《试卷4份集锦》山西省吕梁市2021中考数学经典试题
- 格式:doc
- 大小:2.22 MB
- 文档页数:73
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .1003D .25253+2.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个3.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .94.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .195.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a ,b 对应的密文为a +2b ,2a -b ,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( ) A .3,-1B .1,-3C .-3,1D .-1,36.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( )A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=7.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥8.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.459.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C10.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)二、填空题(本题包括8个小题)11.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a的代数式表示).12.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.13.方程22310x x+-=的两个根为1x、2x,则1211+x x的值等于______.14.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC=.15.已知线段a=4,线段b=9,则a,b的比例中项是_____.16.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧离地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为_______m.(精确到0.1m )17.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.18.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).三、解答题(本题包括8个小题)19.(6分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?20.(6分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C 的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)21.(6分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(8分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.23.(8分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?24.(10分)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.25.(10分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为_____.26.(12分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图① 图②参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【详解】解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60°,tan∠BCE BE=,CE3∴=,CE x在直角△ABE中,3x,AC=50米,3x x=,350x=解得253即小岛B到公路l的距离为253故选B.2.C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.3.A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 4.A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.5.A【解析】【分析】根据题意可得方程组2127a ba b+=⎧⎨-=⎩,再解方程组即可.【详解】由题意得:21 27 a ba b+=⎧⎨-=⎩,解得:31 ab=⎧⎨=-⎩,故选A.6.B 【解析】解:设走路快的人要走x 步才能追上走路慢的人,根据题意得:10010060x x-=.故选B.点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.7.D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状8.B【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin1B B+=,∴sinB=35,∵tanB=sincosBB=34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba故选B9.A【解析】【详解】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.10.D 【解析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=1 3.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.二、填空题(本题包括8个小题)11.(50-3a).【解析】试题解析:∵购买这种售价是每千克a元的水果3千克需3a元,∴根据题意,应找回(50-3a)元.考点:列代数式.12.(1645,125)(806845,125)【解析】【分析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴,∴第(2)个三角形的直角顶点的坐标是(445,125); ∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(1645,125), ∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形, 其直角顶点与第672组的第二个直角三角形顶点重合, ∴第(2018)个三角形的直角顶点的坐标是(806845,125). 故答案为:(1645,125);(806845,125) 【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环. 13.1. 【解析】 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1. 【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a+=-,12c x x a=. 14.20° 【解析】 【分析】根据切线的性质可知∠PAC =90°,由切线长定理得PA =PB ,∠P =40°,求出∠PAB 的度数,用∠PAC ﹣∠PAB 得到∠BAC 的度数. 【详解】解:∵PA 是⊙O 的切线,AC 是⊙O 的直径,∴∠PAC =90°.∵PA ,PB 是⊙O 的切线,∴PA =PB .∵∠P =40°,∴∠PAB =(180°﹣∠P )÷2=(180°﹣40°)÷2=70°,∴∠BAC =∠PAC ﹣∠PAB =90°﹣70°=20°.故答案为20°.【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.15.6【解析】【分析】根据已知线段a =4,b =9,设线段x 是a ,b 的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.【详解】解:∵a =4,b =9,设线段x 是a ,b 的比例中项, ∴a x x b= , ∴x 2=ab =4×9=36,∴x =6,x =﹣6(舍去).故答案为6【点睛】本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.16.9.1【解析】【分析】建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标【详解】如图,以地面为x 轴,门洞中点为O 点,画出y 轴,建立直角坐标系由题意可知各点坐标为A (-4,0)B (4,0)D (-3,4)设抛物线解析式为y=ax 2+c (a≠0)把B 、D 两点带入解析式 可得解析式为2464y 77x =-+,则C (0,647) 所以门洞高度为647m≈9.1m【点睛】本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键17.6n+1.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第1个图形有14=6×1+8根火柴棒,第3个图形有10=6×1+8根火柴棒,……,第n个图形有6n+1根火柴棒.18.甲.【解析】乙所得环数的平均数为:0159105++++=5,S2=1n[21x x(-)+22x x(-)+23x x(-)+…+2nx x(-)]=15[205(-)+215(-)+255(-)+295(-)+2105(-)]=16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.三、解答题(本题包括8个小题)19.(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.【解析】试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴当x=34时,w有最大值144元.即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,抛物线开口向下,∴结合图象可知:当24≤x≤1时,w≥2.又∵x≤25,∴当24≤x≤25时,w≥2.设政府每个月为他承担的总差价为p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p随x的增大而减小,∴当x=25时,p有最小值544元.即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.考点:二次函数的应用.20.电视塔OC高为1003米,点P的铅直高度为)100313(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出3根据山坡坡度=1:2表示出PB=x , AB =2x, 在Rt △PCF 中利用三角函数即可求解.【详解】过点P 作PF ⊥OC ,垂足为F .在Rt △OAC 中,由∠OAC =60°,OA =100,得OC =OA•tan ∠OAC =1003(米),过点P 作PB ⊥OA ,垂足为B .由i =1:2,设PB =x ,则AB =2x .∴PF =OB =100+2x ,CF =1003﹣x .在Rt △PCF 中,由∠CPF =45°,∴PF =CF ,即100+2x =1003﹣x ,∴x =10031003- ,即PB =10031003-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.21. (1) 每台A 型100元,每台B 150元;(2) 34台A 型和66台B 型;(3) 70台A 型电脑和30台B 型电脑的销售利润最大【解析】【分析】(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x 的范围,又因为y=﹣50x+15000是减函数,所以x 取34,y 取最大值,(3)据题意得,y=(100+m )x ﹣150(100﹣x ),即y=(m ﹣50)x+15000,分三种情况讨论,①当0<m <50时,y 随x 的增大而减小,②m=50时,m ﹣50=0,y=15000,③当50<m <100时,m ﹣50>0,y 随x 的增大而增大,分别进行求解.【详解】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得解得100150 ab=⎧⎨=⎩答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥3313,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,3313≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足3313≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.22.()1200名;()2见解析;()336;(4)375.【解析】【分析】()1根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;()2根据()1中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;()3根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;()4根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.