高中数学必修5第二章数列测试
- 格式:doc
- 大小:474.01 KB
- 文档页数:5
高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
第二章测试(时间:120分钟 总分值:150分)一、选择题(本大题共12小题 ,每题5分 ,共60分.在每题给出的四个选项中 ,只有一项为哪一项符合题目要求的)1.S n 是数列{a n }的前n 项和 ,log 2S n =n (n =1,2,3 ,…) ,那么数列{a n }( )A .是公比为2的等比数列B .是公差为2的等差数列C .是公比为12的等比数列 D .既非等差数列也非等比数列解析 由log 2S n =n ,得S n =2n ,a 1=S 1=2 ,a 2=S 2-S 1=22-2=2 ,a 3=S 3-S 2=23-22=4 ,…由此可知 ,数列{a n }既不是等差数列 ,也不是等比数列. 答案 D2.一个数列{a n } ,其中a 1=3 ,a 2=6 ,a n +2=a n +1-a n ,那么a 5=( )A .6B .-3C .-12D .-6解析 a 3=a 2-a 1=6-3=3 , a 4=a 3-a 2=3-6=-3 , a 5=a 4-a 3=-3-3=-6. 答案 D3.首||项为a 的数列{a n }既是等差数列 ,又是等比数列 ,那么这个数列前n 项和为( )A .a n -1B .naC .a nD .(n -1)a解析 由题意 ,知a n =a (a ≠0) ,∴S n =na . 答案 B4.设{a n }是公比为正数的等比数列 ,假设a 1=1 ,a 5=16 ,那么数列{a n }的前7项和为( )A .63B .64C .127D .128解析 a 5=a 1q 4=q 4=16 ,∴q =2. ∴S 7=1-271-2=128-1=127.答案 C5.-9 ,a 1 ,a 2 ,-1四个实数成等差数列 ,-9 ,b 1 ,b 2 ,b 3 ,-1五个实数成等比数列 ,那么b 2(a 2-a 1)的值等于( )A .-8B .8C .-98D.98 解析 a 2-a 1=-1-(-9)3=83 , b 22=(-1)×(-9)=9 ,∴b 2=-3 , ∴b 2(a 2-a 1)=-3×83=-8. 答案 A6.在-12和8之间插入n 个数 ,使这n +2个数组成和为-10的等差数列 ,那么n 的值为( )A .2B .3C .4D .5解析 依题意 ,得-10=-12+82(n +2) , ∴n =3. 答案 B7.{a n }是等差数列 ,a 4=15 ,S 5=55 ,那么过点P (3 ,a 3) ,Q (4 ,a 4)的直线的斜率为( )A .4 B.14 C .-4D .-14解析由a 4=15 ,S 5=55 ,得⎩⎪⎨⎪⎧a 1+3d =15 5a 1+5×42d =55.解得⎩⎪⎨⎪⎧a 1=3d =4.∴a 3=a 4-d =11.∴P (3,11) ,Q (4,15).k PQ =15-114-3=4.答案 A8.等差数列{a n }的前n 项和为S n ,假设a 3+a 17=10 ,那么S 19=( )A .55B .95C .100D .190解析 S 19=a 1+a 192×19=a 3+a 172×19=102×19=95. 答案 B9.S n 是等差数列{a n }的前n 项和 ,假设a 2+a 4+a 15是一个确定的常数 ,那么在数列{S n }中也是确定常数的项是( )A .S 7B .S 4C.S13D.S16解析a2+a4+a15=a1+d+a1+3d+a1+14d=3a1+18d=3(a1+6d)=3a7 ,∴a7为常数.∴S13=a1+a132×13=13a7为常数.答案 C10.等比数列{a n}中,a1+a2+a3+a4+a5=31 ,a2+a3+a4+a5+a6=62 ,那么通项是()A.2n-1B.2nC.2n+1D.2n+2解析∵a2+a3+a4+a5+a6=q(a1+a2+a3+a4+a5) ,∴62=q×31 ,∴q=2.∴S5=a1(1-25)1-2=31.∴a1=1 ,∴a n=2n-1.答案 A11.等差数列{a n}中,|a3|=|a9| ,公差d<0 ,那么使其前n项和S n 取得最||大值的自然数n是()A.4或5 B.5或6C.6或7 D.不存在解析由d<0知,{a n}是递减数列,∵|a3|=|a9| ,∴a3=-a9 ,即a3+a9=0.又2a6=a3+a9=0 ,∴a6=0.∴S5=S6且最||大.答案 B12.假设a ,b ,c成等比数列,那么方程ax2+bx+c=0()A.有两个不等实根B .有两相等的实根C .无实数根D .无法确定解析 a ,b ,c 成等比数列 ,∴b 2=ac >0. 而Δ=b 2-4ac =ac -4ac =-3ac <0. ∴方程ax 2+bx +c =0无实数根. 答案 C二、填空题(本大题共4小题 ,每题5分 ,共20分.把答案填在题中横线上)13.2 ,x ,y ,z,18成等比数列 ,那么x =________.解析 设公比为q ,那么由2 ,x ,y ,z,18成等比数列.得18=2q 4 ,∴q =±3.∴x =2q =±2 3.答案 ±2 314.