江苏兴化市2020年春学期八年级数学下册第一次月考卷
- 格式:pdf
- 大小:254.98 KB
- 文档页数:4
2020-2021学年兴化市顾庄学区三校八年级(下)第一次月考数学复习卷一、选择题(本大题共6小题,共18.0分)1. 下列交通标志中,是轴对称图形但不是中心对称图形的是( ) A. B. C. D.2. 下列调查,适合用全面调查的是( )A. 了解一批炮弹的杀伤半径B. 了解某电视台《我是大明星》栏目的收视率C. 对市场上某种酒质量情况的调查D. 调查一架隐形战机的各零部件的质量3. 下列事件中是不可能事件的是( )A. 三角形内角和小于180°B. 两实数之和为正C. 买体育彩票中奖D. 抛一枚硬币2次都正面朝上 4. 下列各式变形正确的是( ) A. −x+y −x−y =x+y x−yB. 2a−2b c+d =a−b c+dC. 0.2a−0.03b 0.4c+0.05d =2a−3b 4c+5dD. a−b b−c =b−a c−b5. 顺次连接菱形的四边中点所得到四边形一定是A. 菱形B. 矩形C. 正方形D. 对角线互相垂直的四边形6. 如图,正方形ABCD 中,点E 是AD 边中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②S △BHE =S △CHD ;③ ∠AHB =∠EHD.其中正确的个数是( )A. 1B. 2C. 3D. 0二、填空题(本大题共10小题,共30.0分)7. 当x ______ 时,分式2x 2x−5有意义. 8. 菱形的判定方法3 (判定定理2 )对角线互相________的平行四边形是菱形.9. 当x ______ 时,分式4−x 23x−6的值为0. 10. 下列4个分式:①a+3a 2+3;②x−y x 2−y 2;③m 2m 2n ;④2m+1,中最简分式有________个. 11. 一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性______ . 12. 林林家距离学校a 千米,他每天骑自行车上学需要b 分钟(刚好准时到校),若某一天林林从家中出发迟了c 分钟,则他每分钟应骑 千米才能不迟到.13. 如图,矩形ABCD 的对角线AC ,BD 交于点O ,∠AOD =60°,AD =3,则BD 的长为______ .14. 已知x−3(x+1)(x−1)=A x+1+Bx−1,则A = ______ ,B = ______ .15. 如图,正方形ABCD 的边长为4,点P 在DC 边上且DP =1,点Q 是AC上一动点,则DQ +PQ 的最小值为______.16. 如图△APB 中,∠APB =90°,在AB 的同侧作等边△ABD 、等边△APE 和等边△BPC ,若∠PAB =45°,则四边形PCDE 的形状是 .三、计算题(本大题共3小题,共32.0分)17.计算:2xx+1+3x−1=2.18.(1)化简(aa−b −1)÷b2a2−ab,(2)当a=√3−1,b=√3+1时,求代数式的值.19.(1)计算:2x2−4−12x−4(2)先化简,再求值a2−8a+16a2−16,其中a=5四、解答题(本大题共7小题,共70.0分)20.化简:(1)a2+2a+1a2−1−aa−1(2)x−1x ÷(x−1x).21.某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了________名学生;(2)在扇形统计图中,“其他”所在扇形的圆心角等于________;(3)补全条形统计图.22.在一个不透明的袋中,红球、黑球、白球共有若干个,除颜色外其余均相同.小新从袋中随机摸出一球,记下颜色后放回袋中,摇匀后再随机摸出一球,记下颜色后放回袋中⋯⋯如此大量的摸球试验后,小新发现摸出红球的频率稳定在20%,摸出黑球的频率稳定在50%.对此试验,他总结出下列结论: ①若进行大量的摸球试验,摸出白球的频率应稳定在30%; ②若从袋中随机摸出一球,该球是黑球的概率最大; ③若再摸球100次,必有20次摸出的是红球.其中正确的是.(填序号)23.如图,在平行四边形ABCD中,AC⊥DE,AE=AD,AE交BC于O.(1)求证:∠BCA=∠EAC;(2)若CE=3,AC=4,求△COE的周长.24.如图,▱ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,连接EF.求证:四边形ABEF是菱形.25.如图,正方形ABCD的对角线AC、BD交于点O,AE=BF.求证:∠ACF=∠DBE.26.如图,△ABC中,AD是边BC上的中线,过点A作AE//BC,过点D作DE//AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.【答案与解析】1.答案:A解析:本题主要考查了中心对称图形与轴对称图形的定义.根据轴对称图形与中心对称图形的概念求解即可.解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,也不是中心对称图形,不符合题意;C.不是轴对称图形,也不是中心对称图形,不符合题意;D.是轴对称图形,也是中心对称图形,不符合题意.故选A.2.答案:D解析:解:A.了解一批炮弹的杀伤半径,调查具有破坏性,适合抽样调查,故A错误;B.了解某电视台《我是大明星》栏目的收视率,调查范围广,适合抽样调查,故B错误;C.对市场上某种酒质量情况的调查调查具有破坏性,适合抽样调查,故C错误;D.调查一架隐形战机的各零部件的质量,要求精确度高的调查,适合普查,故D正确.故选D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.答案:A解析:本题考查了不可能事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件是指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.根据事件发生的可能性大小判断相应事件的类型即可.解:A、三角形的内角和小于180°是不可能事件,故A符合题意;B、两实数之和为正是随机事件,故B不符合题意;C、买体育彩票中奖是随机事件,故C不符合题意;D、抛一枚硬币2次都正面朝上是随机事件,故D不符合题意;故选:A.4.答案:D解析:本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的数或整式,分式的值不变.根据分式的基本性质进行判断即可.解:A.原式=x−yx+y,所以A选项错误;B.原式=2(a−b)c+d,所以B选项错误;C.原式=20a−3b40c+5d,所以C选项错误;D.a−bb−c =b−ac−b,所以D选项正确.故选D.5.答案:B解析:本题考查的是菱形的性质,矩形的判定,平行四边形的判定等有关知识,先证明四边形EFGH是平行四边形,再根据有一个角是直角的平行四边形是矩形判断.解:如图:菱形ABCD中,E、F、G、H分别是AB、BC、CD、AD的中点,BD,EF//HG//AC,EF=HG=AC,∴EH//FG//BD,EH=FG=12故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°,∴四边形EFGH是矩形.故选B.6.答案:C解析:本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直;②四个内角相等,都是90度;③对角线相等,相互垂直,且平分一组对角;首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证△ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD;求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确;根据AD//BC,求出S△BDE= S△CDE,推出S△BDE−S△DEH=S△CDE−S△DEH,即S△BHE=S△CHD,故②正确;由∠AHD=∠CHD,得到邻补角和对顶角相等得到∠AHB=∠EHD,故③正确.解:∵四边形ABCD是正方形,E是AD边上的中点,∴AE=DE,AB=CD,∠BAD=∠CDA=90°,在△BAE和△CDE中,∴△BAE≌△CDE(SAS),∴∠ABE=∠DCE,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,∵在△ADH和△CDH中,∴△ADH≌△CDH(SAS),∴∠HAD=∠HCD,∵∠ABE=∠DCE,∴∠ABE=∠HAD,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°−90°=90°,∴AG⊥BE,故①正确;∵AD//BC,∴S△BDE=S△CDE,∴S△BDE−S△DEH=S△CDE−S△DEH,即S△BHE=S△CHD,故②正确;∵△ADH≌△CDH,∴∠AHD=∠CHD,∴∠AHB=∠CHB,∵∠BHC=∠DHE,∴∠AHB=∠EHD,故③正确,故选C.7.答案:≠52解析:本题考查了分式有意义的条件:分母不等于零,属于基础题.根据分式有意义时,分母不等于零列出不等式即可.解:依题意得:2x−5≠0,.解得x≠52故答案是:≠5.28.答案:垂直解析:本题考查了菱形的判定,注意:菱形的判定定理有①有一组邻边相等的平行四边形是菱形,②对角线互相垂直的平行四边形是菱形,③四条边都相等的四边形是菱形.菱形的判定定理有①有一组邻边相等的平行四边形是菱形,②对角线互相垂直的平行四边形是菱形,③四条边都相等的四边形是菱形,根据以上内容填上即可.解:对角线互相垂直的平行四边形是菱形.故答案为垂直.9.答案:=−2解析:解:由题意,得4−x2=0,且3x−6≠0,解得x=−2,故答案为:=−2.直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.此题考查分式的值为零的问题,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.答案:2解析:本题主要考查最简分式,分子分母不含有公因式的分式为最简分式,根据分式的定义可求解. 解:①a+3a 2+3;②x−y x 2−y 2=1x+y ;③m 2m 2n =12mn ;④2m+1中最简分式有①④,共两个,故答案为2. 11.答案:相等解析:解:根据题意分析可得:从袋中任取一个球,共有摸到黄球、红球、蓝球3种可能,因为红球与蓝球数目相等,故摸到红球与蓝球的可能性相等.故答案为相等.要求可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目. 用到的知识点为:可能性等于所求情况数与总情况数之比.12.答案:a b−c解析:本题考查了列代数式(分式),解决问题的关键是读懂题意,找到所求的量的等量关系.由速度=总路程÷时间即可列式.解:所用时间为:b −c .∴林林的骑车速度为a b−c .故答案为a b−c . 13.答案:6解析:解:∵四边形ABCD 是矩形,∴OA =12AC ,OD =12BD ,AC =BD ,∴OA =OD ,∵∠AOD =60°,∴△AOD 是等边三角形,∴OD =AD =3,∴BD =2OD =6;故答案为:6.由矩形的性质得出OA=OD,再证明△AOD是等边三角形,得出OD=AD=3,即可得出BD的长.本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.答案:2;−1解析:本题考查了分式的加减法,熟练掌握运算法则是解本题的关键.将已知等式右边通分,并利用同分母分式的加法法则变形,根据分式相等的条件求出A与B的值即可.解:依题意,有:x−3 (x+1)(x−1)=A(x−1)+B(x+1)(x+1)(x−1),即x−3=(A+B)x+B−A,∴{A+B=1B−A=−3,解得:A=2,B=−1,故答案为:2;−1.15.答案:5解析:解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴BP=√42+32=5,∴DQ+PQ的最小值是5.故答案为:5.要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ的值,从而找出其最小值求解.此题考查了正方形的性质和轴对称及勾股定理等知识的综合应用,得出DQ+PQ的最小值时Q点位置是解题关键.16.