【详解】解:()113065%200÷=,答:此次抽样调查中,共调查了200名学生;()2反对的人数为:2001305020--=,补全的条形统计图如右图所示;()3扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:2036036200⨯=;(4)50 1500375200⨯=,答:该校1500名学生中有375名学生持“无所谓”意见.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(1)10,144;(2)详见解析;(3)96【解析】【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=12∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-12∠EAB-12∠ABC=180°-12(∠EAB+∠ABC)=180°-12×230°=65°.25.11【解析】【分析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.【详解】将x=2代入方程,得:1﹣1m+3m=0,解得:m=1.当m=1时,原方程为x2﹣8x+12=(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵2+2=1<6,∴此等腰三角形的三边为6、6、2,∴此等腰三角形的周长C=6+6+2=11.【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质26.(1)0.3 L;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】【分析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W 与t 之间的函数图象经过点(0,0.3),故设函数关系式为W =kt +0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9(L ),9.9-0.3=9.6(L ),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1)2.已知抛物线y =x 2+3向左平移2个单位,那么平移后的抛物线表达式是( )A .y =(x+2)2+3B .y =(x ﹣2)2+3C .y =x 2+1D .y =x 2+53.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( )A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定4.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )A .1B .3C .3D .235.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )A .15B .25C .12D .356.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A.125B.95C.65D.1657.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.28.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( ) A.①②③B.①③⑤C.②③④D.②④⑤9.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个10.一、单选题在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A.B.C.D.二、填空题(本题包括8个小题)11.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.12.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC 等于_____.13.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.14.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).15.因式分解:32a ab=_______________.16.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_____.17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为.18.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是.三、解答题(本题包括8个小题)19.(6分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.20.(6分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O 逆时针旋转90°得△OA 1B 1,再以原点O 为位似中心,将△OA 1B 1在原点异侧按位似比2:1进行放大得到△OA 2B 2;直接写出点A 1的坐标,点A 2的坐标.21.(6分)已知2410x x --=,求代数式22(23)()()x x y x y y --+--的值. 22.(8分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C 距守门员多少米?(取437=)运动员乙要抢到第二个落点D ,他应再向前跑多少米? 23.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b 班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.24.(10分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,当2m =时,求线段AB 的长;若C 为线段AB 的三等分点,求m 的值.25.(10分)如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°,求:∠BAD 的度数;四边形ABCD 的面积(结果保留根号).26.(12分)如图所示,点B 、F 、C 、E 在同一直线上,AB ⊥BE ,DE ⊥BE ,连接AC 、DF ,且AC=DF ,BF=CE ,求证:AB=DE .参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【详解】∵以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,。
山西省吕梁市2021年中考数学核心考点题集合及答案(含解析)一、单选题1、根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图格选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.2、对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对【分析】平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路与计算都错误,图示情况不是最长;故选:B.【点评】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.3、若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1【分析】由点A(m,n)、C(3﹣m,n)的对称性,可求函数的对称轴为x=,再由B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离,即可判断y1>y3>y2;【解答】解:∵经过A(m,n)、C(3﹣m,n),∴二次函数的对称轴x=,∵B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离B最远,D最近,∵|a|>0,∴y1>y3>y2;故选:D.【点评】本题考查二次函数的图象及性质;熟练掌握函数图象上点的特征是解题的关键.4、已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A′的坐标是()A.(6,1)B.(﹣2,1)C.(2,5)D.(2,﹣3)【分析】将点A的横坐标不变,纵坐标减去4即可得到点A′的坐标.【解答】解:∵点A的坐标为(2,1),∴将点A向下平移4个单位长度,得到的点A′的坐标是(2,﹣3),故选:D.【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.正确掌握规律是解题的关键.5、已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3 B.C.﹣3 D.﹣【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(1,3),然后把A′的坐标代入y=中即可得到k的值.【解答】解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6、如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10 D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.【点评】本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.7、下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6﹣2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【解答】解:A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选:D.【点评】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.8、小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.4【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.【点评】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键.9、对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对【分析】平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路与计算都错误,图示情况不是最长;故选:B.【点评】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.10、如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题1、如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.【分析】设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,所以AF=8,BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=.【解答】解:设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,在Rt△DAF中,AD=6,DF=10,∴AF=8,∴BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=,故答案为.【点评】本题考查了矩形,熟练掌握矩形的性质以及勾股定理是解题的关键.2、现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是.【分析】直接利用概率公式计算进而得出答案.【解答】解:∵现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,∴将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是:.故答案为:.【点评】此题主要考查了概率公式,正确掌握计算公式是解题关键.3、不等式组的最小整数解是0 .【分析】求出不等式组的解集,确定出最小整数解即可.【解答】解:不等式组整理得:,∴不等式组的解集为﹣1<x≤2,则最小的整数解为0,故答案为:0【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4、如图,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为50°.【分析】依据平行线的性质,即可得到∠BAC的度数,再根据角平分线的定义,即可得到∠DAC的度数.【解答】解:∵AB∥CD,∠ACD=80°,∴∠BAC=100°,又∵AD平分∠BAC,∴∠DAC=∠BAC=50°,故答案为:50°.【点评】本题主要考查了平行线的性质,以及角平分线的定义.解题时注意:两直线平行,同旁内角互补.5、《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26 寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.三、解答题(难度:中等)1、某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;维修次数8 9 10 11 12频率(台数)10 20 30 30 10(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?【分析】(1)利用概率公式计算即可.(2)分别求出购买10次,11次的费用即可判断.【解答】解:(1)“1台机器在三年使用期内维修次数不大于10”的概率==0.6.