分四种情况:①当AB∥DE时,如图②,∠ACE=∠ACB+∠DCE=45°+30°=75°,∴t=75°÷5°=15;(第24题)②当AB∥CE时,如图③,则∠BCE=∠B=90°∴∠ACE=∠BCE+∠ACB=90°+45°=135°第11 页共12 页∴t=135°÷5°=27;③当AB∥CD时,如图④,则∠DCB=∠B=90°∴∠ACE=∠DCE+∠DCB+∠ACB=30°+90°+45°=165°,∴t=165°÷5°=33;(第24题)④当AC∥DE时,如图⑤,则∠ACD=∠D=90°∴∠ACE=∠ACD+∠DCE=90°+30°=120°∴t=120°÷5°=24.综上所述,t的值是15,24,27或33.第12 页共12 页。
第10章轴对称、平移与旋转一、单选题1.观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)平移得到的是()A. B. C. D.2.如图将一矩形纸片对折后再对折,然后沿图中的虚线剪下,得到①和②两部分,将①展开后得到的平面图形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形3.如图,两个直角三角形重叠在一起,将沿AB方向平移得到,,,下列结论:① ;② ;③ :④ ;⑤阴影部分的面积为.其中正确的是()A. ①②③④B. ②③④⑤C. ①②③⑤D. ①②④⑤4.如图,在4×4的正方形网格中,△MNP绕某点旋转90°,得到△M1N1P1,则其旋转中心可以是()5.下列银行标志是中心对称图形的是()A. B. C. D.6.如图,在边长为1的小正力形组成的网格中,点A,B,C部在格点上,若将线段AB沿BC方向平移,使点B与点C重合,则线段AB扫过的面积为()A. 11B. 10C. 9D. 87.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是( )A. BE=4B. ∠F=30°C. AB∥DED. DF=58.如图,沿射线方向平移到(点E在线段上),如果,,那么平移距离为()A. 3cmB. 5cmC. 8cmD. 13cm9.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合.()A. B. C. D.10.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正确的是()A. ①②B. ②③C. ③④D. ②③④11.如图,将(其中,),绕点按顺时针方向旋转到的位置,使得点,,在同一直线上,则旋转角的度数为( )A. B. C. D.12.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为( )A. 3B. 4C. 5D. 613.图中的两个梯形成中心对称,点P的对称点是()A. 点AB. 点BC. 点CD. 点D14.如图,已知图形是中心对称图形,则对称中心是()A. 点CB. 点DC. 线段BC的中点D. 线段FC的中点15.下列说法中,正确的有()①正方形都是全等形;②等边三角形都是全等形;③形状相同的图形是全等形;④大小相同的图形是全等形;⑤能够完全重合的图形是全等形.A. 1个B. 2个C. 3个D. 4个二、填空题16.如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=________.17.如图,将周长为12的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为________18.如图,在正方形ABCD中,,点E在CD边上,且,将绕点A顺时针旋转90°,得到,连接,则线段的长为________.19.如图,图中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对.20.如图,△DEF是由△ABC沿BC方向向右平移2cm后得到,若△ABC的周长为10cm,则四边形ABFD的周长等于________ cm。
华师七下第10章轴对称能力测试题(时间120分钟,满分120分)一、填空题(每小题3分,共30分)1、已知∠AOB=30°,P 在OA 上且OP=3cm ,点P 关于直线OB 的对称点是Q ,那么PQ=________.2、△ABC 中,∠A=70°,若三角形内有点P 到三边的距离相等,则∠BPC=________;若三角形内有点M 到三个顶点的距离相等,则∠BMC=________.3、如图1,直线l 1,l 2,l 3表示三条互相交叉的公路,现在建一个货物中转站,要求到三条公路的距离相等,则可选择的地址有________处. 4、等腰三角形腰上的高与另一腰的夹角为40°,则它的顶角为________.5、如图2,一个六边形的六个内角都是120°,连续四边的长依次是1,3,3,2,则该六边形的周长为=________.6、等腰三角形是________图形,它的对称轴是_____________________________.7、等腰三角形的一个角是另一个角的4倍,则这个等腰三角形的顶角________度.8、如果顶角为锐角的等腰三角形的腰长不变,而顶角在逐渐变大,那么底边的长度逐渐________,三角形的面积将___________. 9、等腰三角形的周长为24cm ,其中两边的差是3cm ,则这个三角形的三边的长为_________.10、如果一个三角形有一个内角为40°,且过某一顶点能将该三角形分成两个等腰三角形,则该三角形其余两个角的度数分别是________________. 二、选择题(每小题3分,共30分)11、在△ABC 中,∠A 、∠B 的平分线相交于点O ,则△ABO( ) A .可能是直角三角形 B .可能是锐角三角形 C .一定是钝角三角形 D .