答案:菱形解析:本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线,先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形.解:如下图所示,延长EP交BC于点F,∵∠APB=90°,∠APE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°−150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,AB=2√2,则CF=12CP=12b,a2+b2=8,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CD,∴四边形CDEP是平行四边形,又∵ED=EP,∴四边形CDEP是菱形,故答案为菱形.17.答案:解:去分母得:2x(x−1)+3(x+1)=2(x+1)(x−1),去括号得:2x2−2x+3x+3=2x2−2,移项合并得:x=−5,经检验x=−5是分式方程的解.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.答案:解:(1)原式=ba−b ⋅a(a−b)b2=ab;(2)当a=√3−1,b=√3+1时,原式=√3−1√3+1=2−√3.解析:(1)根据分式的运算法则即可求出答案.(2)将a与b的值代入原式即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.答案:解:(1)2x2−4−12x−4=2(x+2)(x−2)−12(x−2)=42(x+2)(x−2)−x+22(x+2)(x−2)=−x+22(x+2)(x−2)=−12(x+2);(2)a2−8a+16 a2−16=(a−4)2 (a+4)(a−4)=a−4a+4,当a=5时,原式=5−45+4=19.解析:本题考查了分式的加减运算和分式的化简求值.解题关键是熟练掌握分式的加减运算法则.(1)本题考查了分式的加减运算.解题时,先把异分母分式化成同分母分式,再把分子相加,分母不变,然后化简分子,再约分化成最简分式即可.(2)本题考查了分式的化简求值.解题时,先把分子分母分解因式,再约分,化简后把字母的值代入计算即可.20.答案:解:(1)原式=(a+1)2(a−1)(a+1)−aa−1=a+1−a=1a−1(2)原式=x−1x ÷x2−1x=x−1x⋅x(x+1)(x−1)=1x+1解析:(1)先各分式的分子分母进行因式分解,然后利用分式的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.本题考查分式的混合运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.答案:解:(1)200;(2)36°;(3)200−80−40−20=60(人),即喜欢阅读“科普常识”的学生有60人,补全条形统计图如图所示:解析:此题考查了条形统计图,扇形统计图,弄清题意是解本题的关键.(1)根据喜欢其他的人数除以占的百分比求出调查的总人数即可;(2)根据喜欢其他所占的百分比,乘以360°即可得到结果;(3)先计算出喜欢阅读“科普常识”的学生,即可补全条形统计图.解:(1)20÷10%=200(人),故这次活动一共调查了200名学生.故答案为200;(2)10%×360°=36°,故在扇形统计图中,“其他”所在扇形的圆心角等于36°.故答案为36°;(3)见答案.22.答案: ① ②解析:此题主要考查了利用频率估计概率,根据频率与概率的关系得出是解题关键.根据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,分别分析得出即可.解:由题意,得摸出白球的频率稳定在1−20%−50%=30%,故 ①正确;因为摸出黑球的频率稳定在50%,大于摸出红球、白球的频率,所以 ②正确;易知 ③错误.故正确的结论是 ① ②.23.答案:(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,∴∠BCA=∠DAC,∵AC⊥DE,AE=AD,∴∠EAC=∠DAC,∴∠BCA=∠EAC;(2)解:∵AC⊥DE,∴∠ACE=90°,∴AE=√AC2+CE2=√42+32=5,由(1)得:∠BCA=∠EAC,∴OA=OC,∴△COE的周长=OE+OC+CE=OE+OA+CE=AE+CE=5+3=8.解析:本题考查了平行四边形的性质、等腰三角形的性质与判定、勾股定理、平行线的性质等知识;熟练掌握等腰三角形的判定与性质是解题关键.(1)由平行四边形的性质得出AD//BC,得出∠BCA=∠DAC,由等腰三角形的性质得出∠EAC=∠DAC,即可得出∠BCA=∠EAC;(2)由勾股定理求出AE=√AC2+CE2=5,由(1)得:∠BCA=∠EAC,周长OA=OC,得出△COE的周长=AE+CE,即可得出结果.24.答案:证明:∵∠BAD的平分线交BC于点E,∴∠BAE=∠EAF.∵四边形ABCD是平行四边形,∴AD//BC.∴∠EAF=∠AEB.∴∠BAE=∠AEB.∴AB=BE.同理,AB=AF.∴BE=AF.∵AD//BC,∴四边形ABEF是平行四边形.∵AB=BE,∴▱ABEF是菱形.解析:本题考查平行四边形的性质和判定,菱形的判定,分析题意,根据角平分线的定义和平行四边形的性质可得出AB=BE,AB=AF,先证明四边形ABEF是平行四边形,再根据邻边相等,就可得出答案.25.答案:证明:∵四边形ABCD是正方形,∴AB=BC,∠EAB=∠CBF=∠ABO=∠BCO=45°,在△ABE与△BCF中,{AE=BF∠EAB=∠FBC AB=BC,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∴∠ACF=∠DBE.解析:根据正方形的性质得到AB=BC,∠EAB=∠CBF=∠ABO=∠BCO=45°,根据全等三角形的性质得到∠ABE=∠BCF,由角的和差即可得到结论.本题考查了正方形的性质,全等三角形的判定和性质,熟练掌握正方形的性质是解题的关键.26.答案:证明:(1)∵DE//AB,AE//BC,∴四边形ABDE是平行四边形,∴AE//BD,且AE=BD.又∵AD是BC边的中线,∴BD=CD,∴AE=CD,∵AE//CD,∴四边形ADCE是平行四边形,∴AD=EC;(2)∵∠BAC=90°,AD是斜边BC上的中线,∴AD=BD=CD,又∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.解析:本题考查了平行四边形的判定和性质,菱形的判定,考查直角三角形斜边上的中线,属于基础题.(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形,即得AD=CE;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.。
2020年春季学期八年级数学下册第一次月考测试卷一、精心选一选(本大题共12小题,共36分) 1.化简 8的结果为( )A .42B .4C .2D .22 2.若2-a 与23是同类二次根式,则a 的值可能是( )A. 2B. 3C. 4D. 5 3.下列能组成直角三角形的三条线段长是( ) A. 5,3,2 B .5,6,10 C .2,3,4D .5,12,144.已知方程x 2﹣bx ﹣1=0 有一个根是2,则该方程的另一个根是( )A .-0.5B .-1C .1D .05.已知一个直角三角形两边长分别为3和5则第三边长是 ( ) A . 5 B .4 C .34 D .4或346.在某次聚会上,每两人都握了一次手,所有人共握手10次.设有x 人参加这次聚会,则列出方程正确的是( )A . 10)1(=-x x B.102)1(=-x x C. 10)1(=+x x D. 102)1(=+x x 7. 实数a 、b 在数轴上对应点的位置如图所示,化简2)(b a -的结果是( )A .-a+bB .a-bC .-a-bD .a+b8.等腰三角形中,两边长为23和52,则此等腰三角形的周长为( )A .43+52B .23+102C .43+52 或23+102D .以上都不对9.关于x 一元二次方程2210x mx m -+-=两个实数根是12x x 、,且22127x x +=,则m 的值为( ) A .-1 B .5 C .-5 D .-1或510.利用配方法求代数式13122+-x x 的最小值为( ) A .-12B .13C .-23D .4911.如图直线上有三个正方形a b c ,,,若a c ,面积分别为5和12,则b 的面积为( ) A .18 B .17 C . 16 D .1712.如图,图中的螺旋形由一系列直角三角形组成,则第n 个直角三角形第7题12-12-213143÷52×212的斜边长OA n 与面积S n 分别等于( )A. 2,1n S n OA n n =-=B.2,1nS n OA n n =+=C.2,1n S n OA n n =-= D.2,1n S n OA n n =+= 二、细心填一填(本大题共6小题,每小题3分,共18分) 13.使二次根式2-x 有意义的x 的取值范围是 14.在实数范围内分解因式52-x 的结果为15.已知0)3(52=-+-y x 则y x +的值为___________16.一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前有米17.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少需飞行米18.如图,在三角形纸片ABC 中,∠C=90°,∠A=30°,AC=3,折叠该纸片,使点A 与点B 重合,折痕与AB,AC 分别相交于点D,E,折痕DE 的长为三、专心解一解(本大题共7题,共66分) 19.计算(本小题共2题,共10分)(1) (2)20.(6分)先化简,再求值:222442111a a a a a a -+-+÷--+,其中12a =+第17题第12题D 第18题21.解方程(本小题共2题,共10分)(1)0432=--x x (2)01322=-+x x22.(10分)已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根. (1)求k 的取值范围(2)当k 为何值时,该方程的一个根是另一个根的2倍?23.(10分)如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第十六章《二次根式》~第十七章《勾股定理》班级姓名得分一、选择题(本大题共10小题,共40.0分)1.下面计算正确的是()A. 4+√3=4√3B. √27÷√3=3C. √2⋅√3=√5D. √4=±22.下列长度的三条线段首尾相接能组成直角三角形的是()A. 4,5,6B. 1,1,√2C. 6,8,11D. 5,12,233.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 804.如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是()A. √3B. √5C. √6D. √75.如果二次根式√x+3在实数范围内有意义,那么x的取值范围是()A. x≠−3B. x≤−3C. x≥−3D. x>−36.小明的作业本上有以下四题:①√16a4=4a2;②√5a×√10a=5√2a;③a√1=a √a2•1=√a;④√3a−√2a=√a.做错的题是()aA. ①B. ②C. ③D. ④7.下列根式中,是最简二次根式的是()A. √0.5B. √a2+b2C. √20D. 1√38.如图所示,折叠直角三角形纸片△ABC,使点C落在斜边AB上的点E处,已知AB=8√3,∠B=30°,则DE的长为().A. 4B. 6C. 2√3D. 4√39.如图,直角三角形的三边长分别为a,b,c,以直角三角形的三边为边(或直径)分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是()A. 1B. 2C. 3D. 410.当1<a<2时,代数式√(a−2)2+|a−1|的值是()A. 1B. −1C. 2a−3D. 3−2a二、填空题(本大题共10小题,共30.0分)11.计算√24+6√1的结果是______.612.如图所示,以△ABC的三边分别向外作正方形,它们的面积分别是S1,S2,S3.