假设数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n0≤a n ≤1a n -1 a n>1且a 1=67 ,那么a 2021=________.解析 由题意 ,得a 1=67 ,a 2=127 ,a 3=57 ,a 4=107 ,a 5=37 ,a 6=67 ,a 7=127 ,… ,∴a 2021=a 3=57.答案 5715.一个数列的前n 项和为S n =1-2+3-4+…+(-1)n +1n ,那么S 17+S 33+S 50=____________.解析 S 17=-8+17=9 ,S 33=-16+33=17 ,S 50=-25 ,∴S 17+S33+S50=1.答案 116.设等比数列{a n}的公比q=12,前n项和为S n,那么S4a4=________.解析S4a4=a1⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫124⎝⎛⎭⎪⎫1-12a1⎝⎛⎭⎪⎫123=15.答案15三、解答题(本大题共6个小题,共70分.解容许写出必要的文字说明、证明过程或演算步骤)17.(10分)设S n为数列{a n}的前n项和,a1≠0,2a n-a1=S1·S n,n ∈N*.(1)求a1 ,a2 ,并求数列{a n}的通项公式;(2)求数列{na n}的前n项和.解(1)令n=1 ,得2a1-a1=a21,即a1=a21,∵a1≠0 ,∴a1=1 ,令n=2 ,得2a2-1=S2=1+a2 ,解得a2=2.当n≥2时,由2a n-1=S n,2a n-1=S n-1两式相减得2a n-2a n-1=a n ,即a n=2a n-1 ,于是数列{a n}是首||项为1 ,公比为2的等比数列,即a n=2n-1.∴数列{a n}的通项公式为a n=2n-1.(2)由(1)知,na n=n·2n-1.记数列{n·2n-1}的前n项和为B n ,于是B n=1+2×2+3×22+…+n×2n-1 ,①2B n=1×2+2×22+3×23+…+n×2n.②①-②得-B n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n . 从而B n =1+(n -1)·2n .18.(12分)等比数列{a n } ,首||项为81 ,数列{b n }满足b n =log 3a n ,其前n 项和为S n .(1)证明{b n }为等差数列;(2)假设S 11≠S 12 ,且S 11最||大 ,求{b n }的公差d 的范围. 解 (1)证明:设{a n }的公比为q , 那么a 1=81 ,a n +1a n=q ,由a n >0 ,可知q >0 ,∵b n +1-b n =log 3a n +1-log 3a n =log 3a n +1a n =log 3q (为常数) ,∴{b n }是公差为log 3q 的等差数列. (2)由(1)知 ,b 1=log 3a 1=log 381=4 , ∵S 11≠S 12 ,且S 11最||大 ,∴⎩⎪⎨⎪⎧b 11≥0 b 12<0即⎩⎪⎨⎪⎧b 1+10d ≥0 b 1+11d <0.⎩⎨⎧d ≥-b 110=-25d <-b111=-411.∴-25≤d <-411.19.(12分)等差数列{a n }的各项均为正数 ,a 1=3 ,前n 项和为S n ,{b n }为等比数列 ,b 1=1 ,且b 2S 2=64 ,b 3S 3=960.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n<34.解 (1)设{a n }的公差为d ,{b n }的公比为q ,那么d >0 ,q ≠0 ,a n =3+(n -1)d ,b n =q n -1 ,依题意有⎩⎪⎨⎪⎧b 2S 2=(6+d )q =64b 3S 3=(9+3d )q 2=960.解得⎩⎪⎨⎪⎧d =2 q =8或⎩⎪⎨⎪⎧d =-65q =403 (舍去).故a n =2n +1 ,b n =8n -1.(2)证明:由(1)知S n =3+2n +12×n =n (n +2) , 1S n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2 ,∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n (n +2)=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-2n +32(n +1)(n +2)∵2n +32(n +1)(n +2)>0∴1S 1+1S 2+…+1S n<34.20.(12分)等比数列{a n }中 ,a 1=2 ,a 4=16. (1)求数列{a n }的通项公式;(2)假设a 3 ,a 5分别为等差数列{b n }的第3项和第5项 ,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q ,由 ,得16=2q 3 ,解得 q =2 ,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8 ,a 5=32 ,那么b 3=8 ,b 5=32.设{b n }的公差为d ,那么有⎩⎪⎨⎪⎧b 1+2d =8 b 1+4d =32解得⎩⎪⎨⎪⎧b 1=-16d =12.