以上都有可能 12、如图3是奥运会会旗上的五球圆形,它只有( )条对称轴. A .1 B .2 C .3 D .413、已知等腰三角形的边长为4cm ,另一边长为9cm ,则它的周长为( ) A .13cm B .17cm C .22cm D .17cm 或22cm14、如图4,在△ABC 中,∠B 、∠C 的平分线相交于F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E ,那么下列结论正确的有( ) ①△BDF ,△CEF 都是等腰三角形;②DE=DB+CE ;③AD+DE+AE=AB+AC ;④BF=CF . A .1个 B .2个 C .3个 D .4个 15、如图5,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )l 1l 2 l 3 图1 133 2 图2图3BAEFDC 图NM P ABCC 'B 'A '图5A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1 C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上 16、等腰三角形边长为5cm ,一腰上中线把其周长分为两部分之差为3cm ,则腰长为( ) A .2cm B .8cm C .2cm 或8cm D .以上都不对17、如图6,BC=BD ,AD=AE ,DE=CE ,∠A=36°,则∠B=( ) A .45° B .36° C .72° D .30° 18、下列说法中,错误的有( )个. ①等腰三角形的底角是锐角;②等腰三角形的角平分线、中线和高是同一条线段;③等腰三角形两腰上的高相等;④等腰三角形两腰上的中线相等. A .0 B .1 C .2 D .3 19、有一个外角等于120°,且有两个内角相等的三角形是( ) A .不等边三角形 B .等腰三角形 C .等边三角形 D .不能确定20、下列图形中,是轴对称图形的有( )个 ①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形 A .2 B .3 C .4 D .5 三、解答题(每小题10分,共60分)21、如图7,∠A=90°,BD 是△ABC 的角平分线,DE 是BC 的垂直平分线,求∠ABC 和∠CDE 的度数.22、如图8,在右图中分别作出点P 关于OA 、OB 对称点P 1、P 2,连结P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,求△PMN 的周长.23、如图9,已知在△ABC 中,AB=AC ,AD ⊥BC 于D ,若将此三角形沿AD 剪开后再拼成一个四边形,你能拼出所有不同形状的四边形吗?画出所拼的四边形的示意图(标出图中的直角).A B C D 图9A P 图8OA B C D图7E 图6A BC DE24、如图10,已知△ABC 中,∠C=90°,D 是AB 上一点,且AC=AD ,请问∠A 与∠DCB 具有怎样的关系?并说明理由.25、如图11,已知BO 、CO 分别是∠ABC 和∠ACB 的平分线,OE ∥AB ,OF ∥AC ,如果已知BC 的长为a ,你能知道△OEF 的周长吗?算算看.26、如图12,在∠ABC 内有一点P ,问: (1)能否在BA 、BC 边上各找到一点M 、N ,使△PMN 的周长最短,若能,请画图说明,若不能,说明理由. (2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN 的度数?若能,请求出它的数值.若不能,请说明原因.A P C图12BB C F E O 图11A BC D 图10华师七下第10章轴对称能力测试题参考答案一、填空题1、3cm2、125°,140°3、44、50°或130°5、156、轴对称,顶角平分线(或底边上中线或底边上高)所在直线7、120°或20°8、增大,逐渐增大然后又逐渐减小9、7cm,7cm,10cm或9cm,9cm,6cm 10、105°和35°或120°和20°或80°和60°或90°和50°二、选择题11、C 12、A 13、C 14、D 15、D 16、B 17、B 18、B 19、C20、C三、解答题21、∠ABC=60°,∠CDE=60°22、5cm23、略24、∠A=2∠DCB,由∠ACD=∠ADC=∠DCB+∠B,得∠ACD+∠DCB=2∠DCB+∠B=90°, 又∠A+∠B=90°, 所以∠A=2∠DCB25、a26、(1)能,在BA、BC边各找一点M、N(2)如图答1,∠MPN=100°,设∠P'=x,∠P''=y,则∠P'PP''=140°,∠PMN=2x,∠PNM=2y,则有140 22180 x y MPNx y MPN++∠=︒⎧⎨++∠=︒⎩解之得:∠MPN=100°。
华师大新版七年级下学期《第10章轴对称、平移与旋转》单元测试卷一.选择题(共13小题)1.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形2.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点.若GH的长为10cm,求△PAB 的周长为()A.5cm B.10cm C.20cm D.15cm3.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.4.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A.21:10B.10:21C.10:51D.12:015.用刻度尺分别画下列图形的对称轴,可以不用刻度尺上的刻度画的是()A.①②③④B.②③C.③④D.①②6.观察下图中各组图形,其中不是轴对称的是()A.B.C.D.7.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个8.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.9.如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是()A.AQ=PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ 10.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A.②B.③C.④D.⑤11.