如果S1=100,S2=50,S3=50,那么△ABC的形状是________三角形.13.若直角三角形的两边长分别为6和8,则第三边的长为_________________.14.如图,已知∠A=90°,AC=AB=4,CD=2,BD=6.则∠ACD=______度.15.观察下列等式:①3−2√2=(√2−1)2,②5−2√6=(√3−√2)2,③7−2√12=(√4−√3)2,…请你根据以上规律,写出第6个等式______.16.计算√3的结果是______.√3+√1217.在数轴上表示实数a的点如图所示,化简√(a−5)2+|a−2|的结果为.18.若一直角三角形两边长分别为12和5,则第三边长为______.19.已知点A(x,4)到原点的距离为5,则点A的坐标为______.20.已知:m+n=10,mn=9,则√m−√n=____.√m+√n三、解答题(本大题共6小题,共80.0分)21.(12分)计算:(1)4√5+√45−√20(2)√27×√50÷√622.(12分)设长方形的面积为S,相邻两边分别为a,b(1)已知a=√8,b=√12,求S;(2)已知a=2√50,b=3√32,求S.23.(12分)如图所示的阴影部分是两个正方形,图中还有一个大正方形和两个直角三角形.求两个阴影正方形面积的和.24.(14分)如图,已知,∠A=60°,∠B=∠D=90°,AB=2,CD=1,求BC和AD的长.25.(14分)点A,B在数轴上表示的数如图所示.动点P从点A出发,沿数轴向右以每秒2个单位长度的速度运动到点B,再从点B以同样的速度运动到点A停止,设点P运动的时间为t秒,解答下列问题.(1)当t=2时,AP=______个单位长度,当t=6时,AP=______个单位长度;(2)直接写出整个运动过程中AP的长度(用含t的代数式表示);(3)当AP=6个单位长度时,求t的值;(4)当点P运动到线段AB的3等分点时,t的值为______.26.(16分)如图,△AOB和△COD都是以O为直角顶点的等腰直角三角形,连接AC,BD.(1)如图1,试判断AC与BD的数量关系和位置关系,并说明理由;(2)如图2,若点D恰好在AC上,且D为AC的中点,AB=√5,求△BOD的面积;(3)如图3,设AC与BD的交点为E,若AE=CE,∠AOD=60°,AB=2√2,求CD的长.答案1.B2.B3.C4.B5.C6.D7.B8.A9.D10.A11.3√612.等腰直角13.10或2√714.4515.13−2√42=(√7−√6)216.1317.318.13或√11919.(3,4)或(−3,4)20.±1221.解:(1)原式=4√5+3√5−2√5=5√5;(2)原式=3√3×5√2÷√6=15√6÷√6=1522.解:(1)∵a=√8,b=√12,∴S=ab=√8×√12=4√6.(2)∵a=2√50,b=3√32,∴S=2√50×3√32=6√25×2×16×2=6×5×2×4 =240.23.解:由勾股定理得大正方形的面积为172−152=64,而大正方形的面积又等于两个阴影正方形面积的和, 故两个阴影正方形面积的和为64.24.解:延长AD 与BC ,两延长线交于点E ,如图所示,∵∠B =90∘,∠A =60∘ ∴∠E =30°在Rt △CDE 中,CD =1∴CE =2CD =2.根据勾股定理得:DE =√CE 2−CD 2=√3 在Rt △ABE 中,AB =2,∴AE =2AB =4.根据勾股定理得:BE =√AE 2−AB 2=2√3 故BC =BE −CE =2√3−2,AD =AE −DE =4−√3.25.解:(1)由题意得:当t =2时,AP =2×2=4当t =6时,AP =10−(6−7+32)×2=8;故答案是:4,8;(2)由题意得:2t 个单位长度或20−2t 个单位长度;(3)①当2t =6时,解得t =3. ②当20−2t =6时,解得t =7. 综上所述,t 的值是3或7;(4)当点P 运动到线段AB 的3等分点时,分两种情况: ①如果AP =13AB =103,那么t =1032=53,或t =10+(10−103)2=253②如果AP =23AB =23×10=203,那么t =2032=103,或t =10+1032=203综上所述,符合条件的t 的值是:53,253,103,203.故答案是:53,253,103,203.26.解:(1)AC =BD ,AC ⊥BD ,理由如下:∵△AOB 和△COD 是等腰直角三角形, ∴∠COD =∠AOB =90∘, ∴OD =OC ,OA =OB ,∴∠COD +∠DOA =∠DOA +∠AOB , 在△COA 和△DOB 中, {CO =DO∠COA =∠DOB OA =OB∴△COA ≌△DOB(SAS), ∴AC =BD ,∠1=∠2, 又∵∠3=∠4, ∴∠5=∠AOB =90∘, ∴AC ⊥BD ;(2)过点O 作OH ⊥BD 于点H ,由(1)同理可得ΔCOA ≌ΔDOB (SAS ), ∴∠1=∠2=45∘,BD ⊥CD ,又∵D 为AC 的中点,DC =AD =12AC , ∵BD =AC ,∴AD=12BD,设AD=x,则BD=2x,在△ADB中,∠ADB=90∘,AD2+BD2=AB2,x2+(2x)2=(√5)2,解得x=1,∴BD=2×1=2,CD=1,∴DO=1÷√2=√22,∵∠2=45∘,OH⊥DB,∴△DHO为等腰直角三角形,∴OH=√22÷√2=12,∴S△BOD=12×2×12=12;(3)连接AD,过点D作DH⊥AD,同理得△COA≌△DOB,∴∠2=∠3,又∵∠AOD=60°,AB=2√2,∴∠1+∠2=30∘,设∠2=x,则∠1=30∘−x,∴∠AEB=180°−(x+45°)−(45°−x)=90°,又∵点E平分AC,∴AE=EC,∴AD=DC,设DO=a,则OC=AD=√2a,又∵∠DHO=90°,∠DOH=60°,∴DH=a2,AH=2−a2,∴AD2−AH2=DO2−HD2,(√2a)2−(2−a2)2=a2−(a2)2,解得a=√5−1,∴AD=√2(√5−1)=√10−√2,∴CD=√10−√2.。
2020版八年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(3分×10=30分) (共10题;共29分)1. (3分) (2019八上·清镇期中) 下列计算正确的是()A .B .C .D .2. (3分)下列计算正确的是A .B .C .D .3. (3分)某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A . 19%B . 20%C . 21%D . 22%4. (3分)要使代数式有意义,则x应满足()A . x≠1B . x>-2且x≠1C . x≥-2D . x≥-2且x≠15. (3分) (2016八上·鹿城期中) 若三边长满足,则是()A . 等腰三角形B . 等边三角形C . 直角三角形D . 等腰直角三角形6. (3分)如图,等边三角形OAB的顶点O在坐标原点,顶点A在x轴上,OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为()A . (, -)B . (-,)C . (-,)D . (, -)7. (3分)如图,△ABC是边长为6的等边三角形,AD=2,AE∥BC,直线BD交AE于点E,则BE的长为()A . 3B . 4C . 3D . 58. (3分) (2015八下·武冈期中) 下列几组数中,能作为直角三角形三边长度的是()A . 3,5,6B . 1,1,C . 5,8,11D . 5,12,159. (3分) (2020八下·海安月考) 下列各组数据为边的三角形中,是直角三角形的是()A . 、、7B . 5、4、8C . 、2、1D . 、3、10. (2分)下面的等式总能成立的是()A . =aB . =a2C . =D . =二、填空题(4分×6=24分) (共6题;共26分)11. (4分)求代数式a()2-+c+1的值是________.12. (8分)在日常生活中,取款、上网都要密码.为了保密,有人发明了“二次根式法”来产生密码,如对于二次根式,计算结果为13,中间加一个数字0,于是就得到一个六位数的密码“169013”,对于二次根式,用上述方法产生的六位数密码是________.13. (4分)如图,防洪大堤的横断面是梯形,坝高AC=6米,背水坡AB的坡度i=1:2,则斜坡AB的长为________米(精确到0.1米).14. (2分) (2016八下·鄄城期中) 命题“在角的内部,到角的两边距离相等的点在角的平分线上”的逆命题是:________.15. (4分)(2019·上海模拟) 在直角坐标系中,O是坐标原点,点P(m , n)在反比例函数的图象上.(1)若m=k,n=k﹣2,则k=________;(2)若m+n=k,OP=2,且此反比例函数,满足:当x>0时,y随x的增大而减小,则k=________.16. (4分) (2020八上·滨州期末) 已知实数a、b在数轴上的位置如图所示,则化简的结果为________.三、解答题(66分) (共9题;共60分)17. (6分) (2018八上·江海期末) 计算:18. (6分) (2017七下·江都期中) 计算(1) 30﹣2﹣3+(﹣3)2﹣()﹣1(2)(2x﹣3y)2﹣(y+3x)(3x﹣y)19. (6分)试说明代数式的值与的值无关。
2020年春季第一次月考八年级下学期数学试题(人教版)一、选择题:(每小题3分,共30分)1、若式子3x +在实数范围内有意义,则x 的取值范围是( ) A .3x > B .3x ≥ C .3x >- D .3x ≥-2、当-1<a <1时,化简22)1()1(-++a a 得( ) A .2 B .-2 C .2a D .-2a3、50·a 的值是一个整数,则正整数a 的最小值是( )A.1B.2C.3D.54、在△ABC 中,∠A 、∠B 、∠C 的对应边分别是a 、b 、c ,若∠A+∠C=90°,则下列等式中成立的是( )A.a 2+b 2=c 2B.b 2+c 2=a 2C.a 2+c 2=b 2D.c 2-a 2=b 25、三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有( )A.1个B.2个C.3个D.4个 6、如图,在□ABCD 中,CE ⊥AB ,E 为垂足,如果∠A=120°,那么∠BCE 的度数是( )A.80°B.50°C.40°D.30°7、下列说法正确的是( )A .两组角相等的四边形是平行四边形;B .一组对边相等,另一组对边平行的四边形是平行四边形;C .对角线互相平分的四边形是平行四边形;D .两组对边分别相等的四边形是平行四边形.8、四边形ABCD 各边中点分别是E 、F 、G 、H ,若对角线AC 、BD 的长都为20 cm ,则四边形EFGH 的周长是( )A.80 cmB.40 cmC.20 cmD.10 cm 9、下列各命题的逆命题成立的是( )A 对顶角相等B 如果b a =,那么b a =C 全等三角形的对应角相等D 两直线平行,同位角相等10、如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A 422dmB 222dmC 52 2dmD 542dm题号 1 2 3 4 5 6 7 8 9 10 答案11、已知,a b 为两个连续整数,且7a b <<,则____a b +=.12、已知x <y ,化简2)(y x x y ---为___________.13、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行__________米.14、如图,在□ABCD 中,过其对角线的交点O 引一直线交BC 于点E ,交AD 于点F.若AB=3 cm ,BC=4 cm ,OE=1 cm ,则四边形CDFE 的周长是__________.15、四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:(1)AB ∥CD ;(2)AB=CD ;(3)∠A=∠C ;(4)∠B=∠C.能使四边形ABCD 为平行四边形的条件的序号是________________.16、如图,△ABC 的周长是32,以它的三边中点为顶点组成第2个三角形,再以第2 个三角形的三边中点为顶点组成第3个三角形,…,则第n 个三角形的周长为________________.13题图 14题图 15题图A B CDFE 三、解答题:(共72分) 17、计算:(每小题4分,共16分)(1))()(6-81-5.024+ (2)6273482÷-)((3)2)23()54(54---+)( (4)已知21x =-,求代数式222x x ++的值。
