(完整版)新北师大版八年级数学下册月考卷
- 格式:doc
- 大小:238.38 KB
- 文档页数:4
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。
1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。
八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!北师大版八年级下单元测试第4单元班级________姓名________一、单选题(本大题共12小题,每小题3分,共36分)1.若多项式28x mx +-因式分解的结果为()()42x x +-,则常数m 的值为()A .2-B .2C .6-D .62.若()()2322x x p mx nx ++=--,则下列结论正确的是()A .6m =B .1n =C .2p =-D .3mnp =3.多项式224x y -与2244x xy y ++的公因式是()A .4x y -B .4x y +C .2x y -D .2x y +4.数学兴趣小组开展活动:把多项式2114x x ++分解因式,组长小明发现小组里有以下四种结果与自己的结果2112x æö+ç÷èø不同,他认真思考后,发现其中还有一种结果是正确的,你认为正确的是()A .21(1)2x +B .21(1)4x +C .21(2)2x +D .21(2)4x +5.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘,积为249x -,乙与丙相乘,积为2914x x -+,则甲与丙相加的结果是()A .25x +B .25x -C .29x +D .29x -6.用如图1中的三种纸片拼成如图2的矩形,据此可写出一个多项式的因式分解,下列各项正确的是()A .()()22333a ab b a b b a ++=++B .()()22333a ab b a b a b -+=-+C .()()22343a ab b a b a b ++=++D .()()22433a ab b a b a b ++=++7.分解因式4x 2﹣y 2的结果是()A .(4x +y )(4x ﹣y )B .4(x +y )(x ﹣y )C .(2x +y )(2x ﹣y )D .2(x +y )(x ﹣y )8.下列各式:①22x y --;②22114a b -+;③22a ab b ++;④222x xy y -+-;⑤2214mn m n -+,能用公式法分解因式的有()A .2个B .3个C .4个D .5个9.在3257x x x k +++中,若有一个因式为(2)x +,则k 的值为()A .2B .2-C .6D .6-10.若(b ﹣c )2=4(1﹣b )(c ﹣1),则b +c 的值是()A .﹣1B .0C .1D .211.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是()A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解12.下列多项式:①224x y --;②()224x y --;③222a ab b +-;④214x x ++;⑤2244n m mn +-.能用公式法分解因式的是()A .①③④⑤B .②③④C .②④⑤D .②③④⑤二、填空题(本大题共8小题,每小题3分,共24分)13.已知2,33xy x y =-=,则322321218x y x y xy -+=_________.14.甲乙两个同学分解因式x 2+ax +b 时,甲看错了b ,分解结果为(x +2)(x +4),乙看错了a ,分解结果为(x +1)(x +9),则2a +b =_____.15.若实数a ,b 满足1a b -=,则代数式2225a b b --+的值为_______________.16.因式分解:m 2-n 2-2m +1=___.17.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.18.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x 4﹣y 4,因式分解的结果是(x ﹣y )(x +y )(x 2+y 2),若取x =9,y =9时,则各个因式的值是:(x +y )=18,(x ﹣y )=0,(x 2+y 2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x 3﹣xy 2,取x =10,y =10时,用上述方法产生的密码是_____(写出一个即可).19.因式分解:()()269m n m n +-++=________.20.若x=16,y=18,则代数式(2x+3y )2-(2x-3y )2的值是__________.三、解答题(本大题共5小题,每小题8分,共40分)21.先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:因为2222690m mn n n ++-+=,所以2222690m mn n n n +++-+=.所以22()(3)0m n n ++-=.所以0,30m n n +=-=.所以3,3m n =-=.问题:(1)若224212120++-+=x y xy y ,求xy 的值;(2)已知a ,b ,c 是等腰ABC 的三边长,且a ,b 满足2210841a b a b +=+-,求ABC 的周长.22.先分解因式,再求值:2221a b ab --+,其中199a =,1b =.23.甲、乙同学在分解因式:mx 2+ax +b 时,甲仅看错了a ,分解结果为2(x ﹣1)(x ﹣9);乙仅看错了b ,分解结果为2(x ﹣2)(x ﹣4),求m 、a 、b 的正确值,并将mx 2+ax +b 分解因式.24.把下列各式因式分解:(1)264x xy -+;(2)231212a a ++;(3)()()222x a y a ---;(4)42416a a -.25.阅读材料:利用公式法,可以将一些形如()20ax bx c a ++¹的多项式变形为()2a x m n ++的形式,我们把这样的变形方法叫做多项式()20ax bx c a ++¹的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如()222224445452922x x x x x æöæö+-=++--=+-ç÷ç÷èøèø()()()()x x x x=+++-=+-232351根据以上材料,解答下列问题.(1)分解因式:228+-;x x(2)求多项式243x x的最小值;+-(3)已知a,b,c是ABC的三边长,且满足222506810+++=++,求ABC的周长.a b c a b c参考答案1.B2.B3.D4.D5.A6.C7.C8.B9.A10.D11.C12.C13.3614.21.15.6.16.(m -1+n )(m -1-n )17.1218.10402019.()23m n +-20.1221.(1)-4(2)13或1422.()()211a a b -+-,989801.23.m =2,a =﹣12,b =18;2(x ﹣3)224.(1)()232x x y --(或者()223x y x -)(2)()232a +(3)()()22a x y -+(4)()()2422a a a +-25.(1)()()24x x -+(2)7-(3)12.。