从而b n =-16+12(n -1)=12n -28. 所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n . 21.(12分)数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N * ,数列{b n }满足a n =4log 2b n +3 ,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解 (1)由S n =2n 2+n ,得当n =1时 ,a 1=S 1=3; 当n ≥2时 ,a n =S n -S n -1=4n -1.∴a n =4n -1(n ∈N *). 由a n =4log 2b n +3=4n -1 ,得b n =2n -1(n ∈N *). (2)由(1)知a n ·b n =(4n -1)·2n -1 ,n ∈N * , ∴T n =3+7×2+11×22+…+(4n -1)×2n -1 , 2T n =3×2+7×22+…+(4n -5)×2n -1+(4n -1)×2n .∴2T n -T n =(4n -1)×2n -[3+4(2+22+…+2n -1]=(4n -5)2n +5.故T n =(4n -5)2n +5.22.(12分)数列{a n }满足a 1=1 ,a n -2a n -1-2n -1=0(n ∈N * ,n ≥2). (1)求证:数列{a n2n }是等差数列;(2)假设数列{a n }的前n 项和为S n ,求S n . 解 (1)∵a n -2a n -1-2n -1=0 ,∴a n 2n -a n -12n -1=12 ,∴{a n 2n }是以12为首||项 ,12为公差的等差数列. (2)由(1) ,得a n 2n =12+(n -1)×12 , ∴a n =n ·2n -1 ,∴S n =1·20+2·21+3·22+…+n ·2n -1① 那么2S n =1·21+2·22+3·23+…+n ·2n ② ①-② ,得-S n =1+21+22+…+2n -1-n ·2n=1·(1-2n)1-2-n ·2n =2n -1-n ·2n ,∴S n =(n -1)·2n +1.。
第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
新课标数学必修 5 第 2 章数列单元测试题一说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷在各题后直接作答.共 150 分,考试时间 100 分钟.一、选择题(本大题共 11 小题,每题 4 分,共 44 分)1.等差数列 { a n }中, a 1 3, a 57,则数列 { a n } 第9 项等于()A .9B .10C .11D .122.等比数列 a n 中 , a 2 9, a 5 243, 则 a n 的第 4 项为()A .81B.243 C .27 D . 1923. 2 1 与 2 1 ,两数的等比中项是()A .1B .1C .1D .124.已知一等差数列的前三项挨次为 x,2x 2,4x3 ,那么 21 是此数列的第()项A .2B .4C .6D .85.在公比为整数的等比数列 a n 中,若 a 1 a 3 6, a 2 a 4 12, 则该数列的第 3 项为()A .6B .12C .24D .4855556. 数列 a n 的通项公式 a nn 1n ,则该数列的前 9 项之和等于()A .1B .2C .3D .47. 设 {a n } 是由正数构成的等比数列,公比 q=2,且 a 1a 3 =24,则 a 1a 2a 3a 4a 5 等于( )A.2 102015168.已知等差数列 a n 的公差为 2 , 若 a 1 ,a 3 , a 4 成等比数列 , 则 a 2 ( )A .4B .6C .8D. 109.设S n 是等差数列 a n 的前 n 项和,若 S 2 , ,则S 6 等于( )2 S 4 10 A .12 B .18 C .24 D .4210.已知等差数列 {a }的公差为正数,且 a · a =-12, a +a =- 4,则 S 为n 3 7 4 620()A .180B .- 180C .90D .- 9011.现有 200 根同样的钢管,把它们堆放成正三角形垛,要使节余的钢管尽可能的少,那么节余钢管的根数为()A.9B.10C.19D.29二、填空题(本大题共 5 小题,每题 5 分,共 25 分)12.在等比数列a n中,若a33, a975, 则 a15=___________.13在等比数列a n中,若a1 ,a10是方程3x22x 6 0 的两根则a4 a7=___________.14.在- 9 和 3 之间插入 n 个数,使这 n+2 个数构成和为- 21 的等差数列,则 n=_______.15.已知数列a n的前 n 项和 S n 3 2n,求 a n=_______。