八年级数学下册第一次月考试卷满分:150分 考试用时:120分钟范围:第十六章《二次根式》~第十七章 《勾股定理》班级 姓名 得分 一、选择题(本大题共10小题,共40.0分) 1. 下列各组数是勾股数的是( )A. √3,√4,√5B. 1,1,√2C. 32,42,52D. 5,12,132. 已知a =√2−1,b =√2+1,则a 2+b 2的值为( )A. 8B. 1C. 6D. 4√23. 使代数式√2x+1x−1有意义的x 的取值范围是 ( )A. x ≥−12且x ≠1 B. x ≠1C. x ≥−12D. x >−12且x ≠14. 已知直角三角形的两边长分别为3cm 和5cm ,则第三边长为( )A. 4B. √34C. 4或√34D. 75. 下列由三条线段a ,b ,c 构成的三角形:①a =2mn ,b =m 2−n 2,c =m 2+n 2(m >n >0);②a =2n +1,b =2n 2+2n +1,c =2n 2+2n(n >0);③a =3k ,b =4k ,c =5k(k >0);④√a:√b:√c =1:√3:2.其中能构成直角三角形的有( ).A. 1个B. 2个C. 3个D. 4个6. 如图所示,已知∠B =∠C =∠D =∠E =90°,且AB =CD =3,BC =4,DE =EF =2,则A ,F 两点间的距离是( ).A. 14B. 6+√3C. 8+√2D. 107. 下列计算正确的是( )A. 3√10−2√5=√5B. √711⋅(√117÷√111)=√11 C. (√75−√15)÷√3=2√5D. 13√18−3√89=√28.已知a<b,化简二次根式√−a3b的结果是()A. −a√−abB. −a√abC. a√abD. a√−ab9.计算:3+√3+5√3+3√5+7√5+5√7+⋯+99√97+97√99的结果为()A. 1B. √1133C. 1−√1133D. 1+√113310.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M,P是直线MN上一动点,点H为BC中点,若AB=13,△ABC的周长是36.则PB+PH的最小值为()A. √69B. 10C. 12D. 13二、填空题(本大题共10小题,共30.0分)11.如图,以直角三角形的三边为边长向外作三个正方形A,B,C.若S A=26,S B=18,则S C=_12.计算(√7+1)(√7−1)的结果等于______.13.若√2x+3+1x+1在实数范围内有意义,则x的取值范围是.14.实数a,b在数轴上对应点的位置如图所示,化简:√a2−√b2−√(a−b)2=.15.平面直角坐标系中,点A(3,−4)到原点的距离为__________.16.如图,在长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB=.17. 如图,在四边形ABCD 中,AB =BC =1,CD =√6,AD =2,且∠B =90∘,则四边形ABCD 的面积为 (结果保留根号).18. 已知x =√7−√5√7+√5,y =√7+√5√7−√5,则x 3y +2x 2y 2+xy 3的值是 .19. 已知a <3,则√(a −3)2=____.20. 如图,正方形OABC 的边OC 落在数轴上,点C 表示的数为1,点P 表示的数为−1,以P 点为圆心,PB 长为半径作圆弧与数轴交于点D ,则点D 表示的数为______.三、解答题(本大题共6小题,共80.0分) 21. (12分)计算:(1)2(√12+√20)−3(√3−√5);(2)(√3−2√5)(√15+5)−(√10−√2)2.22. (12分)下列各式中,哪些是二次根式⋅并指出二次根式中的被开方数.√0,√−22,√104,√x −3(x ≥3),√−y −1(y >−1),√(x +1)2,√−x 2−3,√yx (xy >0).23.(12分)有一块空白地,如图,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,试求这块空白地的面积.24.(14分)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.过点A作AD⊥BC于点D,如图所示.设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.25.(14分)观察下列各式:①√1+13=2√13,②√2+14=3√14;③√3+15=4√15,…(1)请观察规律,并写出第④个等式:______;(2)请用含n(n≥1)的式子写出你猜想的规律:______;(3)请证明(2)中的结论.26.(16分)如图,矩形AOBC,A(0,3)、B(6,0),点E在OB上,∠AEO=30°,点P从点Q(−4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t秒.(1)求点E的坐标;(2)当△PAE是等腰三角形时,求t的值;(3)以点P为圆心,PA为半径的⊙P随点P的运动而变化,当⊙P与四边形AEBC的边(或边所在的直线)相切时,求t的值.答案1.D2.C3.A4.C5.C6.D7.B8.A9.C10.C11.812.613.x⩾−3且x≠−1214.−2b15.516.6+√217.1218.14419.3−a20.√5−121.解:(1)原式=2(2√3+2√5)−3√3+3√5=4√3+4√5−3√3+3√5=√3+7√5;(2)原式=√45−2√75+5√3−10√5−(10−2√20+2)=3√5−10√3+5√3−10√5−12+4√5=−3√5−5√3−1222.解:√0,√x−3(x≥3),√(x+1)2,√y(xy>0)是二次根式,其中被开方数依次x是0,x−3,(x+1)2,y.x23.解:连接AC,在Rt △ACD 中,∵CD =6米,AD =8米,∴AC 2=AD 2+CD 2=82+62=100, ∴AC =10米,(取正值).在△ABC 中,∵AC 2+BC 2=102+242=676,AB 2=262=676. ∴AC 2+BC 2=AB 2,∴△ACB 为直角三角形,∠ACB =90°.∴S 空白=12AC ×BC −12AD ×CD =12×10×24−12×8×6=96(平方米). 答:这块空白地的面积是96平方米.24.解:如图,过点A 作AD ⊥BC 交BC 于点D ,设BD =x ,则CD =14−x ,在Rt △ABD 中,AD 2=AB 2−BD 2=152−x 2, 在Rt △ACD 中,AD 2=AC 2−CD 2=132−(14−x)2, ∴152−x 2=132−(14−x)2,解得x =9, 此时AD 2=152−92=122,故AD =12, △ABC 的面积:12×BC ×AD =12×14×12=84.25.(1)√4+16=5√16; (2) √n +1n+2=(n +1)√1n+2;(3)√n +1 =√n 2+2n n +2+1n +2 =√n 2+2n +1n +2=√(n +1)2n +2 =(n +1)√1n+2.26.解:(1)∵A(0,3),B(6,0),∴OA =3,OB =6, ∵∠AEO =30°, ∴OE =√3OA =3√3, ∴点E 的坐标为(3√3,0); (2)如图1中,当EA =EP 时,EP 1=EA =EP 2=6,此时t =3√3−2或3√3+10, 当PA =PE 时,设P 3E =P 3E =x ,在Rt △AOP 3中,32+(3√3−x)2=x 2, ∴x =2√3,此时t =4+√3当AE =AP 时,点P 在点Q 左边,不符合题意.综上所述,当△PAE 是等腰三角形时,t 的值为(3√3−2)s 或(3√3+10)s 或(4+√3)s ; (3)由题意知,若⊙P 与四边形AEBC 的边相切,有以下三种情况: ①如图2中,当PA ⊥AE 时,⊙P 与AE 相切,∵∠AEO =30°,AO =3,∴∠APO=60°,∴OP=√3,∴QP=QO−PO=4−√3,∵点P从点Q(−4,0)出发,沿x轴向右以每秒1个单位的速度运动,∴t=4−√3(秒);②如图3中,当PA⊥AC时,⊙P与AC相切,∵QO=4,点P从点Q(−4,0)出发,沿x轴向右以每秒1个单位的速度运动,∴t=4(秒);③如图4中,当⊙P与BC相切时,由题意,PA2=PB2=(10−t)2,PO2=(t−4)2.于是(10−t)2=(t−4)2+32.(秒),解得t=254综上所述,当⊙P与四边形AEBC的边(或边所在的直线)相切时,t的值为(4−√3)秒或4秒或25秒.4。
四校2020~2021学年度第一学期第1次学情调查八年级数学试题(考试时间:120分钟,满分:150分)成绩________一.选择题(共6小题,共18分)1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对标图形的是()A.B.C.D.2.如图,某同学把一块三角形的玻璃打破成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以()A.带①去B.带②去C.带③去D.带①和②去3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是()A.21:10 B.10:21 C.10:51 D.12:01第2题第3题第4题第5题4.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性5.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1 B.2 C.3 D.46.已知△ABC≌△A'B'C,∠A=40°,∠CBA=60°,A'C交边AB于P(点P不与A、B重合).BO、CO 分别平分∠CBA,∠BCP,若m°<∠BOC<n°,则n﹣m的值为()A.20 B.40 C.60 D.100第6题第8题第10题二.填空题(共10小题,共30分)7.已知△ABC≌△A'B'C',∠A=60°,∠B=40°,则∠C′=.8.已知,如图:∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“ASA”为依据,还要添加的条件为.DAO PB'A'BA9.若等腰三角形的两边长为3 cm和7 cm,则该等腰三角形的周长为________cm.10.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=6 cm,则AB=________cm.11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB =4,则AC长是________.12.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.第11题第12题第13题13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.14.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE=cm.15.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.第14题第15题第16题16.如图所示,AOB是一钢架,设∠AOB=α,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,若最多能添加这样的钢管4根,则α的取值范围是.三.解答题(共10小题,共102分)17.(本题8分)如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.(不写作法,保留作图痕迹)18.(本题8分)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.19.(本题8分)如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC =DF.20.(本题10分)已知:如图∠ABC=∠ADC=90°,M、N分别是AC、BD的中点.求证:MN⊥BD.21.