2021-2022学年八年级数学下册第二次月考测试题(附答案)一、选择题(共30分)1.把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)2.如图,数轴上所表示的不等式的解集是()A.x≥2B.x>2C.x<2D.x≤23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°5.要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣16.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.217.若(a+3)x>a+3的解集为x<1,则a必须满足()A.a<0B.a>﹣3C.a<﹣3D.a>38.如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°9.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0B.x>1C.x<1D.x<010.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.5二、填空题(共24分)11.分解因式:ab2﹣9a=.12.若一个多边形的每一个内角都是150°,则它是边形.13.如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为.14.若分式有意义,则x的取值范围为.15.平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF 一定为平行四边形的条件.(用题目中的已知字母表示)16.如图,∠AOB=120°,点P为∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON=OP;③四边形PMON的面积保持不变;④△PMN的周长保持不变.其中说法正确的是(填序号).三、计算题(共18分)17.解方程:.18.解不等式组并把解集在数轴上表示出来.19.先化简:,再选一个你喜欢的a的值代入求值.四、解答题(共48分)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2,并写出A2的坐标.21.如图,在等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.22.如图:在Rt△ABC中,∠A=90°,过B作BH∥AC.(1)按尺规作图要求作BC的垂直平分线,交AC于E,交BH于D,(保留作图痕迹,不写作法),连接BE、CD.(2)求证:四边形BECD是平行四边形.23.为了做好防疫工作,学校准备购进一批消毒液.已知每瓶B型消毒液比A型贵2元,用56元购A型消毒液与72元购B型消毒液的瓶数相同.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.24.如图,在▱ABCD中,对角线AC,BD相交于点O,BD=2AD,点E在线段OC上,且OE=CE.(1)求证:∠OBE=∠ADO;(2)若F,G分别是OD,AB的中点,且BC=10,①求证:△EFG是等腰三角形;②当EF⊥EG时,求▱ABCD的面积.25.如图,在平面直角坐标系xOy中,已知点A(5,1),B(1,1),C(0,5).直线m平行于x轴且经过C,D,E三点.直线l的关系式为y=﹣2x+b.(1)若△ABD是以AB为底的等腰三角形,且直线l过点D,求b的值;(2)若b=9,直线l与▱ABDE的边DE相交时,求点E的横坐标n的取值范围;(3)若点F为▱ABDE的对角线BE与DA的交点,当直线l经过点F时,求点D的横坐标q与b之间的函数关系式.参考答案与试题解析一、选择题(共30分)1.解:a2﹣a=a(a﹣1).故选:A.2.解:∵2处是实心圆点且折线向右,∴不等式的解集是x≥2.故选:A.3.解:A.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;B.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.4.解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:A.5.解:∵分式有意义,∴x﹣1≠0.解得;x≠1.故选:B.6.解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.7.解:∵(a+3)x>a+3的解集为x<1,∴a+3<0,解得:a<﹣3.故选:C.8.解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.9.解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.10.解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=•BC•AD=10,∴AD==5,∴BM+MD长度的最小值为5.二、填空题(共24分)11.解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).12.解:360÷30=12,则它是12边形.13.解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=BF﹣EC,∵BF=14,EC=8,∴BE=14﹣8=3.故答案为:3.14.解:∵分式有意义,∴x2﹣4≠0,∴x≠±2.故答案为:x≠±2.15.解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.16.