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8B.10C.12D.1412.将图绕中心按顺时针方向旋转60°后可得到的图形是()A.B.C.D.13.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能二.解答题(共13小题)14.如图,△ABC的顶点坐标分别为A(4,1)、B(6,1)、C(7,5),在方格中按要求画图.(1)先将△ABC向下平移1个单位再向左平移6个单位得对应△ABC,画出△A1B1C1;(2)画△A2B2C2,使∠A2=∠A,A2C2=AC,B2C2=BC,且A2B2≠AB.15.如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.16.如图中每个小正方形的边长都是一个单位长度,在图中画出阴影部分图形向右平移6个单位,再向下平移2个单位后得到的图形.17.如图,△ABC中,AB=AC=2,∠BAC=45°,将△ABC绕点A按顺时针方向旋转角α得到△AEF,且0°<α≤180°,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当α=90°时,求四边形AEDC的面积.18.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.19.如图,△ABC与△DEF关于点O对称,请你写出两个三角形中的对称点,相等的线段,相等的角.20.已知六边形ABCDEF是以O为中心的中心对称图形(如图),画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段.21.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B (0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.22.在网格中画对称图形.(1)如图是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼成一个图形,使得所拼成的图形满足下列条件,并分别画在图①、图②、图③中(只需各画一个,内部涂上阴影);①是轴对称图形,但不是中心对称图形;②是中心对称图形,但不是轴对称图形;③既是轴对称图形,又是中心对称图形.(2)请你在图④的网格内设计一个商标,满足下列要求:①是顶点在格点的凸多边形(不是平行四边形);②是中心对称图形,但不是轴对称图形;③商标内部涂上阴影.23.如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?24.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.25.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点•对应边与对应角,并说出图中标的a,b,c,e,α各字母所表示的值.26.找出下列图形中的全等图形.华师大新版七年级下学期《第10章轴对称、平移与旋转》单元测试卷参考答案与试题解析一.选择题(共13小题)1.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形【分析】三角形是轴对称图形,则该三角形是等腰三角形,根据有一个内角是60°的等腰三角形是等边三角形,即可作出判断.【解答】解:因为三角形是轴对称图形,则该三角形是等腰三角形,根据有一个内角是60°的等腰三角形是等边三角形.故选:A.【点评】本题主要考查了等边三角形的判定方法,是需要熟记的内容.2.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点.若GH的长为10cm,求△PAB 的周长为()A.5cm B.10cm C.20cm D.15cm【分析】连结PG、PH,如图,根据轴对称的性质得OM垂直平分PG,ON垂直平分PH,则根据线段垂直平分线的性质得AP=AG,BP=BH,于是利用等线段代换可得△PAB的周长=GH=10cm.【解答】解:连结PG、PH,如图,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴OM垂直平分PG,ON垂直平分PH,∴AP=AG,BP=BH,∴△PAB的周长=AP+AB+BP=AG+AB+BH=GH=10cm.故选:B.【点评】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.3.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】分别根据轴对称图形的定义即可判断;【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.4.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A.21:10B.10:21C.10:51D.12:01【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选:C.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.5.用刻度尺分别画下列图形的对称轴,可以不用刻度尺上的刻度画的是()A.①②③④B.②③C.③④D.①②【分析】①②③④均可以不用刻度尺上的刻度画对称轴,方法如图所示.【解答】解:①②③④均可以不用刻度尺上的刻度画对称轴.故选:A.【点评】考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质.6.观察下图中各组图形,其中不是轴对称的是()A.B.C.D.【分析】直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.【解答】解:由图形可以看出:C选项中的伞把不对称,故选C.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.7.