必修五第二章数列综合测试一、:1.将自然数的前 5 个数:(1)排成 1, 2, 3,4, 5;(2)排成 5, 4, 3,2, 1;(3)排成 2, 1, 5, 3, 4;(4)排成 4, 1, 5,3, 2.那么能够叫做数列的只有()(A) ( 1)(B) ( 1)和( 2)(C) ( 1),( 2),( 3)(D) ( 1),(2),( 3),( 4)2. 若数列 {a n} 的通公式是a n=2(n + 1)+ 3,此数列()(A) 是公差 2 的等差数列(B) 是公差 3 的等差数列(C) 是公差 5 的等差数列(D) 不是等差数列3.等差数列 {a n} 中,若 a2+a4+a9+a11=32 , a6+a7=()( A ) 9(B)12(C)15(D)164.已知数列足:>0,,,数列{} 是:()(A) 增数列( B) 减数列(C)数列(D) 不确立5.等差数列 0,,-7,⋯的第n+1是:()(A)(B)(C)(D)6.在数列中,,的:()( A ) 49(B)50(C)51(D)527.已知数列10,⋯10⋯,使数列前n 的乘不超10最小正整数n 是(A)9(B)10(C)11(D)12()8. 在首81,公差- 7 的等差数列中,最靠近零的是第()(A)11 (B)12 (C)13 (D)149. 已知等差数列{a n} 的公差d≠ 0,若a5、 a9、 a15成等比数列,那么公比( )(A) (B) (C) (D)10.有 200 根同样的管,把它堆放成正三角形,要使节余的管尽可能少,那么节余管的根数( )(A)9 (B)10 (C)19 (D)29二、填空:11.等差数列110, 116, 122, 128,⋯⋯,在400 与600 之共有________.12. 等比数列 { a n} 的前 n 和 S n,S3 +S6 =2S9,数列的公比______________13.已知数列1,,其前n 的和等于14.数列的第一1,而且n∈ N,n ≥ 2 都有:前n 之n2,此数列的通公式_______三.解答:15.三个互不相等的数成等差数列,假如适合摆列三个数,也可成等比数列,已知三个数的和等于 6,求此三个数。
数列(必修5第二章)水平测试A 卷时间:120分钟 满分:150分一、选择题(每小题5分,共50分)1.下列对数列的理解有四种:①数列可以看成一个定义在N *(或它的有限子集{1,2,…,n})上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点; ④数列的通项公式是唯一的. 其中说法正确的序号是( )A .①②③B .②③④C .①③D .①②③④2.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d 等于( ) A .-2 B .-12 C.12D .23.设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .644.在等差数列{a n }中,a 2+a 3=12,2a 6-a 5=15,则a 4等于( ) A .7 B .9 C .11 D .135.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .366.在等比数列{a n }中,若a 1+a 2=4,a 3+a 4=2,则a 9+a 10等于( ) A.12 B .2 C.14D .4 7.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 20+b 20=60,则{a n +b n }的前20项和为( )A .700B .710C .720D .7308.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数为( )A .11B .99C .120D .1219.等差数列{a n }的前n 项和记为S n ,若a 2+a 6+a 10为一个确定的常数,则下列各数也是常数的是( )A .S 6B .S 11C .S 12D .S 1310.△ABC 中,tanA 是以-4为第三项,-1为第七项的等差数列的公差,tanB 是以12为第三项,4为第六项的等比数列的公比,则tanC 等于( )A .-12 B.12 C .-112 D.112二、填空题(每小题4分,共28分)11.已知数列{a n }的通项公式a n =nn 2+9,则数列{a n }的最大项是______.12.若数列{a n }满足a n +a n +2=2a n +1,且S 9=27.则a 2+a 8=______.13.设等差数列{a n }的前n 项和为S n ,若S 3=a 6=12,则{a n }的通项公式为______.14.已知等比数列{a n }的公比为正数,且a 3a 9=4a 25,a 2=2,则{a n }的前5项和S 5等于________.15.在数列{a n }中a n =n(sinnπ2+cos nπ2),前n 项和为S n ,则S 100=__________. 16.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n(n ∈N *),则a 12+a 23+…+a nn +1=__________.17.在数列{a n }中,a n =3n -7,数列{b n }满足b 1=13,b n -1=27b n (n ≥2),若a n +log k b n为常数,则满足条件的k 值为______.三、解答题(72分)18.