解:过点P作PE⊥OA,垂足为E,过点P作PF⊥OB,垂足为F,∴∠PEO=90°,∠PFO=90°,∵∠AOB=120°,∴∠EPF=360°﹣∠AOB﹣∠PEO﹣∠PFO=60°,∵∠MPN+∠AOB=180°,∴∠MPN=180°﹣∠AOB=60°,∴∠MPN﹣∠EPN=∠EPF﹣∠EPN,∴∠MPE=∠NPF,∵OP平分∠AOB,PE⊥OA,PF⊥OB,∴PE=PF,∵∠MEP=∠NFP=90°,∴△MEP≌△NFP(ASA),∴PM=PN,ME=NF,故①正确;∵OP=OP,∴Rt△PEO≌Rt△PFO(HL),∴OE=OF,∴OM+ON=OE+ME+OF﹣NF=2OE,∵OP平分∠AOB,∴∠EOP=∠AOB=60°,∴∠EPO=90°﹣∠EOP=30°,∴PO=2OE,∴OM+ON=OP,故②正确;∵△MEP≌△NFP,∴四边形PMON的面积=四边形PEOF的面积,∴四边形PMON的面积保持不变,故③正确;∵PM=PN,∠MPN=60°,∴△PMN是等边三角形,∵MN的长度是变化的,∴△PMN的周长是变化的,故④错误;所以,说法正确的是:①②③,故答案为:①②③.三、计算题(共18分)17.解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)(2分)整理,得2x=4x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.(5分)18.解:解不等式x+4≤3(x+2),得:x≥﹣1,解不等式3x﹣3<2x,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式的解集表示在数轴上如下:19.解:原式=[﹣]•=•=•=,当a=﹣1时,原式=﹣1.四、解答题(共48分)20.解:(1)如图,△A1B1C1;即为所求;(2)如图,△A2B2C2即为所求,A2的坐标(﹣2,2).21.(1)解:∵△ABC是等边三角形,∴∠BCD=60°,AB=BC=AC=6,又∵AB=6,点D为AC的中点,∴CD=3,BC⊥CD,∴BD===3;(2)证明:∵△ABC是等边三角形,D为AC的中点,∴∠CBD=,又∵CE=CD,∴∠CDE=∠E,又∵∠BCD=60°,∴∠E=,∴∠CBD=∠E,∴BD=DE,又∵DF⊥BC,垂足为F.∴BF=EF.22.(1)解:如图,直线DE为所求;(2)证明:DE交BC于F,如图,∵DE垂直平分BC,∴BF=CF,EB=EC,又∵BH∥AC,∴∠1=∠2,∠3=∠4在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形.23.解:(1)设A型消毒液的单价是x元,B型消毒液的单价是y元,得,解得.答:A型消毒液的单价是7元;B型消毒液的单价是9元.(2)设购进A型消毒液a瓶,则购进B型消毒液(90﹣a)瓶,费用为w元,依题意可得:w=7a+9(90﹣a)=﹣2a+810,∵k=﹣2<0,∴w随a的增大而减小.∵B型消毒液的数量不少于A型消毒液数量的,∴90﹣a≥a.解得a≤67 ,∴当a=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣a=23.答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶;最低费用为676元.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,DO=BO=BD,∴∠ADB=∠DBC,∵BD=2AD,∴AD=DO,∴BC=BO,∵E是CO中点,∴∠OBE=∠OBC,∴∠OBE=∠ADO;(2)①证明:∵BC=BO,∴△BOC是等腰三角形,∵E是CO中点,∴EB⊥CO,∴∠BEA=90°,∵G为AB中点,∴EG=AB,∵四边形ABCD是平行四边形,∴AB=CD,∵E、F分别是OC、OD的中点,∴EF=CD∴EG=EF,∴△EFG是等腰三角形;②解:由①得EF∥AB,∵EF⊥EG,∴EG⊥AB,∵G是AB的中点,∴AE=BE,设CE=x,则AO=CO=2CE=2x,∴BE=AE=3x,在Rt△BEC中,BC=10,∴EC2+BE2=BC2,即x2+(3x)2=102,解得x=,∴AC=,BE=,∴S▱ABCD=2S△ABC=.25.解:(1)∵A(5,1),B(1,1),DA=DB,∴D(3,5),将x=3,y=5代入y=﹣2x+b,∴b=11;(2)∵四边形ABDE为平行四边形,∴DE=AB=4,∵E(n,5),∴D(n﹣4,5),当5=﹣2x+9时,x=2,∵直线y=﹣2x+9与边DE有交点,∴2≤n≤6;(3)∵四边形ABDE为平行四边形,∴DF=F A,∵D(q,5),A(5,1),∴,即,将,y=3代入y=﹣2x+b,∴q=b﹣8.。
北师大版八年级下册数学测试题一.选择题(共10小题)1.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或202.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180°D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n 的度数为()A.B.C.D.二.填空题(共10小题)11.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为.15.如图,在△ABC中,AB=AC,D为BC上一点,CD=AD,AB=BD,则∠B的大小为.16.已知:等腰三角形ABC的面积为30m2,AB=AC=10m,则底边BC的长度为.17.如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则y=.(用x的代数式表示)18.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A 的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.19.等腰三角形两内角度数之比为1:2,则它的顶角度数为.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.三.解答题(共10小题)21.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.22.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.23.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB 于E.求证:△BDE是等腰三角形.26.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:△ABC是等腰三角形.27.