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个【分析】根据轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:符合题意的有3个三角形.故选:B.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.8.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向左对折,向上对折,从直角三角形的一直角边的正中间剪去一个正方形,展开后实际是从正方形的一条对角线上剪去两个小长方形,得到结论.故选B.【点评】本题主要考查学生的动手能力及空间想象能力.9.如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是()A.AQ=PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ【分析】如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD 最小.作DM∥BC交AC于M,交PA于N,利用平行线的性质,证明AN=PN,利用全等三角形证明NQ=PQ,即可解决问题.【解答】解:如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD最小.作DM∥BC交AC于M,交PA于N.∵∠ACB=∠DEB=90°,∴DE∥AC,∵AD=DB,∴CE=EB,∴DE=AC=CA′,∵DE∥CA′,∴==,∵DM∥BC,AD=DB,∴AM=MC,AN=NP,∴DM=BC=CE=EB,MN=PC,∴MN=PE,ND=PC,在△DNQ和△CPQ中,,∴△DNQ≌△CPQ,∴NQ=PQ,∵AN=NP,∴AQ=3PQ.故选:B.【点评】本题考查轴对称最短问题、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是利用对称找到点P位置,熟练掌握平行线的性质,属于中考常考题型.10.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A.②B.③C.④D.⑤【分析】根据平移的性质,结合图形进行分析,求得正确答案.【解答】解:A、②是由旋转得到,故错误;B、③是由轴对称得到,故错误;C、④是由旋转得到,故错误;D、⑤形状和大小没有变化,由平移得到,故正确.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.11.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8B.10C.12D.14【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故选:C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.12.将图绕中心按顺时针方向旋转60°后可得到的图形是()A.B.C.D.【分析】根据旋转的意义,找出图中阴影三角形3个关键处按顺时针方向旋转60°后的形状即可选择答案.【解答】解:将图绕中心按顺时针方向旋转60°后得到的图形是.故选:A.【点评】考查了生活中的旋转现象,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.13.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选:C.【点评】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.二.解答题(共13小题)14.如图,△ABC的顶点坐标分别为A(4,1)、B(6,1)、C(7,5),在方格中按要求画图.(1)先将△ABC向下平移1个单位再向左平移6个单位得对应△ABC,画出△A1B1C1;(2)画△A2B2C2,使∠A2=∠A,A2C2=AC,B2C2=BC,且A2B2≠AB.【分析】(1)首先确定A、B、C三点向下平移1个单位再向左平移6个单位得对应点位置,再连接即可;(2)首先作∠A2=∠A,A2C2=AC,再以C2为圆心B2C2长为半径画弧交∠A2的另一边与B2,发现B2有两个位置,再连接即可.【解答】解:(1)如图所示:.(2)如图所示.【点评】此题主要考查了平移作图,关键是正确确定平移后对应点的位置.15.如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.【分析】(1)由点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)可得其平移规律为:向右平移6个单位,向上平移4个单位;故把△ABC的各顶点向右平移6个单位,再向上平移4个单位,顺次连接各顶点即为△A′B′C′;(2)根据各点所在的象限和距离坐标轴的距离得到平移后相应各点的坐标即可.【解答】解:(1)∵△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4),∴平移规律为:向右平移6个单位,向上平移4个单.如图所示:(2)A′(2,3),B′(1,0),C′(5,1).【点评】解决本题的难点是理解对应各点的平移规律就是三角形平移的规律.16.如图中每个小正方形的边长都是一个单位长度,在图中画出阴影部分图形向右平移6个单位,再向下平移2个单位后得到的图形.【分析】将图中的每个顶点先向右移动6个单位,再向下移动两个单位连接各点即可.【解答】解:如图,【点评】本题考查了利用平移设计图案,熟悉平移的性质是解题的关键.17.如图,△ABC中,AB=AC=2,∠BAC=45°,将△ABC绕点A按顺时针方向旋转角α得到△AEF,且0°<α≤180°,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当α=90°时,求四边形AEDC的面积.