(2)购买10次时,某台机器使用期内维修次数8 9 10 11 12该台机器维修费用24000 24500 25000 30000 35000此时这100台机器维修费用的平均数y1=(24000×10+24500×20+25000×30+30000×30+35000×10)=27300购买11次时,某台机器使用期内维修次数8 9 10 11 12该台机器维修费用26000 26500 27000 27500 32500此时这100台机器维修费用的平均数y2=(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,∵27300<27500,所以,选择购买10次维修服务.【点评】本题考查利用频率估计概率,加权平均数,列表法等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.2、观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.3、先化简,再求值:(﹣)÷,其中x=.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式==当x=时,原式==【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.4、在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)A(0,﹣)向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称;(3)①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,所以函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;【解答】解:(1)A(0,﹣)点A向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b﹣2a,∴y=ax2﹣2ax﹣,①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,∴函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;∴当a≤﹣时,抛物线与线段PQ恰有一个公共点;【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.5、解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6、已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若PA=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.【分析】(1)y=(x﹣1)2﹣4向左评移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)易求点A(3,0),b=4,联立方程﹣x+4=(x﹣1)2﹣4,可得B(﹣,);设P(t,﹣t+4),Q(t,t2﹣2t﹣3),①当AP=AQ时,则有﹣4+t=t2﹣2t﹣3,求得t=;②当AP=PQ时,PQ=t2+t+7,PA=(3﹣t),则有t2+t+7=(3﹣t),求得t=﹣;(3)设经过M与N的直线解析式为y=k(x﹣m)+m2,∴,则可知△=k2﹣4km+4m2=(k﹣2m)2=0,求得k=2m,求出直线ME的解析式为y=2mx﹣m2,直线NE的解析式为y=2nx﹣n2,则可求E(,mn),再由面积[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,可得(m﹣n)3=8,即可求解;【解答】解:(1)y=(x﹣1)2﹣4向左评移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)y=(x﹣1)2﹣4与x轴正半轴的交点A(3,0),∵直线y=﹣x+b经过点A,∴b=4,∴y=﹣x+4,y=﹣x+4与y=(x﹣1)2﹣4的交点为﹣x+4=(x﹣1)2﹣4的解,∴x=3或x=﹣,∴B(﹣,),设P(t,﹣t+4),且﹣<t<3,∵PQ∥y轴,∴Q(t,t2﹣2t﹣3),①当AP=AQ时,|4﹣t|=|t2﹣2t﹣3|,则有﹣4+t=t2﹣2t﹣3,∴t=,∴P点横坐标为;②当AP=PQ时,PQ=﹣t2+t+7,PA=(3﹣t),∴﹣t2+t+7=(3﹣t),∴t=﹣;∴P点横坐标为﹣;(3)设经过M与N的直线解析式为y=k(x﹣m)+m2,∴,则有x2﹣kx+km﹣m2=0,△=k2﹣4km+4m2=(k﹣2m)2=0,∴k=2m,直线ME的解析式为y=2mx﹣m2,直线NE的解析式为y=2nx﹣n2,∴E(,mn),∴[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,∴(m﹣n)3﹣=4,∴(m﹣n)3=8,∴m﹣n=2;【点评】本题考查二次函数的图象及性质;是二次函数的综合题,熟练掌握直线与二次函数的交点求法,借助三角形面积列出等量关系是解决m与n的关系的关键.7、如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【分析】(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.【解答】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC===6,∵BC=CD,∴=,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2﹣EC2=OB2﹣OE2,∴62﹣(5﹣x)2=52﹣x2,解得x=,∵BE=DE,BO=OA,∴AD=2OE=,∴四边形ABCD的周长=6+6+10+=.【点评】本题考查作图﹣复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.8、如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△PAM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD 重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.【分析】(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式即可;(2)由已知易得点P为AB的垂直平分线与抛物线的交点,点P的纵坐标是1,则有1=﹣﹣x+2,即可求P;(3)S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;(4)设点Q(m,0),直线BC的解析式y=﹣x+2,直线AQ的解析式y=﹣(x+2)+2,求出点K(0,),H(,),由勾股定理可得OK2=,OH2=+,HK2=+,分三种情况讨论△HOK为等腰三角形即可;【解答】解:(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式可得,∴,∴y=﹣﹣x+2;(2)∵△PAM≌△PBM,∴PA=PB,MA=MB,∴点P为AB的垂直平分线与抛物线的交点,∵AB=2,∴点P的纵坐标是1,∴1=﹣﹣x+2,∴x=﹣1+或x=﹣1﹣,∴P(﹣1﹣,1)或P(﹣1+,1);(3)CM=t﹣2,MG=CM=2t﹣4,MD=4﹣(BC+CM)=4﹣(2+t﹣2)=4﹣t,MF=MD=4﹣t,∴BF=4﹣4+t=t,∴S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;当t=时,S最大值为;(4)设点Q(m,0),直线BC的解析式y=﹣x+2,直线AQ的解析式y=﹣(x+2)+2,∴K(0,),H(,),∴OK2=,OH2=+,HK2=+,①当OK=OH时,=+,∴m2﹣4m﹣8=0,∴m=2+2或m=2﹣2;②当OH=HK时,+=+,∴m2﹣8=0,∴m=2或m=﹣2;③当OK=HK时,=+,不成立;综上所述:Q(2+2,0)或Q(2﹣2,0)或Q(2,0)或Q(﹣2,0);【点评】本题考查二次函数综合;熟练应用待定系数法求函数解析式,掌握三角形全等的性质,直线交点的求法是解题的关键.。
山西省吕梁市2021年中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)桌上放着一个茶壶,4个同学从各自的方向观察,则小明看到的图形是()A .B .C .D .2. (2分)已知等腰三角形的一边长为5,另两边的长是方程x2-6x+m=0的两根,则此等腰三角形的周长为()A . 10B . 11C . 10或11D . 11或123. (2分)已知函数y=中,当x=a时的函数值为1,则a的值是()A . -1B . 1C . -3D . 34. (2分)下列说法中:①一个角的两边分别垂直于另一个角的两边,则这两个角相等;②数据5,2,7,1,2,4的中位数是3,众数是2;③平行四边形既是中心对称图形,又是轴对称图形;④命题“若x=1,则x2=1”的逆命题是真命题;⑤已知两圆的半径长是方程x2﹣10x+24=0的两个根,且两圆的圆心距为8,则两圆相交.正确的说法有()个.A . 2个B . 3个C . 4个D . 5个5. (2分)在△ABC中,点D、E分别是边AB、AC上的点,且有==, BC=18,那么DE的值为()A . 3B . 6C . 9D . 126. (2分)(2019·吉林模拟) 如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A . 48°B . 96°C . 114°D . 132°7. (2分) (2017八下·东营期末) 反比例函数与一次函数的图象交于点,利用图象的对称性可知它们的另一个交点是().A .B .C .D .8. (2分)小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A .B .C .D .9. (2分)如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=−和y=的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A . 3B . 4C . 5D . 610. (2分)(2017·西固模拟) 某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A . x(x+1)=1035B . x(x﹣1)=1035×2C . x(x﹣1)=1035D . 2x(x+1)=103511. (2分) (2018八上·宜兴月考) 如图所示,将一个正方形纸片对折两次,然后再上面打3个洞,则纸片展开后是()A .B .C .D .12. (2分)如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A . 5﹕3B . 4﹕1C . 3﹕1D . 2﹕113. (2分) (2018九上·如皋期中) 如图,是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加()m.A . 1B . 2C .D .14. (2分)在Rt△ABC中,∠C=90°,如果sinA=,则tanB=()A .B .C .D .15. (2分) (2017九上·巫溪期末) 如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A . abc<0B . 4ac﹣b2<0C . a﹣b+c<0D . 2a+b<0二、填空题 (共5题;共5分)16. (1分)(2019·枣庄模拟) 已知关于x的一元二次方程mx2+5x+m2-2m=0有一个根为0,则m=________。
2021年山西省中考数学试题及参考答案(word解析版)2021年山西省中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分) 1.下面有理数比较大小,正确的是() A.0<��2B.��5<3C.��2<��3 D.1<��42.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A. B. C. D.《九章算术》《几何原本》《海岛算经》《周髀算经》 3.下列运算正确的是()?b2?b6326222236A.(��a)=��a B.2a+3a=6a C.2a?a=2a D.?????38a?2a?4.下列一元二次方程中,没有实数根的是()A.x2��2x=0 B.x2+4x��1=0 C.2x2��4x+3=0 D.3x2=5x��25.近年来快递业发展迅速,下表是2021年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 3303.78 A.319.79万件大同市 332.68 长治市 302.34 晋中市 319.79 运城市 725.86 临汾市 416.01 吕梁市 338.87 31~3月份我省这七个地市邮政快递业务量的中位数是()B.332.68万件C.338.87万件D.416.01万件6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时 C.3.636×106立方米/时D.36.36×105立方米/时7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是() A.4211 B. C. D. 999318.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.62 D.63 9.用配方法将二次函数y=x2��8x��9化为y=a(x��h)2+k的形式为() A.y=(x��4)2+7B.y=(x��4)2��25 C.y=(x+4)2+7 D.y=(x+4)2��2510.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π��4B.4π��8C.8π��4D.8π��8二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:32?132?1? .12.