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?28.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.29.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.30.已知:如图,△ABC中,AB=AC=6,∠A=45°,点D在AC上,点E在BD上,且△ABD、△CDE、△BCE均为等腰三角形.(1)求∠EBC的度数;(2)求BE的长.北师大版八年级下册数学第一章周测试题参考答案与试题解析一.选择题(共10小题)1.(2016•贺州)一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.2.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.3.(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.(2016•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.(2016•孝感模拟)如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180°D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.(2016•鞍山二模)如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.(2016春•乳山市期末)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.B.C.D.【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.二.填空题(共10小题)11.(2016•淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.【解答】解:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=10,答:它的周长是10,故答案为:1012.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.(2016•厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.(2016•哈尔滨模拟)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.(2016•红桥区二模)如图,在△ABC中,AB=AC,D为BC上一点,CD=AD,AB=BD,则∠B的大小为36°.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故答案为:36°.16.(2016•哈尔滨校级模拟)已知:等腰三角形ABC的面积为30m2,AB=AC=10m,则底边BC的长度为2或6.【解答】解:作CD⊥AB于D,则∠ADC=∠BDC=90°,△ABC的面积=AB•CD=×10×CD=30,解得:CD=6,∴AD==8m;分两种情况:①等腰△ABC为锐角三角形时,如图1所示:BD=AB﹣AD=2m,∴BC==2;②等腰△ABC为钝角三角形时,如图2所示:BD=AB+AD=18m,∴BC==6;综上所述:BC的长为2或6.故答案为:2或6.17.(2016•黄浦区三模)如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则y=x或90°﹣x.(用x的代数式表示)【解答】解:∵两个等腰三角形的腰长相等、面积也相等,∴腰上的高相等.①当这两个三角形都是锐角或钝角三角形时,y=x,②当两个三角形应该是锐角三角形,一个是钝角三角形时,y=90°﹣x.故答案为x或90°﹣x.18.(2016•河南模拟)如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为3,6或6.5或7.2时,△ACP是等腰三角形.【解答】解:由题意可得,第一种情况:当AC=CP时,△ACP是等腰三角形,如右图1所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴CP=6cm,∴t=6÷2=3秒;第二种情况:当CP=PA时,△ACP是等腰三角形,如右图2所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴AB=10cm,∠PAC=∠PCA,∴∠PCB=∠PBC,∴PA=PC=PB=5cm,∴t=(CB+BP)÷2=(8+5)÷2=6.5秒;第三种情况:当AC=AP时,△ACP是等腰三角形,如右图3所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴AP=6cm,AB=10cm,∴t=(CB+BA﹣AP)÷2=(8+10﹣6)÷2=6秒;第四种情况:当AC=CP时,△ACP是等腰三角形,如右图4所示,作CD⊥AB于点D,∵∠ACB=90°,AC=6cm,BC=8cm,tan∠A==,∴,AB=10cm,设CD=4a,则AD=3a,∴(4a)2+(3a)2=62,解得,a=,∴AD=3a=,∴t==7.2s故答案为:3,6或6.5或7.2.19.(2016春•东港市期末)等腰三角形两内角度数之比为1:2,则它的顶角度数为36°或90°.【解答】解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故3答案为:36°或90°.20.(2016•河北模拟)如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为8.三.解答题(共10小题)21.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.22.(2016•徐州模拟)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.23.(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.25.(2016春•鄄城县期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.26.(2016春•深圳校级期中)如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.27.