(14分)已知数列{a n }的前n 项和为S n ,若S 1=1,S 2=2,且S n +1-3S n +2S n -1=0(n ∈N *且n ≥2),求该数列的通项公式.19.(14分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n .20.(14分)已知等比数列{a n }中,a 2=32,a 8=12,a n +1<a n .(1)求数列{a n }的通项公式;(2)设T n =log 2a 1+log 2a 2+…+log 2a n ,求T n 的最大值及相应的n 值.21.(15分)记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=10.(1)求数列{a n}的通项公式;(2)令b n=a n·2n(n∈N*),求数列{a n}的前n项和T n.22.(15分)设数列{a n}的前n项和为S n,且a1=1,S n=na n-2n(n-1).(1)求数列{a n}的通项公式;(2)设数列{1a n a n+1}的前n项和为T n,试求T n的取值范围.答案解析1、解析:数列的项数可以是无限的,通项公式的表示不唯一,故②④错误. 答案:C2、解析:a 7-2a 4=a 3+4d -2(a 3+d)=-a 3+2d =2d =-1,∴d =-12.答案:B3、解析:a 8=S 8-S 7=64-49=15. 答案:A4、解析:设公差为d ,则⎩⎪⎨⎪⎧ 2a 1+3d =12a 1+6d =15,∴⎩⎪⎨⎪⎧a 1=3d =2, ∴a 4=a 1+3d =9. 答案:B5、解析:∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=7(a 1+a 7)2=7a 4=28.答案:C6、解析:由题得a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8,a 9+a 10成等比数列,首项为4,公比为12, ∴a 9+a 10=4×(12)4=14.答案:C7、解析:{a n +b n }的前20项和S 20=(a 1+b 1)+(a 2+b 2)+…+(a 20+b 20)=(a 1+a 2+a 3+…+a 20)+(b 1+b 2+b 3+…+b 20)=20(a 1+a 20)2+20(b 1+b 20)2=10(a 1+a 20+b 1+b 20)=720. 答案:C 8、解析:∵a n =1n +n +1=n +1-n ,∴前n 项的和S n =(2-1)+(3-2)+(4-3)+…+(n +1-n)=n +1-1,当n +1-1=10时,n =120.答案:C9、解析:∵a 2+a 6+a 10=3a 6,∴a 6为定值.S 11=11(a 1+a 11)2=11a 6为定值.答案:B10、解析:由题意知:tanA =-1-(-4)7-3=34,tan 3B =412=8,∴tanB =2,∴tanC =-tan(A +B)=-tanA +tanB1-tanAtanB=-34+21-34×2=112.答案:D 11、解析:∵a n =n n 2+9,∴a n =1n +9n,∵n +9n ≥2n·9n =6,当且仅当n =9n,即n =3时取“=”号,∴n =3时,a n 的最大项是a 3=39+9=16.答案:1612、解析:由a n +a n +2=2a n +1得{a n }为等差数列. ∵S 9=27,∴9(a 1+a 9)2=27.∴a 1+a 9=6,∴a 2+a 8=6. 答案:613、解析:设公差为d ,则⎩⎪⎨⎪⎧ 3a 1+3d =12a 1+5d =12,∴⎩⎪⎨⎪⎧a 1=2d =2,∴a n =2n.答案:a n =2n14、解析:因为a 3a 9=4a 25,所以q 2=4,又q>0,所以q =2,又a 2=2,所以a 1=1,S 5=1-251-2=31. 答案:3115、解析:sin nπ2+cos nπ2=⎩⎪⎨⎪⎧1 n =4k 时1 n =4k +1时-1 n =4k +2时-1 n =4k +3时,∴S 100=(1-2-3+4)+(5-6-7+8)+…+(97-98-99+100)=0.答案:016、解析:令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n)-[(n -1)2+3(n -1)]=2n +2,所以a n =4(n +1)2, 当n =1时,也适合,所以a n =4(n +1)2(n ∈N *). 则a n n +1=4(n +1),故a 12+a 23+…+a nn +1=2n 2+6n.答案:2n 2+6n17、解析:∵b n =b 1·(127)n -1=13·(13)3n -3=(13)3n -2,∴a n +log k b n =3n -7+log k (13)3n -2=3n -7+(3n -2)·log k 13=(3+3log k 13)n -7-2log k 13.若a n +log k b n 为常数,则3+3log k 13=0,则k =3.