梳状线可调带通滤波器的设计与仿真
- 格式:pdf
- 大小:402.54 KB
- 文档页数:5
梳状滤波器的设计与应用梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。
那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫CompositeVideoSignal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(CombFiltering)。
梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。
对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。
对活动图像,梳状滤波在帧内进行,即二维梳状滤波。
高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C 分离方案就可获得满意的图像质量。
使用梳状滤波器能使图像质量明显提高。
解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。
有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。
而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。
梳状滤波器原理及发展历史:梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。
如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。
学习情况AWR和HFSS仿真带状线梳状滤波器遇到的问题①问题:AWR仿真的二阶电路结果可以达到预期目标,但是将参数带入HFSS,结果不太理想,插损变大。
②问题:激励端口的位置以及端口的大小影响仿真结果。
集总激励端口的尺寸即长和宽应远小于波长。
工作进展1、滤波器指标:中心频率1.5GHz,通带相对带宽7%——8%2、AWR仿真电路结构及参数如下:2阶耦合带状线带通滤波器AWR3阶耦合带状线带通滤波器电路结构如下:3、HFSS仿真模型结构及参数如下:两根耦合线的模型上图为通过调整抽头的位置累优化通带内驻波。
通过调整耦合线间距来调整带宽最终二阶模型如下参数复合要求:耦合线长line1=line2=10.38mm,线宽width1=width2=0.32mm,耦合线间距s1=0.3mm.电容c1=c2=2.1pf.抽头线宽0.33mm,线长1.5mm,抽头的位置将耦合线分为6.165mm+0.33mm+3.884mm三阶模型及仿真结果如下:通过调整集总电容的大小来移动通频带结果如下图:三阶电路模型如下参数基本符合要求:耦合线长line1=line2=line3=10.38mm,线宽width1=width3=0.35mm,width2=0.295mm耦合线间距s1=0.22mm.电容c1=c2=2.1pf.抽头线宽0.33mm,线长 1.5mm,抽头的位置将耦合线分为6.215mm+0.33mm+3.835mm直接去掉电容,将耦合线画为叠层的形式,线的参数和平面三阶结构相同,耦合线长line1=line2=line3=10.38mm,线宽width1=width3=0.35mm,width2=0.295mm耦合线间距s1=0.22mm.抽头线宽0.33mm,线长 1.5mm,抽头的位置将耦合线分为6.215mm+0.33mm+3.835mm结果如下:存在问题:中心频率偏低说明耦合线长度过长,带宽过宽说明耦合太强,通带内驻波不平坦可以调节抽头位置。
毕业设计LC带通滤波器的设计与仿真设计引言:滤波器是电子电路中非常重要的一个部分,它可以对输入信号进行频率选择性的处理。
而LC带通滤波器是一种常见的滤波器,它能够选择特定的频带通过,达到滤波的目的。
本文将介绍LC带通滤波器的设计和仿真,并带有实际案例进行说明。
设计目标:设计一个LC带通滤波器,达到对输入信号的特定频率带进行增强或抑制的效果。
设计的滤波器需要满足以下要求:1.通带范围:10kHz-20kHz2.阻带范围:0-5kHz和25kHz-正无穷大3.通带衰减:小于3dB4.阻带衰减:大于40dB设计步骤:1.确定滤波器的类型和拓扑结构。
对于LC带通滤波器,常用的拓扑结构有L型和π型两种。
本文选择π型结构进行设计。
2.根据设计要求,计算滤波器的理论参数。
计算中需要考虑到通带范围、阻带要求和通带衰减等因素。
3.根据计算结果,选择合适的电感和电容值。
4.绘制原理图,并进行仿真。
使用专业的电子设计自动化(EDA)软件进行仿真,如SPICE仿真软件。