(2016春•吉安校级月考)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.28.(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.29.(2015秋•当涂县期末)如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.【解答】证明:过E作EF∥AB交BC延长线于F.∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,∴BD=EF,在△DBG与△GEF 中,,∴△DGB≌△EGF(AAS),∴GD=GE.30.(2015秋•顺义区期末)已知:如图,△ABC中,AB=AC=6,∠A=45°,点D在AC上,点E在BD上,且△ABD、△CDE、△BCE均为等腰三角形.(1)求∠EBC的度数;(2)求BE的长.【解答】解:(1)∵AB=AC=6,∠A=45°,∴∠ABC=∠ACB=67.5°,第21页(共22页)∵△ABD是等腰三角形,AD=BD,∴∠ABD=∠A=45°,∴∠EBC=∠ABC﹣∠ABD=22.5°;(2)∵∠A=∠ABD=45°,∴∠ADB=∠CDE=90°,∵AB=6,∴BD=AB•cos45°=3,设DE=x,则CD=DE=x,∴EC==x,∵BE=EC=x,∴x+x=3,解得:x=6﹣3,∴BE=6﹣6.第22页(共22页)。
2024-2025学年八年级数学上学期第一次月考卷(深圳专用)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版第一章勾股定理+第二章实数。
5.难度系数:0.68。
第Ⅰ卷一、选择题:本大题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列数中是无理数的是()A.2πB.3.1415926C.117D. 3.6-2.以下列各组数为边长,不能构成直角三角形的是()A.8,15,17B.7,24,25C.6,8,10D.1,13)A3=B=C6´=D+= 4.如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A.16B.25C.144D.1695.实数a ,b 在数轴上的位置如图所示,且|a |>|b ||2a +b |的结果为( )A .2a +b .﹣2a +b C .a +b D .2a ﹣b6.使代数式y =有意义的自变量x 的取值范围是( )A .4x ¹B .3x >C .3x ³D .3x ³且4x ¹7.在四边形ABCD 中,AD BC ∥,90D Ð=°,5AD =,3BC =,分别以A ,C 为圆心,大于12AC 的长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O ,若点O 是AC 的中点,则CD 的长为( )A B C .D .48.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC BD ,交于点O .若1AD =,4BC =,则22AB CD +等于( )A .15B .16C .17D .20第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。
八年级下册平行四边形单元测试试题一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、平行四边形的周长是36厘米,相邻两个边的比是5:1,则较长边是()。
A、3B、15C、6D、304,取BC的中点为2、在等腰直角三角形ABC中,∠B=90°,AC=2P。
以点P为中心,将△ABC旋转180°,A点的对应点为A’,则AA’的距离是()。
2A、54B、58C、5D、53、如图,在▱ABCD中,AC+BD=24,BC=10,则△AOD的周长是()。
A、24B、22C、29D、174、已知平面直角坐标系中,以O(0,0),P(3,0),M(1,1),N(x,1),若以O,P,M,N为顶点的四边形是平行四边形,则x等于()。
A、﹣4或﹣2B、﹣1或﹣2C、4或﹣1D、4或﹣25、在长方形ABCD中,如下图,E、F、G、H分别是长方形四边的中点,AB=4,BC=10,则图中阴影部分的面积是()。
A、40B、20C、10D、86、如图,在平行四边形ABCD中,O是对角线AC、BD的交点,平行四边形的周长是32,△AOB比△AOD的周长小2,则AB、BC的长分别是()。
A 、6、10B 、7、9C 、5、7D 、8、107、如图,在平行四边形ABCD 中,CE :DE=3:2,则BEF DEF ABF S S S △△△::的比是( )。
A 、25:2:5B 、25:4:9C 、5:2:3D 、25:4:108、一个多边形的内角和是外角和的3倍,这个多边形是()边形。
A 、6B 、7C 、8D 、99、如果从一个等腰三角形的底边上任何一点分别作两腰的平行线,所得的平行四边形的周长等于()。
A、等腰三角形的周长B、等腰三角形周长的一半C、等腰三角形两腰长D、等腰三角形两腰长的一半10、如图,四边形ABCD是平行四边形,BG⊥AF,AF是∠BAD的平分4,则△CEF的面积是()。
线,若CD=6,BC=9,BG=24A、23B、22C、2D、211、如图,在平行四边形ABCD中,E、F在对角线AC上,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF,能判定四边形DEBF是平行四边形的有()个。
北师大版八年级数学下册第四章因式分解月考考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解正确的是( ).A .()22242a a a a -=+B .()()2422a a a -+=+-C .()22211a a a -+=-D .()210251025a a a a -+=-+2、下列等式中,从左到右的变形是因式分解的是( )A .a (a -3)=a 2-3aB .(a +3)2=a 2+6a +9C .6a 2+1=a 2(6+21a )D .a 2-9=(a +3)(a -3)3、下列分解因式正确的是( )A .()244x x x x -+=--B .()222x xy x x x y ++=+C .()()()2x x y y y x x y -+-=-D .()22442x x x -+=+ 4、下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b ++D .214x x -+ 5、已知a +b =2,a -b =3,则22a b -等于( )A .5B .6C .1D .326、下列多项式中能用平方差公式分解因式的是( )A .