答案:318、解:由S 1=1得a 1=1,又由S 2=2可知a 2=1. ∵S n +1-3S n +2S n -1=0(n ∈N *且n ≥2),∴S n +1-S n -2S n +2S n -1=0(n ∈N * 且n ≥2), 即(S n +1-S n )-2(S n -S n -1)=0(n ∈N *且n ≥2),∴a n +1=2a n (n ∈N *且n ≥2),故数列{a n }从第2项起是以2为公比的等比数列.∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =12n -2,n>1,n ∈N *.19、解:设{a n }的公差为d ,则⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧a 21+8da 1+12d 2=-16a 1=-4d. 解得⎩⎪⎨⎪⎧ a 1=-8d =2,或⎩⎪⎨⎪⎧a 1=8d =-2.因此S n =-8n +n(n -1)=n(n -9),或S n =8n -n(n -1)=-n(n -9).20、解:(1)设公比为q ,则q 6=a 8a 2=164,a n +1<a n ,所以q =12.于是a 1=a 2q =64.所以,通项公式为a n =64·(12)n -1=27-n (n ∈N ).(2)设b n =log 2a n ,则b n =log 227-n =7-n.所以,数列{b n }是以首项为6,公差为-1的等差数列.T n =6n +n (n -1)2(-1)=-12n 2+132n =-12(n -132)2+1698.由n 是自然数,知n =6或n =7时,T n 最大,其最值为T 6=T 7=21.21、解:(1)设等差数列{a n }的公差为d ,由a 2+a 4=6,S 4=10,可得⎩⎪⎨⎪⎧2a 1+4d =64a 1+4×32d =10, 即⎩⎪⎨⎪⎧ a 1+2d =32a 1+3d =5,解得⎩⎪⎨⎪⎧a 1=1d =1, ∴a n =a 1+(n -1)d =1+(n -1)=n ,故所求等差数列{a n }的通项公式为a n =n. (2)依题意,b n =a n ·2n =n·2n , ∴T n =b 1+b n +…+b n=1×2+2×22+3×23+…+(n -1)·2n -1+n·2n ,又2T n =1×22+2×23+3×24+…+(n -1)·2n +n·2n +1, 两式相减得-T n =(2+22+23+…+2n -1+2n )-n·2n +1=2(1-2n )1-2-n·2n +1=(1-n)·2n +1-2,∴T n =(n -1)·2n +1+2.22、解:(1)由S n =na n -2n(n -1),得a n +1=S n +1-S n =(n +1)a n +1-na n -4n , ∴a n +1-a n =4.所以,数列{a n }是以1为首项,4为公差的等差数列. ∴a n =4n -3. (2)∵T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+1(4n -3)(4n +1)=14[1-15+15-19+19-113+…+14n -3-14n +1] =14(1-14n +1)<14. 又易知T n 单调递增,故T n ≥T 1=15.∴15≤T n <14,即T n 的取值范围是[15,14).。
2014-2015学年高中数学必修5 第二章:数列一、选择题1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( )A .66B .99C .144D .2974.12+与12-,两数的等比中项是 ( )A .1B .1-C .1±D .21 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为 ( ).A .81B .120C .168D .1926.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2= ( ).A .-4B .-6C .-8D . -107.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S = ( ). A .1 B .-1 C .2 D .21 8.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a -的值是 ( ).A .21B .-21C .-21或21D .41 二、填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。
2.数列{n a }是等差数列,47a =,则7s =_________3.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅=___________. 4.数列{}n a 的通项公式11++=n n a n ,则该数列的前99项之和等于___________.三、解答题1. 已知数列{}n a 的前n 项和n n S 23+=,求n a2.求和:12...321-++++n nxx x3.已知数列{}n a 的通项公式112+-=n a n ,如果)(N n a b n n ∈=, 求数列{}n b 的前n 项和。