(本题10分)如图,在△ABC中,AB=AC,∠B=30°,D为BC边上一点,∠DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.22.(本题10分)在如图网格中画图:①画△A1B1C1,使它与△ABC关于l1对称;②画△A2B2C2,使它与△A1B1C1关于l2对称;③画△A3B3C3,使它与△A2B2C2关于l3对称;④画出△A3B3C3与△ABC的对称轴.23.(本题10分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.24.(本题12分)已知:如图,△ABC 和△CDE 都是等边三角形,且点A 、C 、E 在一条直线上,AD与BE 相交于点P ,AD 与BC 相交于点M ,BE 与CD 相交于点N . 求证:(1)∠APB =60°; (2)CM =CN .25.(本题12分)如图,在△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE . (1)求证:△AEF ≌△CEB .(2)猜想:AF 与CD 之间存在怎样的数量关系?请说明理由.26.(本题14分)如图,在△ABC 中,∠ACB =90°,AC =6,BC =8.点P 从点A 出发,沿折线AC —CB 以每秒1个单位长度的速度向终点B 运动,点Q 从点B 出发沿折线BC —CA 以每秒3个单位长度的速度向终点A 运动, P 、 Q 两点同时出发.分别过P 、Q 两点作PE ⊥l 于E ,QF ⊥l 于F .设点P 的运动时间为t (秒):(1)当P 、Q 两点相遇时,求t 的值;(2)在整个运动过程中,求CP 的长(用含t 的代数式表示);(3)当△PEC 与△QFC 全等时,直接写出所有满足条件的CQ 的长.lF EAC BP Q四校2020~2021学年度第一学期第1次学情调查八年级数学试题 参考答案与试题解析一.选择题(共6小题)1.A 2.C 3.C 4.D 5.B 6.B 二.填空题(共10小题)7.80° 8.∠A =∠D 9.17 10.12 11.312.15 13.55° 14.7 15.4 16.18°≤α<22.5° 三.解答题(共10小题)17.解:如图,点P 即为所求.(8分)18.证明:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC , 即∠BAC =∠EAD ,∵在△ABC 和△AED 中,D C BAC EAD AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△AED (AAS ).(8分) 19.证明:∵BE =CF (已知), ∴BE +EC =EC +CF , 即BC =EF ,∵在△ABC 和△DEF 中,A DB DEF BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS ),∴AC =DF (全等三角形对应边相等).(8分) 20.证明:如图,连接BM 、DM ,∵∠ABC =∠ADC =90°,M 是AC 的中点,∴BM =DM =12AC , ∵点N 是BD 的中点, ∴MN ⊥BD . (10分) 21.(1)解: ∵AB =AC , ∴∠B =∠C =30°,∵∠C +∠BAC +∠B =180°,∴∠BAC =180°﹣30°﹣30°=120°, ∵∠DAB =45°,∴∠DAC =∠BAC ﹣∠DAB =120°﹣45°=75°;(5分)(2)证明:∵∠DAB =45°, ∴∠ADC =∠B +∠DAB =75°, ∴∠DAC =∠ADC , ∴DC =AC , ∵AB =AC ,∴AB =CD .(10分)22.解:如图,△A 1B 1C 1、△A 2B 2C 2、△A 3B 3C 3、直线l 即为所求;(10分)23.(1)证明:∵AD 是∠BAC 的平分线,DE ⊥AB ,∠C =90°,∴DC =DE ,∵在Rt △FCD 和Rt △BED 中,DC DEDF DB=⎧⎨=⎩, ∴Rt △FCD ≌Rt △BED (HL ), ∴CF =EB ;(5分)(2)解:∵在Rt △ACD 和Rt △AED 中,DC DEAD AD=⎧⎨=⎩, ∴Rt △ACD ≌Rt △AED (HL ), ∴AC =AE ,∴AB =AE +BE =AF +FC +BE =AF +2BE .(10分)24.证明:(1)∵△ABC 和△CDE 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =∠DCE =60°, ∴∠ACB +∠BCD =∠DCE +∠BCD , 即∠ACD =∠BCE , 在△ACD 和△BCE 中,∵AC BC ACD BCE DC EC =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE (SAS ), ∴∠CAD =∠CBE .又∵∠AMC=∠BMP,∴∠APB=∠ACB=60°;(6分)(2)在△ACM和△BCN中,∵CAD CBE AC BCACB BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACM≌△BCN(ASA),∴CM=CN.(12分)25.(1)证明:∵AD⊥BC,CE⊥AB,∴∠AEF=∠BEC=∠ADB=90°,∴∠EAF+∠B=∠B+∠BCE=90°,即∠EAF=∠BCE.在△AEF和△CEB中,∵EAF BCE AE CEAEF CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF≌△CEB(ASA).(6分)(2)解:AF=2CD.理由:由(1)得AF=BC.∵AB=AC,AD⊥BC,∴BC=2CD,∴AF=2CD.(12分)26.解:(1)由题意得t+3t=6+8,解得t=72(秒),当P、Q两点相遇时,t的值为72秒;(4分)(2)由题意可知AP=t,则CP的长为6(6)6(614)t tt t-≤⎧⎨-<≤⎩;(8分)(3)当P在AC上,Q在BC上时,∵∠ACB=90,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,∴∠EPC=∠QCF,∴△PCE≌△CQF,∴PC=CQ,∴6﹣t=8﹣3t,解得t=1,∴CQ=8﹣3t=5;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,6﹣t=3t﹣8,解得t=3.5,∴CQ=3t﹣8=2.5,当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,综上,当△PEC与△QFC全等时,满足条件的CQ的长为5或2.5或6.(14分)。
江苏省八年级下学期第一次月考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列计算正确的是()A .B .C .D .2. (2分)(2016·昆都仑模拟) 下列四个命题:①对角线互相垂直的平行四边形是正方形;② ,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A . 1B . 2C . 3D . 43. (2分) (2020八上·北仑期末) △ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A . 如果∠A=2∠B=3∠C,则△ABC是直角三角形B . 如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C . 如果a:b:c=1:2:2,则△ABC是直角三角形D . 如果a:b:c=3:4:,则△ABC是直角三角形4. (2分)下列各式中,一定是二次根式的有()个.A . 2B . 3C . 4D . 55. (2分)把a根号外的因式移到根号内,化简的结果是()A .B .C . -D . -6. (2分)下列二次根式中最简二次根式是()。
A .B .C .D .7. (2分) (2019八下·谢家集期末) 下列四组线段中,可以构成直角三角形的是A . 2,3,4B . 3,4,5C . 4,5,6D . 7,8,98. (2分) (2020八上·潞城期末) 下列命题中,是真命题的是()A . 的算术平方根是3B . 5是25的一个平方根C . 的平方根是-4D . 64的立方根是±49. (2分)已知a=, b=,用a、b的代数式表示,这个代数式是()A . 2aB . aC . abD . b10. (2分)如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A . 11cmB . 12cmC . 13cmD . 14cm二、填空题 (共7题;共8分)11. (1分) (2017七下·南充期中) 若,则代数式 =12. (1分)(2021·恩施) 《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深等于1寸,锯道长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆形木材的直径寸;13. (1分) (2015八下·蓟县期中) 已知n是正整数,是整数,则n的最小值是.14. (1分)(2019·内江) 若,则.15. (1分)(2019·铁西模拟) 如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.16. (1分)(2018·桐乡模拟) 如图,E是正方形ABCD外一点,作BF ⊥BE ,BF交AE于点F,若CE=4,BE=BF=,则AB=17. (2分)当a=时,|1﹣a|+2会有最小值,且最小值是.三、计算题 (共1题;共10分)18. (10分) (2020八下·奉化期末) 计算:(1)(2)四、解答题 (共5题;共25分)19. (5分) (2017八下·汇川期中) 已知:x= +1,y= ﹣1,求代数式x2+2xy+y2的值.20. (5分) (2021七上·南通月考) 与互为相反数,求代数式的值.21. (5分)如图所示,将五张长方形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,已知AB:BC=4:5,求CD:DF的值.22. (5分) (2020八上·林州月考) 如图,点D是边上一点,,过B点作,且,连接交于点O,连接 .求证:平分 .23. (5分)如图,有一只蚂蚁从一个圆柱体的A点沿着侧面绕圆柱至少一圈爬到B点,已知圆柱的底面半径为1.5cm,高为12cm,则蚂蚁所走过的最短路径是多少?(π取3)参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共7题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、计算题 (共1题;共10分)答案:18-1、答案:18-2、考点:解析:四、解答题 (共5题;共25分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:。