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.???? 13.2021年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm.214.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于1CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,2∠ABP=60°,则线段AF的长为.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG 的长为.三、解答题(本大题共8个小题,共75分) 16.计算:(1)22��|��4|+31×6+20.��??2x?2x2?11?2?(2). x?1x?4x?4x?217.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2?k2,D(2,4). ?k2?0?的图象相交于点C(��4,��2)x(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.318.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目课题测量示意图内容测量斜拉索顶端到桥面的距离说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据… ∠A的度数38° ∠B的度数28° … AB的长度 234米(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,4cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2021年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南��北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的4(两列车中途停留时间均除5外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴同理可得..∴.∵Z'A'=Y'Z',∴ZA=YZ. 5感谢您的阅读,祝您生活愉快。
山西省吕梁市2021版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)计算-+(-)的正确结果是()A .B . -C . 1D . -12. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)(2013·苏州) 世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n (n是正整数),则n的值为()A . 5B . 6C . 7D . 84. (2分) (2020八上·青山期末) 下列四个命题中的真命题有()①两条直线被第三条直线所截同位角相等;②三角形的一个外角等于它的两个内角之和;③两边分别相等且一组内角相等的两个三角形全等;④直角三角形的两锐角互余A . 1个B . 2个C . 3个D . 4个5. (2分)下列运算中,结果正确的是()A . 2x+x2=3x3B . x6x2=x3C . 2x•x2=2x2D . (﹣x2)3=﹣x66. (2分) (2017八下·文安期末) 一次函数y=kx+b的图象如图所示,则k、b的值为()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<07. (2分)某厂的40名工人的平均年龄是25.8岁,其中有2人是27岁,3人是26岁,30人是25岁,还有5人的年龄相同,那么这5人的年龄是().A . 28岁B . 30岁C . 29岁D . 25岁8. (2分) (2018八上·汽开区期末) 若a+b=3,ab=2,则a2+b2的值是()A . 2.5B . 5C . 10D . 159. (2分)如图,△ABC内接于⊙O,若sin∠BAC= ,BC=2 ,则⊙O的半径为()A . 3B . 6C . 4D . 210. (2分)(2019·海曙模拟) 在玩俄罗斯方块游戏时,底部已有的图形如图所示,接下去出现如下哪个形状时,通过旋转变换后能与已有图形拼成一个中心对称图形()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)化简=________.12. (1分) (2017八上·永定期末) 一个多边形的内角和是它的外角的和的2倍,这个多边形的边数是________13. (1分)化简:(﹣)×(a2﹣1)=________14. (1分)(2020·丹东) 关于的方程有两个实数根,则的取值范围是________.15. (1分) (2018九下·梁子湖期中) 如图,是一圆锥的主视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的度数为________.16. (1分) (2018七上·江门期中) 用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n 个图形需要________根火柴棒(用含n代数式表示).17. (1分) (2019九上·长春月考) 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m , BD=14m ,则旗杆AB的高为________m .18. (1分)(2017·山西模拟) 如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y=﹣(x<0)与y= (x>0)的图象上,则▱ABCD的面积为________.三、解答题 (共9题;共92分)19. (10分) (2019七下·泰兴期中) 计算.(1)(2)20. (5分) (2020九下·吴江月考) 解不等式组,并将解集在数轴上表示出来.21. (5分)(2020·河南模拟) 为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动,如图,在一个坡度(坡比 )的山坡上发现一棵古树,测得古树低端C到山脚点A的距离米,在距山脚点A水平距离米的点处,测得古树顶端D的仰角 (古树与山坡的剖面、点E在同一平面内,古树与直线垂直),求古树的高度约为多少米? (结果保留一位小数,参考数据 )22. (16分)(2020·白云模拟) 为了解“停课不停学”期间,学生对线上学习方式的偏好情况,某校随机拍取40名学生进行问卷调查,其统计结果如表:最喜欢的线上学习方式(没人最多选一种)人数直播10录播资源包5线上答疑8合计40(1) ________;(2)若将选取各种“最喜欢的线上学习方式”的人数所占比例绘制成扇形统计图,求“直播"对应扇形的圆心角度数(3)根据调查结果估计该校10000名学生中,最喜欢“线上答疑”的学生人数;(4)在最喜欢“资源包”的学生中,有2名男生,3名女生.现从这5名学生中随机抽取2名学生介绍学习经验,求恰好抽到1名男生和1名女生的概率.23. (15分)(2020·广西模拟) 为了促进学生全面发展,河南省某地区教育局在全区中小学开展“书法、手球、豫剧进校园”活动今年8月份,该区某校举行了“朝阳沟”演唱比赛、比赛分五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)求该校参加本次“朝阳沟”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有2名男生,2名女生,现从中任意选取2名学生作为全校学生的楷模请你用列表法或画树状图的方法求出恰好选1男1女的概率.24. (10分) (2020九上·路桥期末) 如图,已知AB为⊙O的直径,PA与⊙O相切于A点,点C是⊙O上的一点,且PC=PA.(1)求证:PC是⊙O的切线;(2)若∠BAC=45°,AB=4,求PC的长.25. (10分)(2020·南京模拟) 学校为表彰在“了不起我的国”演讲比赛中获奖的选手,决定购买甲、乙两种图书作为奖品.已知购买30本甲种图书,50本乙种图书共需1350元;购买50本甲种图书,30本乙种图书共需1450元.(1)求甲、乙两种图书的单价分别是多少元?(2)学校要求购买甲、乙两种图书共40本,且甲种图书的数量不少于乙种图书数量的,请设计最省钱的购书方案.26. (10分)(2020·武汉模拟) 已知如图:在⊙O中,直径AB⊥弦CD于G,E为DC延长线上一点,BE交⊙O 于点F.(1)求证:∠EFC=∠BFD;(2)若F为半圆弧AB的中点,且2BF=3EF,求tan∠EFC的值.27. (11分)(2017·海淀模拟) 平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.(1)抛物线的对称轴为x=________(用含m的代数式表示);(2)若AB∥x轴,求抛物线的表达式;(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(xp , yp),yp≤2,求m的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共92分)19-1、19-2、20-1、21-1、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。
山西省2021年中考数学试题满分:120分 时间:120分钟一.选择题(本大题共10个小题,每小题3分,共30分)1.-3的绝对值是( )A.-3B.3C.31-D.31 2.下列运算正确的是( )A.2532a a a =+B.2224)2(b a b a +=+C.632a a a =⋅D.6332)(b a ab -=-3.某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( )A.青B.春C.梦D.想4.下列二次根式是最简二次根式的是( )A.21B.712 C.8 D.3 5.如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是( )A.30°B.35°C.40°D.45°6.不等式组⎩⎨⎧<->-42231x x 的解集是( ) A.4>x B.1->x C.41<<-x D.1-<x7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为( )A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元8.一元二次方程0142=--x x 配方后可化为( )A.3)2(2=+xB.5)2(2=+xC.3)2(2=-xD.5)2(2=-x9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴简历平面直角坐标系,则此抛物线钢拱的函数表达式为( ) A.267526x y = B.267526x y -= C.2135013x y = D.2135013x y -=图1 图210.如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.2435π-B.2435π+C.π-32D.234π-第II 卷 非选择题(90分)二.填空题(本大题共5个小题,每小题3分,共15分)11.化简xx x x ---112的结果是 . 12.要表示一个家庭一年用于“教育”,服装,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,“从扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计是 .13.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m ²,设道路的宽为x m ,则根据题意,可列方程为 .14.如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .15.如图,在△ABC 中,∠BAC =90°,AB =AC =10cm ,点D 为△ABC 内一点,∠BAD =15°,AD =6cm ,连接BD ,将△ABD 绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm .三.解答题(本大题共8个小题,共75分)16.(本题共2个小题,每小题5分,共10分)(1)计算:02)2(60tan 3)21(27-+︒--+-π (2)解方程组:⎩⎨⎧=+-=-②02①823y x y x17.(本题7分)已知:如图,点B ,D 在线段AE 上,AD =BE ,AC ∥EF ,∠C =∠H .求证:BC =DH18.(本题9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行,太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.(本题9分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.(本题9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动,他们制订了测量方案,并利用课余时间完成了实地测量.他们在旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整)任务一:两次测量A ,B 之间的距离的平均值是 m .任务二:根据以上测量结果,请你帮助“综合与实践”小组求出学校学校旗杆GH 的高度. (参考数据:sin 25.7°≈0.43,cos 25.7°≈0.90,tan 25.7°≈0.48,sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)任务三:该“综合与实践”小组在定制方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可).21.(8分)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则Rr R OI 222-=.下面是该定理的证明过程(部分):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN .∵∠D =∠N ,∴∠DMI =∠NAI (同弧所对的圆周角相等),∴△MDI ∽△ANI .∴INID IA IM =,∴IN IM ID IA ⋅=⋅① 如图②,在图1(隐去MD ,AN )的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF∵DE 是⊙O 的直径,∴∠DBE =90°.∵⊙I 与AB 相切于点F ,∴∠AFI =90°,∴∠DBE =∠IF A.∵∠BAD =∠E (同弧所对圆周角相等),∴△AIF ∽△ED B. ∴BD IF DE IA =,∴IF DE BD IA ⋅=⋅② 任务:(1)观察发现:d R IM +=,=IN (用含R ,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为 cm .22.(本小题11分)综合与实践动手操作: 第一步:如图1,正方形纸片ABCD 沿对角线AC 所在直线折叠,展开铺平.在沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一直线上,折痕分别为CE ,CF .如图2.第二步:再沿AC 所在的直线折叠,△ACE 与△ACF 重合,得到图3第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME ,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC 的度数是 ,BEAE 的值是 ; (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .23.(本题13分)综合与探究如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,D C.(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.山西省2019年中考数学试题第I 卷 选择题(共30分)满分:120分 时间:120分钟一.选择题(本大题共10个小题,每小题3分,共30分)1.-3的绝对值是( )A.-3B.3C.31-D.31 【解析】3|-3|=,故选B2.下列运算正确的是( )A.2532a a a =+B.2224)2(b a b a +=+C.632a a a =⋅D.6332)(b a ab -=- 【解析】A.2a +3a =5a ,故A 错误;B.22244)2(b ab a b a ++=+,故B 错误;C.532a a a =⋅,故C 错误;D.6332)(b a ab -=-,故D 正确,故选D3.某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( )A.青B.春C.梦D.想【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,而面“青”与面“梦”相对.故选B4.下列二次根式是最简二次根式的是( )A.21B.712 C.8 D.3 【解析】A.2221=,本选项不合题意;B.7212721=,本选项不合题意;C.228=不合题意;D.3是最简二次根式,符合题意,故选D5.如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是( )A.30°B.35°C.40°D.45°【解析】∵AB =AC 且∠A =30°,∴∠ACB =75°.在△ADE 中:∠1=∠A +∠3,∴∠3=115° ∵a ∥b ,∴∠3=∠2+∠ACB ,∴∠2=40°6.不等式组⎩⎨⎧<->-42231x x 的解集是( ) A.4>x B.1->x C.41<<-x D.1-<x【解析】4,31>>-x x ;1,22,422-><-<-x x x ;∴4>x ,故选A7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为( )A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元【解析】120000×168=20160000=2.016×107,故选C8.一元二次方程0142=--x x 配方后可化为( )A.3)2(2=+xB.5)2(2=+xC.3)2(2=-xD.5)2(2=-x 【解析】5)2(,014)44(,014222=-=--+-=--x x x x x ,故选D9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴简历平面直角坐标系,则此抛物线钢拱的函数表达式为( ) A.267526x y = B.267526x y -= C.2135013x y = D.2135013x y -=图1 图2 【解析】设抛物线的解析式为,2ax y =将)78,45(-B 代入得:67526,45782-=∴⋅=-a a ∴抛物线解析式为:267526x y -=,故选B 10.如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.2435π-B.2435π+C.π-32D.234π-【解析】作DE ⊥AB 于点E ,连接OD ,在Rt △ABC 中:tan ∠CAB =33322==AB BC ,∴∠CAB =30°,∠BOD =2∠CAB =60°. 在Rt △ODE 中:OE =21OD =23,DE =3OE =23. S 阴影=S △ABC -S △AOD -S 扇形BOD =2360602121OB DE OD BC AB ⋅⋅︒︒-⋅⋅-⋅⋅π =2435)3(3606023321232212ππ-=⨯⨯︒︒-⨯⨯-⨯⨯,故选A第II 卷 非选择题(90分)二.填空题(本大题共5个小题,每小题3分,共15分)11.化简x x x x ---112的结果是 .。
山西省吕梁市2021年中考数学试题及答案(含解析)一、单选题1、下列运算正确的是()A.﹣3﹣2=﹣1 B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2、如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【分析】根据平行线的性质解答即可.【解答】解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.3、下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、下列哪个图形是正方体的展开图()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图..故选:B.【点评】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.5、式子在实数范围内有意义,则x的取值范围是()A.x>0 B.x≥﹣1 C.x≥1 D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式组是解题关键.6、如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r 的值.【解答】解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m故选:A.【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.7、语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=5【分析】x的即x,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.8、下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为()A.﹣5 B.5 C.﹣4 D.4【分析】利用根与系数的关系可得出x1•x2=﹣5,此题得解.【解答】解:∵x1,x2是一元二次方程x2﹣4x﹣5=0的两根,∴x1•x2==﹣5.故选:A.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.10、如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图象判定则可.【解答】解:从上面看下来,上面一行是横放3个正方体,左下角一个正方体.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.二、填空题1、武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是23℃.【分析】根据中位数的概念求解可得.【解答】解:将数据重新排列为18、20、23、25、27,所以这组数据的中位数为23℃,故答案为:23℃.【点评】此题考查了中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、一组数据1,7,8,5,4的中位数是a,则a的值是 5 .【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.【点评】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.3、已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为3cm2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其左视图的面积为3×=3(cm2),故答案为3cm2.【点评】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.4、如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是﹣1 .【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣1【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5、在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.【点评】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.三、解答题(难度:中等)1、计算:(﹣)﹣2+(2019﹣π)0﹣tan60°﹣|﹣3|.【分析】本题涉及零指数幂、负整数指数幂、绝对值、特殊角的三角函数值等4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4+1﹣,=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.2、计算:﹣2cos60°+()﹣1+(π﹣3.14)0【分析】直接利用二次根式的性质以及零指数幂的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2×+8+1=3﹣1+8+1=11.【点评】此题主要考查了实数运算,正确化简各数是解题关键.3、已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:AB2=4AD•BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.【分析】(1)连接OC、OD,证明△AOD∽△BCO,得出=,即可得出结论;(2)连接OD,OC,证明△COD≌△CFD得出∠CDO=∠CDF,求出∠BOE=120°,由直角三角形的性质得出BC =3,OB=,图中阴影部分的面积=2S△OBC﹣S扇形OBE,即可得出结果.【解答】(1)证明:连接OC、OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,∴∠ODE=∠ADE,∠OCE=∠BCE,∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90°,∴△AOD∽△BCO,∴=,∴OA2=AD•BC,∴(AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,∴OD=DF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD=OA,Rt△BOC中,BC=OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB=,∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×××3﹣=3﹣π.【点评】本题考查了相似三角形的判定与性质、切线的性质、全等三角形的判定与性质、扇形面积公式、直角三角形的性质等知识;证明三角形相似和三角形全等是解题的关键.4、如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【分析】(1)根据点P的坐标,利用待定系数法可求出m,n的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A的坐标(利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标亦可);(2)由菱形的性质可得出AC⊥BD,AB∥CD,利用平行线的性质可得出∠DCP=∠OAE,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.【解答】(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.【点评】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD =90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.5、已知抛物y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.【分析】(1)抛物线与x轴的公共点坐标即为函数顶点坐标,即可求解;(2)①y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),即可求解;②计算直线AD表达式中的k值、直线AC表达式中的k值,两个k值相等即可求解.