﹣a 2﹣b 2B .x 2+(﹣y )2C .(﹣x )2+(﹣y )2D .﹣m 2+17、下列各式从左至右是因式分解的是( )A .()242(2)a a a -=+-B .()()2211x y x y x y --=+--C .222()x y x xy y +=++D .222()2x y x xy y -=++8、下列从左边到右边的变形,是因式分解的是( )A .(3﹣x )(3+x )=9﹣x 2B .x 2+y 2=(x +y )(x ﹣y )C .x 2﹣x =x (x ﹣1)D .2yz ﹣y 2z +z =y (2z ﹣yz )+z9、若a 、b 、c 为一个三角形的三边长,则式子()22a c b --的值( )A .一定为正数B .一定为负数C .可能是正数,也可能是负数D .可能为010、多项式22ax ay -分解因式的结果是( )A .()22a x y +B .()()a x y x y +-C .()()a x y x y ++D .()()ax y ax y +-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:4811x -=__.2、计算下列各题:(1)3x x ⋅=______; (2)()3ab =______; (3)()42m =______; (4)63x x +=______.3、因式分解:2a 2﹣4ab +2b 2=_____.4、在实数范围内因式分解:x 2﹣6x +1=_____.5、分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:①20220220211(2021)(3)22π⎛⎫-+--⨯ ⎪⎝⎭;②()()43322222362436x y x y x y x y -+÷-;③(32)(32)a b a b +--+.(2)在实数范围内因式分解:①32222288a b a b ab -+-;②49x -.2、因式分解:(1)3244a a a -+(2)(1)(3)8x x ---3、因式分解:(1)326a ab +(2)2255x y -(3)22363x xy y -+-4、(1)按下表已填的完成表中的空白处代数式的值:(2)比较两代数式计算结果,请写出你发现的2()a b -与222a ab b -+有什么关系?(3)利用你发现的结论,求:222021404220202020-⨯+的值.5、(1)计算:(12a 3-6a 2+3a )÷3a(2)因式分解:32288a a a -+-参考答案-一、单选题1、C【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A 、()()2222421a a a a a a -=+=+,故本选项错误;B 、()()()224422a a a a -+=--=-+-,故本选项错误;C 、()22211a a a -+=-,故本选项正确;D 、()2210255a a a -+=-,故本选项错误.故选:C .【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.2、D【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A 、a (a -3)=a 2-3a ,属于整式乘法,不符合题意;B 、(a +3)2=a 2+6a +9,属于整式乘法,不符合题意;C 、6a 2+1=a 2(6+21a )不是因式分解,不符合题意;D 、a 2-9=(a +3)(a -3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.3、C【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ()244x x x x -+=-+,原选项错误,不符合题意;B. ()2221x xy x x x y ++=++,原选项错误,不符合题意;C. ()()()2x x y y y x x y -+-=-,正确,符合题意; D. ()22442x x x -+=-,原选项错误,不符合题意;故选:C .【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.4、D【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A 、不能用完全平方公式因式分解,故本选项不符合题意; B 、不能用完全平方公式因式分解,故本选项不符合题意;C 、不能用完全平方公式因式分解,故本选项不符合题意;D 、221142x x x ⎛⎫-+=- ⎪⎝⎭能用完全平方公式因式分解,故本选项符合题意; 故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握()2222a ab b a b ±+=± 是解题的关键.5、B【分析】根据平方差公式因式分解即可求解【详解】∵a +b =2,a -b =3,∴22a b -()()236a b a b =+-=⨯=故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.6、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、22a b --,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B 、()2222x y x y +-=+,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意; C 、()()2222x y x y -=++-,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D 、()()2221111m m m m -+=-=+-,可以利用平方差公式进行分解,符合题意; 故选:D .【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.7、A【分析】根据因式分解的定义逐个判断即可.【详解】解:A 、()242(2)a a a -=+-,等式从左到右的变形属于因式分解,故本选项符合题意;B 、()()2211x y x y x y --=+--,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C 、222()x y x xy y +=++,是整式的乘法,不是因式分解,故本选项不符合题意;D 、222()2x y x xy y -=++,是整式的乘法,不是因式分解,故本选项不符合题意.