高中数学必修五《数列》单元测试一、选择题1.已知数列{a n }满足:a 1=-14,a n =1-1a n -1(n >1),则a 4等于( ) A.45 B.14 C .-14 D.15【解析】 a 2=1-1a 1=5,a 3=1-1a 2=45,a 4=1-1a 3=-14. 【答案】 C2.数列1,3,6,10,15,…的递推公式是( )A .a n +1=a n +n ,n ∈N *B .a n =a n -1+n ,n ∈N *,n ≥2C .a n +1=a n +(n +1),n ∈N *,n ≥2D .a n =a n -1+(n -1),n ∈N *,n ≥2【解析】 由a 2-a 1=3-1=2,a 3-a 2=6-3=3,a 4-a 3=10-6=4,a 5-a 4=15-10=5,归纳猜想得a n -a n -1=n (n ≥2),所以a n =a n -1+n ,n ∈N *,n ≥2.【答案】 B3.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4 D .0【解析】 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质得,当n =2或3时,a n 最大,最大为0.【答案】 D4.在数列{a n }中,a 1=2,a n +1-a n -3=0,则{a n }的通项公式为( )A .a n =3n +2B .a n =3n -2C .a n =3n -1D .a n =3n +1【解析】 因为a 1=2,a n +1-a n -3=0,所以a n -a n -1=3,a n -2-a n -3=3,…a 2-a 1=3,以上各式相加,则有a n -a 1=(n -1)×3,所以a n =2+3(n -1)=3n -1.【答案】 C5.已知在数列{a n }中,a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2 016=( )A .3B .-3C .6D .-6【解析】 由题意知:a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,a 9=a 8-a 7=3,a 10=a 9-a 8=-3,…故知{a n }是周期为6的数列,∴a 2 016=a 6=-3.【答案】 B二、填空题6.数列{a n }中,若a n +1-a n -n =0,则a 2 016-a 2 015= .【解析】 由已知a 2 016-a 2 015-2 015=0,∴a 2 016-a 2 015=2 015.【答案】 2 0157.已知数列{a n },a n =a n +m (a <0,n ∈N *),满足a 1=2,a 2=4,则a 3= .【解析】 ⎩⎨⎧a 1=a +m =2,a 2=a 2+m =4,∴a 2-a =2, ∴a =2或-1,又a <0,∴a =-1.又a +m =2,∴m =3,∴a3=(-1)3+3=2.【答案】 28.如图2-1-1①是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图2-1-1②的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图②中的直角三角形继续作下去,记OA1,OA2,…,OA n,…的长度构成数列{a n},则此数列的通项公式为a n= .图2-1-1【解析】因为OA1=1,OA2=2,OA3=3,…,OA n=n,…,所以a1=1,a2=2,a3=3,…,a n=n.【答案】n三、解答题9.根据数列的前几项,写出下列各数列的一个通项公式:(1)45,12,411,27,…;(2)12,2,92,8,252,…;(3)1,3,6,10,15,…;(4)7,77,777,….【解】(1)注意前4项中有两项的分子为4,不妨把分子统一为4,即为45,48,4 11,414,…,于是它们的分母依次相差3,因而有a n=43n+2.(2)把分母统一为2,则有12,42,92,162,252,…,因而有a n=n22.(3)注意6=2×3,10=2×5,15=3×5,规律还不明显,再把各项的分子和分母都乘以2,即1×22,2×32,3×42,4×52,5×62,…,因而有a n =n (n +1)2.(4)把各项除以7,得1,11,111,…,再乘以9,得9,99,999,…,因而有a n =79(10n -1).10.在数列{a n }中,a 1=2,a 17=66,通项公式是关于n 的一次函数.(1)求数列{a n }的通项公式;(2)求a 2016;(3)2016是否为数列{a n }中的项?【解】 (1)设a n =kn +b (k ≠0),则有⎩⎨⎧k +b =2,17k +b =66,解得k =4,b =-2.∴a n =4n -2.(2)a 2 016=4×2 016-2=8 062.(3)由4n -2=2 016得n =504.5∉N *,故2 016不是数列{a n }中的项.[能力提升]1.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( ) A.15B .5C .6D .log 23+log 31325 【解析】 a 1·a 2·a 3·…·a 30=log 23×log 34×log 45×…×log 3132=lg 3lg 2×lg 4lg 3×…×lg 32lg 31=lg 32lg 2=log 232=log 225=5.