【解答】解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,则c=4a;(2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),又△ABC为等腰直角三角形,∴点A为抛物线的顶点;①c=1,顶点A(1,0),抛物线的解析式:y=x2﹣2x+1,②,x2﹣(2+k)x+k=0,x=(2+k±),x D=x B=(2+k﹣),y D=﹣1;则D,y C=(2+k2+k,C,A(1,0),∴直线AD表达式中的k值为:k AD==,直线AC表达式中的k值为:k AC=,∴k AD=k AC,点A、C、D三点共线.【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等知识点,本题关键是复杂数据的计算问题,难度不大.6、如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.【分析】(1)当x=0吋,y=x﹣b=﹣b,所以B(0,﹣b),而AB=8,而A(0,b),则b﹣(﹣b)=8,b =4.所以L:y=﹣x2+4x,对称轴x=2,当x=2吋,y=x﹣4=﹣2,于是L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,顶点C()因为点C在l下方,则C与l的距离b﹣=﹣(b﹣2)2+1≤1,所以点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,右交点D(b,0).因此点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019,美点”总计4040个点,②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,“美点”共有1010个.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1009个偶数,并且在﹣1和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【点评】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.7、已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.【分析】(1)根据题意画出图形.(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD=OC=OP+PC=2a+x,MQ=DM+QD =2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=a+a=+1,求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=OP=1∴OD=∵OH=+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中∴△OCN≌△QDP(SAS)∴ON=QP【点评】本题考查了根据题意画图,旋转的性质,三角形内角和180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以ON=QP为条件反推OP的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP=2为条件构造全等证明ON=QP.8、如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83AD/cm0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.。
山西省中考数学试卷(一)一、填空题(每小题2分,共20分)1.-5的相反数是 。
2.在“2008北京”奥运会国家体育场“鸟巢”钢结构工程施工建设中,首先使用了我国科研人员自主研制的强度为460 000 000帕的钢材,这个数据用科学计数法表示为 帕。
3.计算:()=-⋅2332x x 。
4.如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D 。
若∠1=20 o , ∠2=65 o ,则∠3= 。
5.某校开展为地震灾区捐款活动,九年级(2)班第1 组8名学生捐款如下(单位:元)100 50 20 20 30 10 20 15则这组数据的众数是 。
6.不等组⎩⎨⎧+<+≥-71403x x x 的解集是 。
7.计算:()=⎪⎭⎫ ⎝⎛+---10212328 。
8.在方格纸上建立如图所示的平面直角坐标系,将△ABO 绕点O按顺时针方向旋转90 o ,得△A ’B ’O ,则点A 的对应点A ’的坐标为 。
9.二次函数322-+=x x y 的图象的对称轴是直线 。
10.如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n 层有 白色正六边形。
二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个是正确答案,请将正确答案的字母代号填入下表相应的空格内。
每小题3分,共24分) 题号11 12 13 14 15 16 17 18 答案11.一元二次方程032=+x x 的解是A .3-=xB .3,021==x xC .3,021-==x xD .3=x12.下列运算正确的是A .ab a b 11+-=+- B .()2222b ab a b a ++=--C .12316+=+a aD .()222-=-13.如图所示的图形是由7个完全相同的小立方体组成的立体图形,这个立体图形的主视力是14.在平面直角坐标系中,点()12,7+--m 在第三象限,则m 的取值范围是A .21<m B .21->m C .21-<m D .21>m 15.抛物线5422---=x x y 经过平移得到22x y -=,平移方法是A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位16.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60 o , 又知水平距离BD=10m ,楼高AB=24 m ,则树高CD 为A .()31024-mB .⎪⎪⎭⎫ ⎝⎛-331024m C .()3524-m D .9m 17.如图,第四象限的角平分线OM 与反比例函数()0≠=k x k y 的图象交于点A ,已知OA=23,则该函数的解析式为 A .x y 3=B .xy 3-= C .x y 9= D .x y 9-= 18.如图,有一圆心角为120 o 、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是A .24cmB .35cmC .62cmD .32cm三、解答题(本题共76分)19.(本题8分)求代数式的值:212244632--+-÷+++x x x x x x ,其中6-=x 。
山西省吕梁市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为()A . -26℃B . -22℃C . -18℃D . -16℃2. (2分)绵阳市统计局发布2012年一季度全市完成GDP共317亿元,居全省第二位,将这一数据用科学记数法表示为()A . 31.7×109元B . 3.17×1010元C . 3.17×1011元D . 31.7×1010元3. (2分)下列图形不是轴对称图形的是()A .B .C .D .4. (2分)某住宅小区六月1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是()A . 30吨B . 31吨C . 32吨D . 33吨5. (2分)已知a、b为一元二次方程的两个根,那么的值为()A .B . 0C . 7D . 116. (2分) (2017八下·南通期中) 若直线不经过第三象限,则下列不等式中,总成立的是()A . b﹥0B . b-a﹤0C . b-a﹥0D . a+b﹥07. (2分)如图,点P在双曲线y= 上,以P为圆心的⊙P与两坐标轴都相切,E为y轴负半轴上的一点,PF⊥PE交x轴于点F,则OF﹣OE的值是()A . 6B . 5C . 4D . 28. (2分)下列运算正确的是()A . x2+x2=x4B . ( a-1)2=a2-1C . 3x+2y=5xyD . a2·a3=a59. (2分)(2017·临沭模拟) 如图,在平面直角坐标系中,四边形ABCD是菱形,∠ABC=60°,且点A的坐标为(4,0),若E是AD的中点,则点E的坐标为()A . (﹣2,2 )B . (2,﹣4 )C . (﹣2,4 )D . (2,﹣2 )10. (2分)如图1,在矩形ABCD中,动点P从点B出发,沿矩形的边由运动,设点P运动的路程为x,的面积为y,把y看作x的函数,函数的图像如图2所示,则的面积为()A . 10B . 16C . 18D . 20二、填空题 (共6题;共7分)11. (1分)若关于x的代数式的取值范围为x>﹣1,则这个代数式可以为________ (只需写一个)12. (1分) (2017七下·宁江期末) 如图,超市里的购物车,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的倍,∠2的度数是________.13. (1分)(2011·梧州) 如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是________mm2 .14. (2分)把命题“对顶角相等”写成“如果…,那么…”的形式为:如果________,那么________.15. (1分) (2016九上·温州期末) 如图,已知二次函数y= x2﹣ x﹣3的图象与x轴交于A,B两点(点A在点B的左侧),与y轴的负半轴交于点C,顶点为D,作直线CD,点P是抛物线对称轴上的一点,若以P 为圆心的圆经过A,B两点,并且和直线CD相切,则点P的坐标为________16. (1分)圆的对称中心是________ .三、解答题 (共9题;共97分)17. (5分)(2017·苏州模拟) 先化简(﹣)• ,再从0,1,2中选一个合适的x的值代入求值.18. (15分)(2017·东河模拟) 如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)与B,与y 轴相交于点C(0,﹣3),抛物线的对称轴为直线x=1.(1)求此二次函数的解析式.(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由.(3)若点M在x轴上,点P在抛物线上,是否存在以A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请直接写出所有满足要求的点P的坐标;若不存在,请说明理由.19. (15分) (2019九上·江都期末) 某校初三一班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)写出甲队成绩的中位数和乙队成绩的众数;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分,则成绩较为整齐的是哪个队?20. (5分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?21. (10分) (2019七下·荔湾期末) 某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.22. (5分)(2017·裕华模拟) 如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)23. (7分)(2018·焦作模拟) 如图,一次函数y=- x+b与反比例函数y=(x>0)的图象交于点A(2,6)和B(m,1)(1)填空:一次函数的解析式为________,反比例函数的解析式为________;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.24. (15分) (2016九上·南岗期中) ⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.(1)如图1,求证:AG=CP;(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC 的长.25. (20分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x 轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+=(+1)2].参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共97分)17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、25-4、。