故选:A .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.8、C【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.【详解】解:A 、(3﹣x )(3+x )=9﹣x 2属于整式的乘法运算,不是因式分解,不符合题意;B 、22()()x y x y x y -=+-,原式错误,不符合题意;C 、x 2﹣x =x (x ﹣1),属于因式分解,符合题意;D 、2yz ﹣y 2z +z =2(21)z y y -+,原式分解错误,不符合题意;故选:C .【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.9、B【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】解:原式=(a-c+b)(a-c-b),∵两边之和大于第三边,两边之差小于第三边,∴a-c+b>0,a-c-b<0,∵两数相乘,异号得负,∴代数式的值小于0.故选:B.【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.10、B【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.二、填空题1、2(91)(31)(31)x x x ++-【分析】先把原式化为22291,x 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式22(91)(91)x x =+-2(91)(31)(31)x x x =++-,故答案为:2(91)(31)(31)x x x ++-.【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.2、4x 33a b 8m ()331x x +【分析】(1)根据同底数幂相乘运算法则计算即可;(2)根据积的乘方的运算法则计算即可;(3)根据幂的乘方的运算法则计算即可;(3)根据提取公因式法因式分解即可.【详解】解:(1)34x x x ⋅=;(2)()333ab a b =;(3)()428m m =; (4)()63331x x x x +=+.故答案是:(1)4x ;(2)33a b ;(3)8m ;(4)()331x x +.【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.3、()22a b -【分析】先提取公因式2,再利用完全平方公式计算可得.【详解】解:原式=()()222222a ab b a b -+=-. 故答案为:()22a b -【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.4、(3x -+(3x --【分析】将该多项式拆项为22(3)x --,然后用平方差公式进行因式分解.【详解】261-+x x2(69)8x x =-+-22(3)x =--(33x x =-+--.故答案为:(33x x -+--.【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.5、﹣2ab (2a ﹣b )2【分析】先提取公因式-2ab ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式=﹣2ab (4a 2﹣4ab +b 2)=﹣2ab (2a ﹣b )2,故答案为:﹣2ab (2a ﹣b )2.【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.三、解答题1、(1) ①912;②-6x 2y+4x-12;③9a 2-b 2+4b -4;(2)①-2ab 2(a -2)2;②(x 2+3)(x x 【分析】(1)①根据零指数幂、积的乘方、同底数幂的乘法计算即可;②利用多项式除以多项式计算即可;③根据平方差公式和完全平方公式计算即可;(2)①利用提取公因式和完全平方公式计算即可;②利用平方差公式计算即可;【详解】(1)①原式=1+9-12=912;②原式=36x 4y 3÷(﹣6x 2y 2)﹣24x 3y 2÷(﹣6x 2y 2)+3x 2y 2÷(﹣6x 2y 2),=-6x 2y+4x-12;③原式=[3a +(b -2)][3a -(b -2)],=(3a )2-(b -2)2,=9a 2-(b 2-4b +4),=9a 2-b 2+4b -4;(2)在实数范围内因式分解:①原式=-2ab 2(a 2-4a +4),=-2ab 2(a -2)2;②原式=(x 2+3)(x 2-3),=(x 2+3)(x x ;【点睛】本题主要考查了利用公式法和提公因式法进行因式分解,整除除法,实数混合运算,积的乘方,同底数幂的乘法,准确计算是解题的关键.2、(1)2(2)a a -;(2)(5)(1)x x -+【分析】(1)先提取公因式,再十字相乘法进行因式分解.(2)先去括号,再十字相乘法进行因式分解.【详解】解:(1)3244a a a -+=2(44)a a a -+=2(2)a a -(2)(1)(3)8(5)(1)x x x x ---=-+=2438x x -+-=245x x --(5)(1)x x =-+【点睛】本题考查了十字相乘法因式分解,对于形如2x px q ++的二次三项式,若能找到两数a b 、,使a b q ⋅=,且a b p +=,那么2x px q ++就可以进行如下的因式分解,即()()()22x px q x a b x ab x a x b ++=+++=++.3、(1)2a (a 2+3b );(2)5(x +y )(x ﹣y );(3)﹣3(x ﹣y )2.【分析】(1)直接提公因式2a 即可;(2)先提公因式,再利用平方差公式即可;(3)先提公因式,再利用完全平方公式即可.(1)解:326a ab +=2a (a 2+3b );(2)解:(2)原式=5(x 2﹣y 2)=5(x +y )(x ﹣y );(3)解:(3)原式=﹣3(x 2﹣2xy +y 2)=﹣3(x ﹣y )2.【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.4、(1)见解析;(2)()2222a b a ab b -=-+;(3)1【分析】(1)把每组,a b 的值分别代入2()a b -与222a ab b -+进行计算,再填表即可;(2)观察计算结果,再归纳出结论即可;(3)利用结论()2222a b a ab b -=-+可得2021,2020,a b 再代入进行简便运算即可. 【详解】解:(1)填表如下:(2)观察上表的计算结果归纳可得:()2222a b a ab b -=-+(3)222021404220202020-⨯+=2220212202120202020-⨯⨯+=()220212020-=1【点睛】本题考查的是代数式的求值,运算规律的探究,完全平方公式的应用,熟练的利用完全平方公式进行简便运算是解本题的关键.5、(1)4a 2-2a +1;(2)2a (a -2)2.【分析】(1)根据多项式除以单项式的法则进行计算即可;(2)先提公因式,再根据完全平方公式进行因式分解即可.【详解】解(1)(12a 3-6a 2+3a )÷3a=4a 2-2a +1;(2)32288a a a -+=2a(a2-4a+4)=2a(a-2)2.【点睛】本题考查了整式的除法,以及因式分解法,掌握运算法则和完全平方公式是解题的关键.。