八年级(下)学期 第一次月考检测数学试题含答案一、选择题1.下列计算正确的是( ) A .916916+=+ B .2222-=C .()2236=D .1515533==2.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A . B .C .D .3.(21273632-的结果正确的是( ) A 3B .3 C .6D .334.下列二次根式中,是最简二次根式的是( ) A 12B 0.1C 12D 21a +5.31m -m 能取的最小整数值是( ) A .m = 0 B .m = 1 C .m = 2D .m = 36.下列各式中,正确的是( )A .23B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 27.下列说法错误的个数是( ) ()23-32a a =;④数轴上的点都表示有理数 A .1个B .2个C .3个D .4个8.101在3和41x +中x 的取值范围是1x ≥-;③813;④31255--=-;⑤51528->.其中正确的个数为( ) A .1个B .2个C .3个D .4个9.已知1200722007n n x =⋅,n 是大于1的自然数,那么(21n x x +的值是( ). A .12007B .12007-C .()112007n- D .()112007n-- 10.以下运算错误的是( )A .3535⨯=⨯B .2222⨯=C .169+=169+D .2342a b ab b =(a >0)11.下列各式中,一定是二次根式的是( ) A .1-B .4xC .24a -D .2a12.下列运算错误的是( ) A .23=6⨯ B .2=22 C .22+32=52D .()21-212=-二、填空题13.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________; ③222222(11)(22)(22)(33)(33)(44)f f f f f f ++++⋅++⋅++⋅+z z z z z z22(20172017)(20182018)f f +=+⋅+z z __________.14.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 15.设a ﹣b=23b ﹣c=23a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____. 16.当x 3x 2﹣4x +2017=________.17.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.18.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a c b=___________19..20.计算:2015·2016=________. 三、解答题21.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣22.计算②)21-【答案】① 【分析】①根据二次根式的加减法则计算; ②利用平方差、完全平方公式进行计算. 【详解】解:①原式=②原式=(5-2-= 【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.23.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.24.计算(1(2)(()21-【答案】(1)2;(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案. 【详解】解:(1=2+=-=(2)(()21-=22(181)---=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.25.一样的式子,其实我3==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=.考点:分母有理化.26.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.28.计算:(1)-(2)【答案】(1)21 【分析】(1)先把二次根式化为最简二次根式,然后合并即可; (2)先利用二次根式的乘除法则运算,再合并即可. 【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.29.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.30.化简求值:212(1)211x x x x -÷-+++,其中1x =.【答案】3【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】5==,=,(24312=⨯=,选项D 正确.2.D解析:D 【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可. 【详解】∴被开方数x+2为非负数, ∴x+2≥0, 解得:x ≥-2. 故答案选D. 【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.3.A解析:A分别根据二次根式的除法和乘法法则以及二次根式的平方计算每一项,再合并即可.【详解】解:原式333=+=故选:A.【点睛】本题主要考查了二次根式的混合运算,属于基础题型,熟练掌握二次根式的乘除法则是解题的关键.4.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】ABC2,不是最简二次根式,故本选项不符合题意;D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.5.B解析:B【分析】根据被开方数大于等于0列式计算即可得解.【详解】310m-≥,解得13m≥,所以,m能取的最小整数值是1.故选:B.【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.解析:A 【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误. 【详解】A 、=,= ∵1812>,∴>,故该选项正确; B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误;D 、527m m m +=,故该选项错误; 故选:A . 【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.7.C解析:C 【分析】根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④. 【详解】无限不循环小数才是无理数,①错误;3=,3的平方根是②正确;a =,③错误;数轴上的点可以表示所有有理数和无理数,④错误 故选:C . 【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.8.A解析:A 【分析】答. 【详解】解:①3104<<,415∴<<,故①错误;x的取值范围是1x≥-,故②正确;9=,9的平方根是3±,故③错误;④5=,故④错误;58=,(229<,58-<58<,故⑤错误;综上所述:正确的有②,共1个,故选:A.【点睛】本题考查了故算无理数的大小,解决本题的关键是掌握估算平方法比较无理数大小.9.C解析:C【解析】【分析】令a=112x aa⎛⎫=-⎪⎝⎭112aa⎛⎫=+⎪⎝⎭,2007na=,进而得到x【详解】令a=112x aa⎛⎫=-⎪⎝⎭112aa⎛⎫=+⎪⎝⎭,2007na=,∴x1111122a aa a a⎛⎫⎛⎫--+=-⎪ ⎪⎝⎭⎝⎭,∴原式=111()(1)(1)2007n n nna a-=-=-.故选C.【点睛】本题考查了二次根式的混合运算.熟练掌握二次根式混合运算法则是解答本题的关键.10.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.D解析:D【分析】根据二次根式的意义,如果一定是二次根式,则不论字母取何值,被开方数一定是非负数,逐一判断即可得.【详解】解:A,不是二次根式;B x<0时无意义,不一定是二次根式;C在-2<a<2时,无意义,不一定是二次根式;D a2≥0,一定是二次根式;故选:D.【点睛】本题主要考查二次根式的定义,一般地,a≥0)的式子叫做二次根式.12.D解析:D【分析】根据二次根式的乘法法则对A进行判断;根据分母有理化对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的性质对D进行判断.【详解】AB计算正确,不符合题意;C、计算正确,不符合题意;D11=≠符合题意;故选:D.【点睛】本题考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.二、填空题13.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018 【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=-20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 14.(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)==∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数) ∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。
一、选择题1.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S ,其中116S =,245S =,511S =,614S =,则43S S +=( ).A .86B .61C .54D .482.在ABC 中,AB 边上的中线3,6,8CD AB BC AC ==+=,则ABC 的面积为( ) A .6B .7C .8D .93.在△ABC 中,∠BCA=90∘,AC=6,BC=8,D 是AB 的中点,将△ACD 沿直线CD 折叠得到△ECD ,连接BE ,则线段BE 的长等于( )A .5B .75C .145D .3654.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .45.如图,已知圆柱的底面直径6BC π=,高3AB =,小虫在圆柱侧面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为( )A .18B .48C .120D .726.一艘渔船从港口A 沿北偏东60°方向航行至C 处时突然发生故障,在C 处等待救援.有一救援艇位于港口A 正东方向20(3﹣1)海里的B 处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C 处救援.则救援艇到达C 处所用的时间为( )A .3小时 B .23小时 C .223小时 D .232+小时 7.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm8.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A.16cm B.18cm C.20cm D.24cm9.如图,正方体的棱长为4cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9 B.210C.326D.1210.下列四组线段中,可以构成直角三角形的是()A.1、2、3B.2、3、4 C.1、2、3 D.4、5、6二、填空题11.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.12.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=13,EF=7,那么AH等于_____.13.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A离地1尺,将它往前推送10尺(水平距离)时,点A对应的点B就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.14.已知Rt△ABC中,AC=4,BC=3,∠ACB=90°,以AC为一边在Rt△ABC外部作等腰直角三角形ACD,则线段BD的长为_____.15.已知,在△ABC中,∠C=90°,AC=BC=7,D是AB的中点,点E在AC上,点F在BC 上,DE=DF,若BF=4,则EF=_______16.如图,在△ABC 中,AB=AC,∠BAC=120°,AC 的垂直平分线交 BC 于 F,交 AC 于 E,交 BA 的延长线于 G,若 EG=3,则 BF 的长是______.17.如图,在△ABC中,∠C=90°,∠ABC=45°,D是BC边上的一点,BD=2,将△ACD沿直线AD翻折,点C刚好落在AB边上的点E处.若P是直线AD上的动点,则△PEB的周长的最小值是________.18.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC,则AC边上的高的长度是_____________.19.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5. ①线段OA 的取值范围是______________; ②若BD -AC =1,则AC •BD = _________.20.