【分析】(1)先利用旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则根据“SAS”证明△AEB≌△AFC,于是得到BE=CF;(2)先判断△ABE为等腰直角三角形得到∠ABE=45°,则AC∥BE,同理可得AE ∥CF,于是可证明四边形AEDC为菱形,AF与BE交于点H,如图,通过证明△AHE为等腰直角三角形得到AH=AE=,然后根据菱形的面积公式计算.【解答】(1)证明:∵△ABC绕点A按顺时针方向旋转角α得到△AEF,∴AE=AB,AF=AC,∠EAF=∠BAC,∴AB=AC=AE=AF,∠EAF+∠FAB=∠BAC+∠FAB,即∠EAB=∠FAC,在△AEB和△AFC中,,∴△AEB≌△AFC,∴BE=CF;(2)解:∵α=90°,即∠EAB=∠FAC=90°,∵AE=AB,∴△ABE为等腰直角三角形,∴∠ABE=45°,∴∠ABE=∠BAC,∴AC∥BE,同理可得AE∥CF,∵AE=AC,∴四边形AEDC为菱形,AF与BE交于点H,如图,∵∠EAF=45°,∴AH平分∠EAB,∴AH⊥BE,∴△AHE为等腰直角三角形,∴AH=AE=,∴四边形AEDC的面积=AH•DE=×2=2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决(1)题的关键是证明△AEB≌△AFC.18.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.【分析】(1)先利用已知条件∠B=∠E,AB=AE,BC=EF,利用SAS可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC﹣∠PAF=∠EAF﹣∠PAF,即有∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根据三角形外角的性质可求∠AMB.【解答】解:(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF,∴∠C=∠F,∠BAC=∠EAF,∴∠BAC﹣∠PAF=∠EAF﹣∠PAF,∴∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,∴∠AMB=∠C+∠CAF=57°+25°=82°.【点评】本题利用了全等三角形的判定、性质,三角形外角的性质,等式的性质等.19.如图,△ABC与△DEF关于点O对称,请你写出两个三角形中的对称点,相等的线段,相等的角.【分析】利用中心对称的定义及性质直接写出即可.【解答】解:对称点为:A和D、B和E、C和F;相等的线段有AC=DF、AB=DE、BC=EF;相等的角有:∠A=∠D,∠B=∠E,∠C=∠F.【点评】本题考查了中心对称的性质及定义,中心对称的两个图形的对应角相等,对应边的比相等.20.已知六边形ABCDEF是以O为中心的中心对称图形(如图),画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段.【分析】画中心对称图形,要确保对称中心是对应点所连线段的中点,即B,O,E共线,并且OB=OE,C,O,F共线,并且OC=OF.【解答】解:作法如下:图中A的对应点是D,B的对应点是E,C的对应点是F;AB对应线段是DE,BC 对应线段是EF,CD对应线段是AF.【点评】本题考查了中心对称图形的画法.中心对称图形是图形绕对称中心旋转180°后的图形,旋转角是平角,对应点和对称中心应该共线,并且被对称中心平分.21.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B (0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.【分析】(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.【解答】解:(1)如图,△A1B1C1为所作,(2)四边形AB1A1B的面积=×6×4=12.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.在网格中画对称图形.(1)如图是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼成一个图形,使得所拼成的图形满足下列条件,并分别画在图①、图②、图③中(只需各画一个,内部涂上阴影);①是轴对称图形,但不是中心对称图形;②是中心对称图形,但不是轴对称图形;③既是轴对称图形,又是中心对称图形.(2)请你在图④的网格内设计一个商标,满足下列要求:①是顶点在格点的凸多边形(不是平行四边形);②是中心对称图形,但不是轴对称图形;③商标内部涂上阴影.【分析】(1)根据题中的要求,图①是轴对称图形,不能画成中心对称图形;图②是中心对称图形,不能画成轴对称图形;图③既是轴对称图形,又是中心对称图形;(2)根据题中的要求,图④是顶点在格点的凸多边形(不是平行四边形),也是中心对称图形,但不是轴对称图形.【解答】解:(1)如图①,是轴对称图形,但不是中心对称图形;如图②,是中心对称图形,但不是轴对称图形;如图③,既是轴对称图形,又是中心对称图形.(2)如图④即为所求.【点评】本题主要考查了利用图形的基本变换作图,由一个基本图案通过平移、旋转和轴对称以及中心对称等方法可以变换出一些新图案,关键是要熟悉轴对称、平移以及旋转等图形变换的性质.23.如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?【分析】观察此图可知此图形状,大小没变,只是位置发生了变化.由旋转平移的性质可知此图是通过旋转、平移得到.【解答】解:通过旋转、平移得到.以B为中心,逆时针旋转90°,向下平移1个单位,再向右平移5个单位.【点评】本题考查几何变换的类型及几种几何变换的特点,解答此题的关键是掌握旋转、平移的性质并熟悉图形特征.24.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次平移变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点A(填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.