2021年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算﹣2+8的结果是( )A .﹣6B .6C .﹣10D .102.(3分)为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会,在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.(3分)下列运算正确的是( )A .(﹣m 2n )3=﹣m 6n 3B .m 5﹣m 3=m 2C .(m +2)2=m 2+4D .(12m 4﹣3m )÷3m =4m 34.(3分)《中国核能发展报告2021》蓝皮书显示,2020年我国核能发电量为3662.43亿千瓦时,相当于造林77.14万公顷.已知1公顷=104平方米,则数据77.14万公顷用科学记数法表示为( )A .77.14×104平方米B .7.714×107平方米C .77.14×108平方米D .7.714×109平方米 5.(3分)已知反比例函数y =6x ,则下列描述不正确的是( )A .图象位于第一,第三象限B .图象必经过点(4,32)C .图象不可能与坐标轴相交D .y 随x 的增大而减小6.(3分)每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如表,则这组数据的中位数和众数分别是()星期一二三四五六日收入(点)15212727213021A.27点,21点B.21点,27点C.21点,21点D.24点,21点7.(3分)如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB 交⊙O于点D,连接CD.若∠B=50°,则∠OCD为()A.15°B.20°C.25°D.30°8.(3分)在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想B.分类思想C.数形结合思想D.函数思想9.(3分)如图,正六边形ABCDEF 的边长为2,以A 为圆心,AC 的长为半径画弧,得EĈ,连接AC ,AE ,则图中阴影部分的面积为( )A .2πB .4πC .√33πD .2√33π10.(3分)抛物线的函数表达式为y =3(x ﹣2)2+1,若将x 轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A .y =3(x +1)2+3B .y =3(x ﹣5)2+3C .y =3(x ﹣5)2﹣1D .y =3(x +1)2﹣1二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:√12+√27= .12.(3分)如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿,将其放在平面直角坐标系中,表示叶片“顶部”A ,B 两点的坐标分别为(﹣2,2),(﹣3,0),则叶杆“底部”点C 的坐标为 .13.(3分)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,BD =8,AC =6,OE ∥AB ,交BC 于点E ,则OE 的长为 .14.(3分)太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通,如图是该地铁某站扶梯的示意图,扶梯AB的坡度i=5:12(i为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端A以0.5米/秒的速度用时40秒到达扶梯顶端B,则王老师上升的铅直高度BC为米.15.(3分)如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD 的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6√2,则AB的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:(﹣1)4×|﹣8|+(﹣2)3×(12)2.(2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2x−1 3>3x−22−1.解:2(2x﹣1)>3(3x﹣2)﹣6……第一步4x﹣2>9x﹣6﹣6……第二步4x﹣9x>﹣6﹣6+2……第三步﹣5x>﹣10……第四步x>2……第五步任务一:填空:①以上解题过程中,第二步是依据(运算律)进行变形的;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该不等式的正确解集.17.(6分)2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).18.(7分)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线,游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太榆路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.19.(10分)近日,教育部印发了《关于举办第三届中华经典诵写讲大赛的通知》,本届大赛以“传承中华经典,庆祝建党百年”为主题,分为“诵读中国”经典诵读,“诗教中国”诗词讲解,“笔墨中国”汉字书写,“印记中国”印章篆刻比赛四类(依次记为A ,B ,C ,D ).为了解同学们参与这四类比赛的意向,某校学生会从有意向参与比赛的学生中随机抽取若干名学生进行了问卷调查(调查问卷如图所示),所有问卷全部收回,并将调查结果绘制成统计图和统计表(均不完整).“中华经典诵写讲大赛”参赛意向调查问卷请在下列选项中选择您有参赛意向的选项,在其后“[ㅤㅤ]”内打“√”,非常感谢您的合作.A.“诵读中国”经典诵读[ㅤㅤ]B.“诗教中国”诗词讲解[ㅤㅤ]C.“笔墨中国”汉字书写[ㅤㅤ]D.“印记中国”印章篆刻[ㅤㅤ]请根据图表提供的信息,解答下列问题:(1)参与本次问卷调查的总人数为人,统计表中C的百分比m为;(2)请补全统计图;(3)小华想用扇形统计图反映有意向参与各类比赛的人数占被调查总人数的百分比,是否可行?若可行,求出表示C类比赛的扇形圆心角的度数;若不可行,请说明理由.(4)学校“诗教中国”诗词讲解大赛初赛的规则是:组委会提供“春”“夏”“秋”“冬”四组题目(依次记为C,X,Q,D),由电脑随机给每位参赛选手派发一组,选手根据题目要求进行诗词讲解,请用列表或画树状图的方法求甲,乙两名选手抽到的题目在同一组的概率.20.(8分)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F=95C+32得出,当C=10时,F=50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式1R =1R1+1R2求得R的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式1R =1R1+1R2计算:当R1=7.5,R2=5时,R的值为多少;②如图,在△AOB中,∠AOB=120°,OC是△AOB的角平分线,OA=7.5,OB=5,用你所学的几何知识求线段OC的长.21.(8分)某公园为引导游客观光游览公园的景点,在主要路口设置了导览指示牌,某校“综合与实践”活动小组想要测量此指示牌的高度,他们绘制了该指示牌支架侧面的截面图如图所示,并测得AB=100cm,BC=80cm,∠ABC=120°,∠BCD=75°,四边形DEFG为矩形,且DE=5cm.请帮助该小组求出指示牌最高点A到地面EF的距离(结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,√2≈1.41).22.(13分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在▱ABCD中,BE⊥AD,垂足为E,F为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明.独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将▱ABCD沿着BF(F为CD的中点)所在直线折叠,如图②,点C的对应点为C′,连接DC′并延长交AB于点G,请判断AG与BG的数量关系,并加以证明.问题解决:(3)智慧小组突发奇想,将▱ABCD沿过点B的直线折叠,如图③,点A的对应点为A′,使A′B⊥CD于点H,折痕交AD于点M,连接A′M,交CD于点N.该小组提出一个问题:若此▱ABCD的面积为20,边长AB=5,BC=2√5,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.23.(13分)综合与探究如图,抛物线y=12x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.2021年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算﹣2+8的结果是()A.﹣6B.6C.﹣10D.10【解答】解:﹣2+8=+(8﹣2)=6.故选:B.2.(3分)为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会,在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既是轴对称图形又是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:B.3.(3分)下列运算正确的是()A.(﹣m2n)3=﹣m6n3B.m5﹣m3=m2C.(m+2)2=m2+4D.(12m4﹣3m)÷3m=4m3【解答】解:(﹣m2n)3=﹣m6n3,故选项A正确;m5﹣m3不能合并为一项,故选项B错误;(m+2)2=m2+4m+4,故选项C错误;(12m4﹣3m)÷3m=4m3﹣1,故选项D错误;故选:A.4.(3分)《中国核能发展报告2021》蓝皮书显示,2020年我国核能发电量为3662.43亿千瓦时,相当于造林77.14万公顷.已知1公顷=104平方米,则数据77.14万公顷用科学记数法表示为()A .77.14×104平方米B .7.714×107平方米C .77.14×108平方米D .7.714×109平方米【解答】解:77.14万公顷=7714000000平方米=7.714×109平方米, 故选:D .5.(3分)已知反比例函数y =6x,则下列描述不正确的是( ) A .图象位于第一,第三象限B .图象必经过点(4,32)C .图象不可能与坐标轴相交D .y 随x 的增大而减小 【解答】解:A .∵k =6>0, ∴图象位于第一,第三象限, 故A 正确,不符合题意; B .∵4×32=6=k , ∴图象必经过点(4,32),故B 正确,不符合题意; C .∵x ≠0, ∴y ≠0,∴图象不可能与坐标轴相交, 故C 正确,不符合题意; D .∵k =6>0,∴在每一个象限内,y 随x 的增大而减小, 故D 错误,符合题意. 故选:D .6.(3分)每天登录“学习强国”App 进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如表,则这组数据的中位数和众数分别是()星期一二三四五六日收入(点)15212727213021A.27点,21点B.21点,27点C.21点,21点D.24点,21点【解答】解:将这7个数据从小到大排列为:15,21,21,21,27,27,30,所以中位数为21,众数为21,故选:C.7.(3分)如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB 交⊙O于点D,连接CD.若∠B=50°,则∠OCD为()A.15°B.20°C.25°D.30°【解答】解:连接OA,如图,∵AB切⊙O于点A,∴OA⊥AB,∴∠OAB=90°,∵∠B=50°,∴∠AOB=90°﹣50°=40°,∴∠ADC=12∠AOB=20°,∵AD∥OB,∴∠OCD=∠ADC=20°.故选:B .8.(3分)在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是( )A .统计思想B .分类思想C .数形结合思想D .函数思想【解答】解:这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”,它体现的数学思想是数形结合思想, 故选:C .9.(3分)如图,正六边形ABCDEF 的边长为2,以A 为圆心,AC 的长为半径画弧,得EC ̂,连接AC ,AE ,则图中阴影部分的面积为( )A .2πB .4πC .√33π D .2√33π【解答】解:∵正六边形ABCDEF 的边长为2,∴AB=BC=2,∠ABC=∠BAF=(6−2)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°﹣∠ABC)=12×(180°﹣120°)=30°,过B作BH⊥AC于H,∴AH=CH,BH=12AB=12×2=1,在Rt△ABH中,AH=√AB2−BH2=√22−12=√3,∴AC=2√3,同理可证,∠EAF=30°,∴∠CAE=∠BAF﹣∠BAC﹣∠EAF=120°﹣30°﹣30°=60°,∴S扇形CAE=60π⋅(2√3)2360=2π,∴图中阴影部分的面积为2π,故选:A.10.(3分)抛物线的函数表达式为y=3(x﹣2)2+1,若将x轴向上平移2个单位长度,将y轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为()A.y=3(x+1)2+3B.y=3(x﹣5)2+3C.y=3(x﹣5)2﹣1D.y=3(x+1)2﹣1【解答】解:根据题意知,将抛物线y=3(x﹣2)2+1向下平移2个单位长度,再向右平移3个单位长度后所得抛物线解析式为:y=3(x﹣5)2﹣1.故选:C.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:√12+√27=5√3.【解答】解:原式=2√3+3√3=5√3;故答案为:5√3.12.(3分)如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿,将其放在平面直角坐标系中,表示叶片“顶部”A,B两点的坐标分别为(﹣2,2),(﹣3,0),则叶杆“底部”点C的坐标为(2,﹣3).【解答】解:∵A,B两点的坐标分别为(﹣2,2),(﹣3,0),∴得出坐标轴如下图所示位置:∴点C的坐标为(2,﹣3).故答案为:(2,﹣3).13.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,AC=6,OE∥AB,交BC于点E,则OE的长为52.【解答】解:∵菱形ABCD中,对角线AC,BD相交于点O,∴OA=OC=12AC=3,OB=12BD=4,AC⊥BD,∵OE∥AB,∴BE =CE ,∴OE 为△ABC 的中位线, ∴OE =12AB ,在Rt △ABO 中,由勾股定理得: AB =√32+42=5, ∴OE =52.14.(3分)太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通,如图是该地铁某站扶梯的示意图,扶梯AB 的坡度i =5:12(i 为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端A 以0.5米/秒的速度用时40秒到达扶梯顶端B ,则王老师上升的铅直高度BC 为10013米.