【答案】 B2.已知数列{a n }中,a n =n 2-kn (n ∈N *),且{a n }单调递增,则k 的取值范围是( )A .(-∞,2]B .(-∞,3)C .(-∞,2)D .(-∞,3]【解析】 a n +1-a n =(n +1)2-k (n +1)-n 2+kn =2n +1-k ,又{a n }单调递增,故应有a n +1-a n >0,即2n +1-k >0恒成立,分离变量得k <2n +1,故只需k <3即可.【答案】 B3.根据图2-1-2中的5个图形及相应点的个数的变化规律,试猜测第n 个图中有 个点.图2-1-2【解析】 观察图形可知,第n 个图有n 个分支,每个分支上有(n -1)个点(不含中心点),再加中心上1个点,则有n (n -1)+1=n 2-n +1个点.【答案】 n 2-n +14.已知数列{a n }的通项公式为a n =n 2-21n 2(n ∈N *).(1)0和1是不是数列{a n }中的项?如果是,那么是第几项?(2)数列{a n }中是否存在连续且相等的两项?若存在,分别是第几项.【解】 (1)令a n =0,得n 2-21n =0,∴n =21或n =0(舍去),∴0是数列{a n }中的第21项. 令a n =1,得n 2-21n 2=1,而该方程无正整数解,∴1不是数列{a n }中的项.(2)假设存在连续且相等的两项是a n ,a n +1,则有a n =a n +1,即n 2-21n 2=(n +1)2-21(n +1)2. 解得n =10,所以存在连续且相等的两项,它们分别是第10项和第11项.。
高二数学必修5第二章数列测试题一、选择题(共20小题,每小题3分,共60分):1、给出下列数列:(1)0,0,0,0,0,…;(2)1,11,111,1111,…;(3) ,2,2,2,2432;(4) ,3,1,1,3,5---;(5)1,2,3,5,8,…;其中等差数列有( )A 、 1个B 、2个C 、3个D 、4个2、已知=+-=102,31a n n a n 则( )A 、1039B 、10310C 、1009D 、103、在等比数列中,已知13,48,2n a a q ===,则n=( )A 、 3B 、4C 、5D 、64、在等比数列{}n a 中,,3,21==q a 则=4S ( )A 、26B 、27C 、80D 、815、等差数列}{n a 的前10项和===d a S 则公差首项,1,100110( )A 、1B 、2C 、3D 、46、在数列}{n a 中,已知211+=+n n a a ,且21=a ,则101a 等于( )A 、49B 、50C 、51D 、527、已知19,,,4y x 构成等差数列,则y x ,的值分别为( )A 、 9,14B 、8,13C 、7,12D 、6,118、等差数列}{n a 中,已知1,16497==+a a a ,则12a 的值是( )A 、15B 、30C 、31D 、649、在等差数列}{n a 中,9015=S ,则8a =( )A 、3B 、5C 、6D 、1210、在等比数列{}n a 中,0,32,251>==q a a 则=5S ( )A 、60B 、62C 、64D 、6611、在等比数列{}n a 中,,6,584==a a 则=102a a ( )A 、27B 、28C 、29D 、3012、在等差数列{}n a 中,若,1201210864=++++a a a a a 则=-12102a a 的值为() A 、20 B 、22 C 、24 D 、26第1页(试卷共2页)13、等差数列}{n a 的前n 项和为n S ,且 963,7,3S S S 则==的值是( )A 、12B 、15C 、11D 、814、已知等差数列共有10项,其中奇数项之和为15,偶数项之和为45,则其公差是( )A 、3B 、4C 、5D 、615、等差数列{}n a 的公差为2,若842,,a a a 成等比数列,则{}n a 的前n 项和=n S ( )A 、2)1(-n nB 、2)1(+n n C 、)1(-n n D 、)1(+n n16、已知数列{}n a 满足)(1,111*+∈+==N n a a a a n n n ,则数列{}n a 的通项公式为( )A 、n a n =B 、n a n 1=C 、1-=n a nD 、11-=n a n17、已知数列{}n a 的前n 项和为1,2-=n S S n n ,则=2016a ( )A 、4031B 、4032C 、2015D 、201618、在等比数列}{n a 中,各项均为正数,且7,13211=++=a a a a ,则数列}{n a 的通项公式n a =( )A 、n 2B 、12-nC 、n 4D 、14-n19、已知三个数成等差数列,且三个数之和为15,首末两项之积为9,则这三个数为( )A 、2,5,8B 、1,5,9C 、9,5,1D 、1,5,9或9,5,120、在等差数列{}n a 中,121=a ,其前n 项和为n S ,且1510S S =,则n S 的最大值为( )A 、74B 、76C 、78D 、80二、填空题(共4小题,每小题3分,共12分):21、数列1,4,9,16,25…的一个通项公式为 。