5.优化滤波器的性能。
根据仿真结果进行进一步调整,优化滤波器的通带范围和衰减性能。
仿真设计案例:选取一个实例进行LC带通滤波器的设计和仿真。
示例要求:通带范围:12kHz-18kHz阻带范围:0-10kHz和20kHz-正无穷大通带衰减:小于2dB阻带衰减:大于50dB设计步骤:1.选择π型结构,选取合适的电感和电容值。
2.计算得到电感值为L=100μH,电容值为C1=22nF和C2=47nF。
3.绘制原理图,并进行SPICE仿真。
4.仿真结果显示,滤波器在通带范围内的衰减小于2dB,在阻带范围内的衰减高于50dB。
5.进行微调和优化,根据需要调整电感和电容值,以获得更理想的滤波器性能。
结论:通过设计和仿真,成功地完成了LC带通滤波器的设计过程。
根据示例结果,可见所设计的滤波器在设计要求范围内达到了优良的滤波效果。
这个设计过程可以用于其他LC带通滤波器的设计,只需根据实际要求进行参数选择和优化。
学习情况AWR和HFSS仿真带状线梳状滤波器遇到的问题①问题:AWR仿真的二阶电路结果可以达到预期目标,但是将参数带入HFSS,结果不太理想,插损变大。
②问题:激励端口的位置以及端口的大小影响仿真结果。
集总激励端口的尺寸即长和宽应远小于波长。
工作进展1、滤波器指标:中心频率1.5GHz,通带相对带宽7%——8%2、AWR仿真电路结构及参数如下:2阶耦合带状线带通滤波器AWR3阶耦合带状线带通滤波器电路结构如下:3、HFSS仿真模型结构及参数如下:两根耦合线的模型上图为通过调整抽头的位置累优化通带内驻波。
通过调整耦合线间距来调整带宽最终二阶模型如下参数复合要求:耦合线长line1=line2=10.38mm,线宽width1=width2=0.32mm,耦合线间距s1=0.3mm.电容c1=c2=2.1pf.抽头线宽0.33mm,线长1.5mm,抽头的位置将耦合线分为6.165mm+0.33mm+3.884mm三阶模型及仿真结果如下:通过调整集总电容的大小来移动通频带结果如下图:三阶电路模型如下参数基本符合要求:耦合线长line1=line2=line3=10.38mm,线宽width1=width3=0.35mm,width2=0.295mm耦合线间距s1=0.22mm.电容c1=c2=2.1pf.抽头线宽0.33mm,线长 1.5mm,抽头的位置将耦合线分为6.215mm+0.33mm+3.835mm直接去掉电容,将耦合线画为叠层的形式,线的参数和平面三阶结构相同,耦合线长line1=line2=line3=10.38mm,线宽width1=width3=0.35mm,width2=0.295mm耦合线间距s1=0.22mm.抽头线宽0.33mm,线长 1.5mm,抽头的位置将耦合线分为6.215mm+0.33mm+3.835mm结果如下:存在问题:中心频率偏低说明耦合线长度过长,带宽过宽说明耦合太强,通带内驻波不平坦可以调节抽头位置。
摘要随着电子信息的发展,滤波器作为信号处理的不可缺少的部分,也得到了迅速的发展。
LC滤波器作为滤波器的一个重要组成部分,它的应用相当的广泛。
因此对于它的设计也受到人们的广泛关注。
如何设计利用简单的方法设计出高性能的LC滤波器是人们一直研究的课题。
本文从滤波器的基本概念着手,层层深入的介绍了LC带通滤波器的设计过程,按照滤波器的经典设计方法,运用前人得出的一些数据手册,通过对实例的研究,简单的设计出了LC 带通滤波器。
然后把设计出的电路在Multisim8.3.30软件上进行仿真,最后把得出的结果与通过用matlab 7.1中信号处理工具箱里专用的滤波器设计分析工具fdatool设计出的滤波器进行对比,得出方法的有效性。
关键词:LC带通滤波器设计Multisim8 fdatool 仿真ABSTRACTWith the development of electronic information, signal processing filter as an indispensable part, has been rapid development. LC filter filter as an important part of its application of a broad. Therefore it is designed also to be people's attention. How to design a simple way to design high-performance LC filter people had been studying the subject.From the basic concept of filter start layers of depth on the LC