【分析】(1)根据平移的定义可知图①向右上平移可以得到图②;(2)将图形②绕着点A旋转后能与图形③重合,可知旋转中心;(3)以A为旋转中心,顺时针旋转90°得到关键顶点的对应点连接即可.【解答】解:(1)图①经过一次平移变换可以得到图②;(2)图③是可以由图②经过一次旋转变换得到的,其旋转中心是点A;(3)如图.【点评】本题难度中等,考查网格中平移、旋转及旋转作图,作图时,抓住网格的特点,根据旋转的性质,借助于直角三角板中的直角,就能顺利作出图形,解题时要注意是顺时针还是逆时针方向.平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,观察时要紧扣图形变换特点,认真判断.25.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点•对应边与对应角,并说出图中标的a,b,c,e,α各字母所表示的值.【分析】根据能够完全重合的两个图形叫做全等形,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角可得对应顶点,对应边与对应角,进而可得a,b,c,e,α各字母所表示的值.【解答】解:对应顶点:A和G,E和F,D和J,C和I,B和H,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,e=11,α=90°.【点评】此题主要考查全等图形,关键是找准对应顶点,全等图形,对应边相等,对应角相等.26.找出下列图形中的全等图形.【分析】根据能够完全重合的两个图形是全等形即可判断出答案.【解答】解:由题意得:(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形.【点评】本题考查全等形的定义,属于基础题,注意掌握全等形的定义.。
华师大七年级下10.1 轴对称测试题
(本检测题满分:100分,时间:60分钟)
一、选择题(每题3分,共24分)
1、(2014•湖南永州)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是()
A.B.C.D.
2、(2015•山东日照)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()
A.B.C.D.
3、(2014•福建泉州)正方形的对称轴的条数为()
A.1B.2C.
3D.4
4、(2014·台湾)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()
A.B.C.D.
5、(2013杭州)下列“表情图”中,属于轴对称图形的是()
A.B.C.D.
6、(2013•咸宁)下列学习用具中,不是轴对称图形的是( ) A .
B .
C .
D .
7、(2013凉山州)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )
A .30°
B .45°
C .60°
D .75° 8、(2013•株洲)下列四种图形都是轴对称图形,其中对称轴条数最多的图形是( ) A . 等边三角形 B . 矩形
C . 菱形
D . 正方形
二、填空题(每题3分,共21分)
9、如下左图,一种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD=150°,∠B=40°,则∠ACD 的度数是 _________ °.
10、(2015·贵州六盘水)如上右图,有一个英语单词,四个字母都关于直线l 对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品 .
11、(2014•陕西)一个正五边形的对称轴共有 条.
12、(2013•宁夏)如下左图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 种.
13、(2014•山东枣庄)如上中图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.
14、如上右图,AB 左边是计算器上的数字“5”,若以直线AB 为对称轴,那么它的轴对称图形是数字 _________ .
15、将一张正方形纸片如图所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是
_________(填序号).
三、解答题(5大题,9+10+10+12+14=55分)
16、如图,欲在河边L上建一个水泵站P,使P到张庄A、李庄B所用水管最短.试用尺规作图法确定水泵站P的修建位置(不写作法,但须保留清晰的作图痕迹)
17、如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上.
(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;
(2)若直线MN上存在点P,使得PA+PB的值最小,请直接标出点P位置。
18、在3×3的正方形网格中,有一个以格点为顶点的三角形(阴影部分)如图所示,请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复.)
19、将16个相同的小正方形拼成正方形网格,并将其中的两个小正方形涂成黑色,请你用两种不同的方法分别在图甲、图乙中再将两个空白的小正方形涂黑,使它成为轴对称图形.
20、如图,点P在∠AOB内部,点M、N分别是点P关于OA、OB的对称点,连接M N,分别交OA、OB于E、F.若MN=8cm,求△PEF的周长.
10.1 轴对称参考答案
一、选择题
1--5 CDDAD 6--8 CCD
二、填空题
9、65 10、书11、5 12、3
13、3 14、2 15、③
三、解答题
16、解:如图所示:
17、解:(1)如图所示:
;
(2)如图所示:连接AC,交MN于点P。
18、解:如图所示:
19、解:如图所示:
20、解:∵点M、N分别是点P关于OA、OB的对称点,∴ME=PE,NF=PF,MN=8cm,
∴ME+EF+NF=PE+EF+PF=MN=8cm
即△PEF的周长是8cm.。