【解答】解:由题意得:∠ACB =90°,AB =0.5×40=20(米), ∵扶梯AB 的坡度i =5:12=BCAC , ∴设BC =5a 米,则AC =12a 米, 由勾股定理得:(5a )2+(12a )2=202, 解得:a =2013(负值已舍去), ∴BC =10013(米), 故答案为:10013.15.(3分)如图,在△ABC 中,点D 是AB 边上的一点,且AD =3BD ,连接CD 并取CD 的中点E ,连接BE ,若∠ACD =∠BED =45°,且CD =6√2,则AB 的长为 4√13 .【解答】解:如图,取AD 中点F ,连接EF ,过点D 作DG ⊥EF 于G ,DH ⊥BE 于H ,设BD =a ,∴AD =3BD =3a ,AB =4a ,∵点E 为CD 中点,点F 为AD 中点,CD =6√2, ∴DF =32a ,EF ∥AC ,DE =3√2, ∴∠FED =∠ACD =45°, ∵∠BED =45°,∴∠FED =∠BED ,∠FEB =90°, ∵DG ⊥EF ,DH ⊥BE ,∴四边形EHDG 是矩形,DG =DH , ∴四边形DGEH 是正方形, ∴DE =√2DG =3√2,DH ∥EF , ∴DG =DH =3, ∵DH ∥EF , ∴∠BDH =∠DFG , ∴△BDH ∽△DFG , ∴BD DF =BH DG ,∴a 32a=BH 3,∴BH =2, ∴BD =√BH2+DH2=√4+9=√13,∴AB =4√13,故答案为:4√13.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(10分)(1)计算:(﹣1)4×|﹣8|+(﹣2)3×(12)2.(2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2x−13>3x−22−1.解:2(2x ﹣1)>3(3x ﹣2)﹣6……第一步 4x ﹣2>9x ﹣6﹣6……第二步 4x ﹣9x >﹣6﹣6+2……第三步 ﹣5x >﹣10……第四步 x >2……第五步任务一:填空:①以上解题过程中,第二步是依据 乘法分配律 (运算律)进行变形的;②第 五 步开始出现错误,这一步错误的原因是 不等式两边都除以﹣5,不等号的方向没有改变 ;任务二:请直接写出该不等式的正确解集. 【解答】解:(1)(﹣1)4×|﹣8|+(﹣2)3×(12)2=1×8﹣8×14=8﹣2 =6; (2)2x−13>3x−22−1,2(2x ﹣1)>3(3x ﹣2)﹣6……第一步, 4x ﹣2>9x ﹣6﹣6……第二步, 4x ﹣9x >﹣6﹣6+2……第三步, ﹣5x >﹣10……第四步, x >2……第五步,任务一:填空:①以上解题过程中,第二步是依据乘法分配律(运算律)进行变形的; ②第五步开始出现错误,这一步错误的原因是不等式两边都除以﹣5,不等号的方向没有改变;任务二:该不等式的正确解集是x <2.故答案为:乘法分配律;五,不等式两边都除以﹣5,不等号的方向没有改变;x <2. 17.(6分)2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).【解答】解:设这个最小数为x ,则最大数为(x +8), 依题意得:x (x +8)=65, 整理得:x 2+8x ﹣65=0,解得:x 1=5,x 2=﹣13(不合题意,舍去). 答:这个最小数为5.18.(7分)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线,游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太榆路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.【解答】解:设走路线一到达太原机场需要x 分钟. 根据题意,得53×25x=30x−7.解得x =25.经检验,x =25是原方程的解且符合实际. 答:走路线一到达太原机场需要25分钟.19.(10分)近日,教育部印发了《关于举办第三届中华经典诵写讲大赛的通知》,本届大赛以“传承中华经典,庆祝建党百年”为主题,分为“诵读中国”经典诵读,“诗教中国”诗词讲解,“笔墨中国”汉字书写,“印记中国”印章篆刻比赛四类(依次记为A ,B ,C ,D ).为了解同学们参与这四类比赛的意向,某校学生会从有意向参与比赛的学生中随机抽取若干名学生进行了问卷调查(调查问卷如图所示),所有问卷全部收回,并将调查结果绘制成统计图和统计表(均不完整). “中华经典诵写讲大赛”参赛意向调查问卷请在下列选项中选择您有参赛意向的选项,在其后“[ㅤㅤ]”内打“√”,非常感谢您的合作.A .“诵读中国”经典诵读[ㅤㅤ]B .“诗教中国”诗词讲解[ㅤㅤ]C .“笔墨中国”汉字书写[ㅤㅤ]D .“印记中国”印章篆刻[ㅤㅤ]请根据图表提供的信息,解答下列问题:(1)参与本次问卷调查的总人数为 120 人,统计表中C 的百分比m 为 50% ; (2)请补全统计图;(3)小华想用扇形统计图反映有意向参与各类比赛的人数占被调查总人数的百分比,是否可行?若可行,求出表示C 类比赛的扇形圆心角的度数;若不可行,请说明理由. (4)学校“诗教中国”诗词讲解大赛初赛的规则是:组委会提供“春”“夏”“秋”“冬”四组题目(依次记为C,X,Q,D),由电脑随机给每位参赛选手派发一组,选手根据题目要求进行诗词讲解,请用列表或画树状图的方法求甲,乙两名选手抽到的题目在同一组的概率.【解答】解:(1)参与本次问卷调查的总人数为:24÷20%=120(人),则m=60÷120×100%=50%,故答案为:120,50%;(2)B类的人数为:120×30%=36(人),补全统计图如下:(3)不可行,理由如下:由统计表可知,70%+30%+50%+20%>1,即有意向参与各类比赛的人数占被调查总人数的百分比之和大于1,所以不可行;(4)画树状图如图:共有16种等可能的结果,甲,乙两名选手抽到的题目在同一组的结果有4种,∴甲,乙两名选手抽到的题目在同一组的概率为416=14.20.(8分)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F=95C+32得出,当C=10时,F=50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式1R =1R1+1R2求得R的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式1R =1R1+1R2计算:当R1=7.5,R2=5时,R的值为多少;②如图,在△AOB中,∠AOB=120°,OC是△AOB的角平分线,OA=7.5,OB=5,用你所学的几何知识求线段OC的长.【解答】解:(1)图算法方便、直观,不用公式计算即可得出结果;(答案不唯一).(2)①当R1=7.5,R2=5时,1 R =1R1+1R2=17.5+15=5+7.57.5×5=13,∴R=3.②过点A作AM∥CO,交BO的延长线于点M,如图∵OC是∠AOB的角平分线,∴∠COB=∠COA=12∠AOB=12×120°=60°.∵AM∥CO,∴∠MAO=∠AOC=60°,∠M=∠COB=60°.∴∠MAO=∠M=60°.∴OA=OM.∴△OAM为等边三角形.∴OM=OA=AM=7.5.∵AM∥CO,∴△BCO∽△BAM.∴OCAM =BOBM.∴OC7.5=57.5+5.∴OC=3.综上,通过计算验证第二个例子中图算法是正确的.21.(8分)某公园为引导游客观光游览公园的景点,在主要路口设置了导览指示牌,某校“综合与实践”活动小组想要测量此指示牌的高度,他们绘制了该指示牌支架侧面的截面图如图所示,并测得AB=100cm,BC=80cm,∠ABC=120°,∠BCD=75°,四边形DEFG为矩形,且DE=5cm.请帮助该小组求出指示牌最高点A到地面EF的距离(结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,√2≈1.41).【解答】解:过点A作AH⊥EF于点H,交直线DG于点M,过点B作BN⊥DG于点N,BP⊥AH于点P,则四边形BNMP和四边形DEHM均为矩形,如图所示:∴PM=BN,MH=DE=5cm,∴BP∥DG,∴∠CBP=∠BCD=75°,∴∠ABP=∠ABC﹣∠CBP=120°﹣75°=45°,在Rt△ABP中,∠APB=90°,sin45°=AP AB,∴AP=AB•sin45°=100×√22=50√2cm,在Rt△BCN中,∠BNC=90°,sin75°=BN BC,∴BN=BC•sin75°≈80×0.97=77.6cm,∴PM=BN=77.6cm,∴AH=AP+PM+MH=50√2+77.6+5≈153.1cm.答:指示牌最高点A到地面EF的距离约为153.1cm.22.(13分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在▱ABCD中,BE⊥AD,垂足为E,F为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明.独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将▱ABCD沿着BF(F为CD的中点)所在直线折叠,如图②,点C的对应点为C′,连接DC′并延长交AB于点G,请判断AG与BG的数量关系,并加以证明.问题解决:(3)智慧小组突发奇想,将▱ABCD沿过点B的直线折叠,如图③,点A的对应点为A′,使A′B⊥CD于点H,折痕交AD于点M,连接A′M,交CD于点N.该小组提出一个问题:若此▱ABCD的面积为20,边长AB=5,BC=2√5,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.【解答】解:(1)结论:EF=BF.理由:如图①中,作FH∥AD交BE于H.∵四边形ABCD是平行四边形,∴AD∥BC,∵FH∥AD,∴DE∥FH∥CB,∵DF=CF,∴EHHB =DFFC=1,∴EH=HB,∵BE⊥AD,FH∥AD,∴FH⊥EB,∴EF=BF.解法二:分别延长AD,BF相交于点M,类似于倍长中线法,直角三角形斜边中线性质解决问题.(2)结论:AG=BG.理由:如图②中,连接CC′.∵△BFC′是由△BFC翻折得到,∴BF⊥CC′,FC=FC′,∵DF=FC,∴DF=FC=FC′,∴∠CC′D=90°,∴CC′⊥GD,∴DG∥BF,∵DF∥BG,∴四边形DFBG是平行四边形,∴DF=BG,∵AB=CD,DF=12CD,∴BG=12AB,∴AG=GB.(3)如图③中,过点D作DJ⊥AB于J,过点M作MT⊥AB于T.∵S平行四边形ABCD=AB•DJ,∴DJ=205=4,∵四边形ABCD是平行四边形,∴AD=BC=2√5,AB∥CD,∴AJ=√AD2−DJ2=√(2√5)2−42=2,∵A′B⊥AB,DJ⊥AB,∴∠DJB=∠JBH=∠DHB=90°,∴四边形DJBH是矩形,∴BH=DJ=4,∴A′H=A′B﹣BH=5﹣4=1,∵tan A=DJAJ=MTAT=2,设AT=x,则MT=2x,∵∠ABM=∠MBA′=45°,∴MT=TB=2x,∴3x=5,∴x=5 3,∴MT=10 3,∵tan A=tan A′=NHA′H=2,∴NH=2,∴S△ABM=S△A′BM=12×5×103=253,∴S四边形BHNM=S△A′BM﹣S△NHA′=253−12×1×2=223.23.(13分)综合与探究如图,抛物线y =12x 2+2x ﹣6与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .(1)求A 、B ,C 三点的坐标并直接写出直线AC ,BC 的函数表达式.(2)点P 是直线AC 下方抛物线上的一个动点,过点P 作BC 的平行线l ,交线段AC 于点D .①试探究:在直线l 上是否存在点E ,使得以点D ,C ,B ,E 为顶点的四边形为菱形,若存在,求出点E 的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线l 交于点M ,与直线AC 交于点N .当S △DMN =S △AOC 时,请直接写出DM 的长.【解答】解:(1)当y =0时,12x 2+2x ﹣6=0, 解得x 1=﹣6,x 2=2,∴A (﹣6,0),B (2,0),当x =0时,y =﹣6,∴C (0,﹣6),∵A (﹣6,0),C (0,﹣6),∴直线AC 的函数表达式为y =﹣x ﹣6,∵B (2,0),C (0,﹣6),∴直线BC 的函数表达式为y =3x ﹣6;(2)①存在:设点D 的坐标为(m ,﹣m ﹣6),其中﹣6<m <0,∵B (2,0),C (0,﹣6),∴BD 2=(m ﹣2)2+(m +6)2,BC 2=22+62=40,DC 2=m 2+(﹣m ﹣6+6)2=2m 2, ∵DE ∥BC ,∴当DE =BC 时,以点D ,C ,B ,E 为顶点的四边形为平行四边形,分两种情况:如图,当BD=BC时,四边形BDEC为菱形,∴BD2=BC2,∴(m﹣2)2+(m+6)2=40,解得:m1=﹣4,m2=0(舍去),∴点D的坐标为(﹣4,﹣2),∴点E的坐标为(﹣6,﹣8);如图,当CD=CB时,四边形CBED为菱形,∴CD2=CB2,∴2m2=40,解得:m1=﹣2√5,m2=2√5(舍去),∴点D的坐标为(﹣2√5,2√5−6),∴点E的坐标为(2﹣2√5,2√5);综上,存在点E,使得以点D,C,B,E为顶点的四边形为菱形,点E的坐标为(﹣6,﹣8)或(2﹣2√5,2√5);②设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,∵A (﹣6,0),B (2,0),∴抛物线的对称轴为直线x =﹣2,∵直线BC 的函数表达式为y =3x ﹣6,直线l ∥BC , ∴设直线l 的解析式为y =3x +b ,∵点D 的坐标(m ,﹣m ﹣6),∴b =﹣4m ﹣6,∴M (﹣2,﹣4m ﹣12),∵抛物线的对称轴与直线AC 交于点N .∴N (﹣2,﹣4),∴MN =﹣4m ﹣12+4=﹣4m ﹣8,∵S △DMN =S △AOC ,∴12(﹣4m ﹣8)(﹣2﹣m )=12×6×6, 整理得:m 2+4m ﹣5=0,解得:m 1=﹣5,m 2=1(舍去),∴点D 的坐标为(﹣5,﹣1),∴点M 的坐标为(﹣2,8),∴DM =√(−2+5)2+(8+1)2=3√10,答:DM 的长为3√10.。