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.三、解答题21.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.24.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).25.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.26.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t :(秒)(1)OE =_________,OF =___________(用含t 的代数式表示)(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.27.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =; (2)延长BD 与EF 交于点G . ①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.28.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.29.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 . (2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.30.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM . (1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设1S ,2S ,3S 对应的边长为1L ,2L ,3L ,根据题意,通过等边三角形和勾股定理的性质,得23L ,从而计算得到3S ;设4S ,5S ,6S 对应的边长为4L ,5L ,6L ,通过圆形面积和勾股定理性质,得24L ,从而计算得到4S ,即可得到答案. 【详解】分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S 则1S ,2S ,3S 对应的边长设为1L ,2L ,3L根据题意得:211111162S L L ===22245S L == ∴21L =,22L =∵222132L L L += ∴22232129L L L =-=∴2332929S === 以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6 S 则4S ,5S ,6S 对应的边长设为4L ,5L ,6L 根据题意得:2255511228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭2266614228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭∴25811L π=⨯,26814L π=⨯∵222564L L L += ∴()22245688111425L L L ππ=+=⨯+=⨯∴2448S 252588L πππ==⨯⨯=∴43292554S S +=+= 故选:C . 【点睛】本题考查了勾股定理、等边三角形、圆形面积的知识;解题的关键是熟练掌握勾股定理、等边三角形面积计算的性质,从而完成求解.2.B解析:B 【分析】本题考查三角形的中线定义,根据条件先确定ABC 为直角三角形,再根据勾股定理求得228AC BC = ,最后根据12ABC AC BC ∆=⋅求解即可. 【详解】解:如图,在ABC 中,AB 边上的中线,∵CD=3,AB= 6,∴CD=3,AB= 6,∴CD= AD= DB ,12∠∠∴=,34∠=∠ ,∵1234180∠+∠+∠+∠=︒,∴1390∠+∠=︒,∴ABC 是直角三角形,∴22236AC BC AB +==,又∵8AC BC +=,∴22264AC AC BC BC +⋅+=,∴22264()643628AC BC AC BC ⋅=-+=-=,又∵12ABC AC BC ∆=⋅, ∴128722ABC S ∆=⨯=, 故选B.【点睛】本题考查三角形中位线的应用,熟练运用三角形的中线定义以及综合分析、解答问题的能力,关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三是直角三角形. 3.C解析:C【分析】根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH ⊥BE 于H ,EG ⊥CD 于G ,证明△DHE ≌△EGD ,利用勾股定理求出75EH DG ==,即可得到BE. 【详解】∵∠BCA=90∘,AC=6,BC=8,∴22226810AB AC BC ,∵D 是AB 的中点,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC ,CE=AC=6,∴BD=DE ,作DH ⊥BE 于H ,EG ⊥CD 于G ,∴∠DHE=∠EGD=90︒,∠EDH=12∠BDE=12(180︒-2∠EDC )=90︒-∠EDC , ∴∠DEB= 90︒-∠EDH=90︒-(90︒-∠EDC)=∠EDC ,∵DE=DE ,∴△DHE ≌△EGD ,∴DH=EG ,EH=DG , 设DG=x ,则CG=5-x ,∵2EG =2222DE DG CE CG -=-,∴222256(5)x x -=--,∴75x =, ∴75EH DG ==, ∴BE=2EH=145, 故选:C.【点睛】此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE 转换为求其一半的长度的想法是关键,由此作垂线,证明△DHE ≌△EGD ,由此求出BE 的长度.4.C解析:C【分析】作DE ⊥AB 于E ,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC ,设DE=DC=x ,利用等等面积法列方程、解方程即可解答.【详解】解:作DE ⊥AB 于E ,如图,在Rt △ABC 中,BC =22106-=8,∵AD 是△ABC 的一条角平分线,DC ⊥AC ,DE ⊥AB ,∴DE =DC ,设DE =DC =x ,S △ABD =12DE •AB =12AC •BD , 即10x =6(8﹣x ),解得x =3,即点D 到AB 边的距离为3.故答案为C .【点睛】本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..5.D解析:D【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【详解】解:把圆柱侧面展开,展开图如图所示,点A ,C 的最短距离为线段AC 的长.∵已知圆柱的底面直径6BC π=, ∴623AD ππ=⋅÷=, 在Rt ADC ∆中,90ADC ∠=︒ ,3CD AB ==,∴22218AC AD CD =+=,∴从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为()222472AC AC ==.故选D.【点睛】本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.6.C解析:C【解析】【分析】过点C作CD垂直AB延长线于D,根据题意得∠CDB=45°,∠CAD=30°,设BD=x则CD=BD=x,BC=2x,由∠CAD=30°可知tan∠CAD=3CDAD=即320(31)x=-+,解方程求出BD的长,从而可知BC的长,进而求出救援艇到达C处所用的时间即可.【详解】如图:过点C作CD垂直AB延长线于D,则∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,设BD=x,救援艇到达C处所用的时间为t,∵tan∠CAD=3CDAD=,AD=AB+BD,∴3320(31)x=-+,得x=20(海里),∴BC=2BD=202(海里),∴t=202=22(小时),故选C.【点睛】本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键. 7.B解析:B【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB =22AC BC +=2268+=10,△ADE 是由△ACD 翻折,∴AC =AE =6,EB =AB−AE =10−6=4,设CD =DE =x ,在Rt △DEB 中,∵222DE EB DB +=,∴()22248x x +=-,∴x =3,∴CD =3.故答案为:B .【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题. 8.C解析:C【分析】首先画出圆柱的侧面展开图,进而得到SC=12cm ,FC=18-2=16cm ,再利用勾股定理计算出SF 长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF 的长,由勾股定理,SF 2=SC 2+FC 2=122+(18-1-1)2=400,SF=20 cm ,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.9.B解析:B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB=22++=.(24)2210故选:B.【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.10.A解析:A【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A、12+(2)2=(3)2∴以1、2、3为边组成的三角形是直角三角形,故本选项正确;B、22+32≠42∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误;C、12+22≠32∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;D、42+52≠62∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;故选A..【点睛】本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键.二、填空题11.【解析】如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴∠90°.根据勾股定理可得.12.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=, ∴2ab =120,a 2+b 2=169,∴(a +b )2=a 2+b 2+2ab =169+120=289,∴a +b =17,∵a ﹣b =7,解得:a =12,b =5,∴AE =12,DE =5,∴AH =12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 13.5【分析】设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值【详解】如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10设绳索x 尺,则OA=OB=x∴OC=x+1-5=x-4在Rt △OBC 中,OB 2=OC 2+BC 2∴222(4)10x x =-+得x=14.5(尺)故填14.5,【点睛】此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键.14.7或29或65【分析】分三种情形讨论:(1)如图1中,以点C所在顶点为直角时;(2)如图2中,以点D所在顶点为直角时;(3)如图3中,以点A所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD2229DE BE=+=;(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD2265=+=.DE BE故答案为:7或29或65.