filter with the design process, in accordance with the filter of classical design methods, the use of their predecessors that some data sheet, through the example of the study, the simple Designed to bring the LC filter. And then design a circuit in Multisim8.3.30 software simulation, the results of the final and by using matlab 7.1 signal processing in the toolbox for the filter design analysis tool designed to filter fdatool compared draw The effectiveness of the method.Keywords: LC band-pass filter design Multisim8 fdatool Simulation目录第一章绪论 (1)1.1滤波器简介 (1)1.1.1滤波器的概念 (1)1.1.2滤波器的种类 (2)1.2L C滤波器概述 (4)1.2.1L C滤波器的两种类型 (4)1.3国内外滤波器的发展和研究现状 (5)1.3.1滤波器的发展状况 (5)1.3.2国内外投入滤波器产业概况 (6)1.3.3滤波器的前景 (7)1.3.4几种新型滤波器介绍 (8)1.4研究工作概要和内容安排 (9)1.4.1研究工作概要 (9)1.4.2论文章节安排 (9)第二章滤波器的特性 (11)2.1理想滤波器的特性 (11)2.2实际滤波器的特性 (14)2.2.1巴特沃斯特性 (15)2.2.2切比雪夫特性 (16)2.2.3贝塞尔特性 (16)2.2.4椭圆特性 (17)第三章L C带通滤波器的设计 (19)3.1归一化切比雪夫低通滤波器 (19)3.1.1切比雪夫滤波器 (19)3.1.2阶数的决定 (20)3.1.3归一化切比雪夫低通滤器 (21)3.2由低通到带通的变换 (23)3.2.1理论分析 (24)3.2.2实际应用 (28)3.3实例研究 (30)第四章滤波器的仿真 (35)4.1f d a t o o l工具的介绍和应用 (35)4.2M u l t i s i m8的介绍及应用 (37)4.2.1电路的创建 (38)4.2.2仿真 (39)结束语 (43)致谢 (45)参考文献 (47)第一章绪论当今的社会是一个信息化社会,信号的处理是人们不可避免的问题,因此滤波器作为信号处理的装置得到广泛的应用。
通信电子领域中的梳状滤波器设计梳状滤波器是一种常用的通信电子领域的滤波器,具有高速、低功耗、小体积等优点,广泛应用于数字信号处理、无线通信、雷达信号处理等领域。
本文将介绍梳状滤波器的原理、分类、设计方法及应用等方面的内容。
一、梳状滤波器的原理传统的滤波器是通过调节电阻、电容、电感等元件的数值来实现对不同频率信号的滤波,但由于这些元件在高频应用中往往会感到非理想效应,导致滤波器性能下降。
而梳状滤波器则是利用时钟信号来在时域上对输入信号进行采样,再根据采样数据进行数字卷积运算,从而实现对特定频谱范围的信号滤波。
具体来说,梳状滤波器采用周期性函数作为滤波器的冲激响应,对输入信号进行卷积计算。
梳状滤波器的输入信号经过时钟采样后,得到采样序列,将采样序列与周期性函数进行卷积运算,最后得到滤波后的输出信号。
由于梳状滤波器的卷积运算是利用移位寄存器实现的,因此具有高速、低功耗、小体积等优点。
二、梳状滤波器的分类梳状滤波器可以分为单倍频梳状滤波器和多倍频梳状滤波器两种。
单倍频梳状滤波器的冲激响应是一个周期性的函数,频率等于采样频率的一半。
多倍频梳状滤波器则是通过修改周期性函数的频率来实现对不同频率信号的滤波,可以实现更高的滤波性能。
此外,梳状滤波器还可以根据其实现方式分为顺序梳状滤波器和并行梳状滤波器。
顺序梳状滤波器逐个计算序列中的每个样本,具有较低的硬件成本,但计算速度较慢;并行梳状滤波器则同时计算序列中的多个样本,具有较高的计算速度,但需要更多的硬件资源支持。
三、梳状滤波器的设计方法梳状滤波器的设计首先需要确定所需要滤波器的频率响应特性,然后根据特定的应用场景选择合适的梳状滤波器类型,最后根据所选型号的特性进行设计与实现。
具体来说,梳状滤波器的设计需要确定采样率、滤波器带宽、阶数等参数。
在确定这些参数的基础上,可以采用从时钟信号导出生成冲激响应、通过FIR散点插值方法进行实现、利用频率变换法将低通滤波器变换成带通或高通滤波器等方法进行设计。