【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.15.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC-GE=CH-HF=CF=AB-BF=3∴EF=223332+=②过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF ∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11 ∴EF=221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴ED=DF=522,可证△E CF E DE ''∆∽,2223y x +=5252x =+综上可得:25x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.16.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可【详解】∵AC 的垂直平分线FG ,∴AE=EC ,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC ,∴∠B=∠C=12(180°-∠BAC )=30°, ∴∠B=∠G ,∴BF=FG ,∵在Rt △AEG 中,∠G=30°,EG=3,∴AG=2AE ,即(2AE)2=AE2+32,∴AE=3(负值舍去)即CE=3,同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+(3)2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.17.222【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.【详解】如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,BD=2,∴2,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠ABC=45°,∴∠B=45°,∵2,∴BE=2, 即BC=2+2, ∴△PEB 的周长的最小值是BC+BE=2+2+2=2+22.故答案为2+22.【点睛】本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P 点的位置.18.355【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △BCE 的面积是:12×1×1=12. 则△ABC 的面积是:4﹣1﹣1﹣12=32. 在直角△ADC 中根据勾股定理得到:AC=222+1=5.设AC 边上的高线长是x .则12AC•x=5x=32, 解得:x=355.355. 19.①1<OA <4. ②672. 【解析】(1)由三角形边的性质5-3<2OA <5+3,1<OA <4.(2)过A 作AF BC ,F ⊥于过D 作DE BC ⊥于E,可知,ABF 全等DCE ,由题意知,22BD DE =+()2BC CE +=2DE +()24CE +,()()222225AC DE BC CE DE CE ∴=+-=+-,2AC ∴+ 2BD=2DE +()()22245CE DE CE +++-=2(22)5018DE CE ++=+50=68,BD -AC =1,两边平方2AC ∴+ 2BD -2AC •BD =1, ∴AC •BD =672.20.78. 【解析】 ∵∠C =90°,AB =5,BC =4,∴AC 2254-.∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78x =.故答案为:78. 三、解答题21.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23, ∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-=, ∴S △ADC =1423432⨯⨯=,S △ABC =12AB×BC =23, ∴S 四边形ABCD =S △ADC +S △ABC =63;②当CD =CB =BD =23时,如图所示:∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒,∴12BE BD ==3DE ===,∴S △BDC =132⨯= 过D 作DF ⊥AB 交AB 延长线于F ,∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=12S △ADB =122⨯=,∴S 四边形ABCD =S △BDC +S △ADB =;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是或【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.22.(1)2)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,)PQ cm ==;(2)解:根据题意得:BQ BP =,即28t t =-, 解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E ,则68 4.8()10AB BC BE cm AC ⨯===3.6CE cm ∴==,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH EF ,CH =CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC ﹣∠AED =45°,理由如下:∵∠AED =∠ABE =α,∴∠BAE =180°﹣2α,∴∠CAE =∠BAE ﹣∠BAC =90°﹣2α,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =45°+α,∴∠AEC ﹣∠AED =45°;(3)如图,过点C 作CG ⊥AH 于G ,∵∠AEC ﹣∠AED =45°,∴∠FEH =45°,∵AH ⊥BE ,∴∠FHE =∠FEH =45°,∴EF =FH ,且∠EFH =90°,∴EH 2EF ,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CH 2CG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CH 2AF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2, 2AF )2+2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.24.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°,综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.25.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =73【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB. 【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中, AO 2-OC 2=AC 2 因为81AB AC ∇= 所以AO 2-OC 2=81 所以AC 2=81 所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC , 在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°, 在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72,②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°,∵AB =12,∴AE =6,BE =222212663AB AE -=-=,∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线, 所以AO 2-OC 2=-64, 所以OC 2-AO 2=64, 由因为AC 2=82=64, 所以OC 2-AO 2= AC 2 所以∠OAC=90° 所以OA=24228322ABC SAC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+=所以BC=2OC=273, 在Rt △BCD 中, CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8 所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.26.(1)6-t ,t+23;(2)D(1,3),y=34-x+154;(3)1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩【分析】(1)根据点E ,F 的运动轨迹和速度,即可得到答案; (2)由题意得:DF=OF=53,DE=OE=5,过点E 作EG ⊥BC 于点G ,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案;(3)根据题意得直线直线MN 的解析式为:34y x b =-+,从而得M(443b -,3),分2种情况:①当点M 在线段DB 上时, ②当点M 在DB 的延长线上时,分别求出S 与b 之间的函数关系式,即可. 【详解】∵(0,0)O ,(6,0)A ,(0,3)C , ∴OA=6,OC=3, ∵AE=t×1= t , ∴OE =6-t ,OF =(t+23)×1=t+23, 故答案是:6-t ,t+23; (2)当1t =时,OE =6-t=5,OF =t+23=53, ∵将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处, ∴DF=OF=53,DE=OE=5, 过点E 作EG ⊥BC 于点G ,则EG=OC=3,CG=OE=5, ∴4=, ∴CD=CG-DG=5-4=1, ∴D(1,3),设直线DE 的解析式为:y=kx+b ,把D(1,3),E(5,0)代入y=kx+b ,得350k b k b +=⎧⎨+=⎩ ,解得:34154k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线DE 的解析式为:y=34-x+154; (3)∵MN ∥DE ,∴直线直线MN 的解析式为:34y x b =-+, 令y=3,代入34y x b =-+,解得:x=443b -, ∴M(443b -,3). ①当点M 在线段DB 上时,BM=6-(443b -)=4103b -+, ∴1143(10)223S BM AB b =⋅=⨯⨯-+=215b -+, ②当点M 在DB 的延长线上时,BM=443b --6=4103b -,∴1143(10)223S BM AB b=⋅=⨯⨯-=215b-,综上所述:1515215()4215215()2b bSb b⎧-+≤<⎪⎪=⎨⎪->⎪⎩.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.27.(1)见解析;(2)①见解析;②2.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=12BC CG⋅,而BC和CG可得,问题即得解决.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴1302DBC ABC∠=∠=︒,∵CF CD=,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴BD DF=;(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,。