北师大版八年级数学下册第一章三角形的证明专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题的逆命题是假命题的是()A.同旁内角互补,两直线平行B.对于有理数a,如果3a>0,那么a>0C.有两个内角互余的三角形是直角三角形D.在任何一个直角三角形中,都没有钝角2、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为()A.15°B.20°C.25°D.30°3、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°4、如图,等边△AAA 中,D 为AC 中点,点P 、Q 分别为AB 、AD 上的点,4BP AQ ==,3QD =,在BD 上有一动点E ,则PE QE +的最小值为( )A .7B .8C .10D .125、如图,等腰△AAA 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A .①③④B .①②③C .②③④D .①②③④6、下列命题成立的有( )个.①等腰三角形两腰上的中线相等;②有两边及其中一边上的高线分别相等的两个三角形全等;③三角形纸片中,AB =8cm ,BC =6cm ,AC =5cm .沿过点B 的直线折叠这个三角形使点C 落在AB 边上的点E 处,折痕为BD .则△AED 的周长为7cm ;④AD 是△ABC 的角平分线,则S △ABD :S △ACD =AB :AC .A .1B .2C .3D .47、下列命题是假命题的是( )A .直角三角形两锐角互余B .有三组对应角相等的两个三角形全等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等8、如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧交于两点,过这两点作直线交AC 于点E ,交BC 于点D ,连接AD .若△ADB 的周长为15,AE =4,则△ABC 的周长为( )A .17B .19C .21D .239、如图,ABC DEC ≌△△,点E 在线段AB 上,75B ∠=︒,则ACD ∠的度数为( )A .20°B .25°C .30°D .40°10、如图,已知Rt △ABC 中,∠C =90°,∠A =30°,在直线BC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的点P 有( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△AAA 中,90BAC ∠=︒,30C ∠=︒.用无刻度的直尺和圆规在BC 边上找一点D ,使ACD △为等腰三角形.下列作法正确的有________个.2、如图,在△AAA 中,AD 是BAC ∠的平分线,10cm AB =,8cm AC ,则:ABD ACD S S =△△____________.3、如图,△ABC 中,AB 平分∠DAC ,AB ⊥BC ,垂足为B ,若∠ADC 与∠ACB 互补,BC =5,则CD 的长为_________.4、如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.5、如图,AB=BE,∠DBC=12∠ABE,BD⊥AC,则下列结论正确的是:_____.(填序号)①BC平分∠DCE;②∠ABE+∠ECD=180°;③AC=2BE+CE;④AC=2CD﹣CE.三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC中,∠ABC=45°,F是高AD和高BE的交点,AC BD=2.求线段DF的长度.2、如图,在△AAA中,按以下步骤作图:①分别以点A和A为圆心,以大于12AA的长为半径作弧,两弧相交于点A和A;②作直线AA交AA于点A,连接AA.若AA=6,AA=4,求△AAA的周长.3、ABC 中,CD 平分ACB ∠,点E 是BC 上一动点,连接AE 交CD 于点D .(1)如图1,若110ADC ∠=︒,AE 平分BAC ∠,则B 的度数为______;(2)如图2,若100ADC ∠=︒,53DCE ∠=︒,27B BAE ∠-∠=︒,则BAE ∠的度数为______;(3)如图3,在BC 的右侧过点C 作CF CD ⊥,交AE 延长线于点F ,且AC CF =,2B F ∠=∠.试判断AB 与CF 的位置关系,并证明你的结论.4、数学课上,王老师布置如下任务:如图,已知∠MAN <45°,点B 是射线AM 上的一个定点,在射线AN 上求作点C ,使∠ACB =2∠A . 下面是小路设计的尺规作图过程.作法:①作线段AB 的垂直平分线l ,直线l 交射线AN 于点D ;②以点B 为圆心,BD 长为半径作弧,交射线AN 于另一点C ,则点C 即为所求.根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:连接BD ,BC ,∵直线l 为线段AB 的垂直平分线,∴DA = ,( )(填推理的依据)∴∠A =∠ABD ,∴∠BDC =∠A +∠ABD =2∠A .∵BC =BD ,∴∠ACB =∠ ,( )(填推理的依据)∴∠ACB =2∠A .5、如图,△AAA 是等边三角形,D 点是BC 上一点,2BD CD ,AA ⊥AA 于点E ,CE 交AD 于点P .求∠AAA 的度数.-参考答案-一、单选题1、D【分析】先写出每个选项中的逆命题,然后判断真假即可.【详解】解:A、同旁内角互补,两直线平行的逆命题为:两直线平行,同旁内角互补,是真命题,不符合题意;B、对于有理数a,如果3a>0,那么a>0的逆命题为:对于有理数a,如果a>0,则3a>0,是真命题,不符合题意;C、有两个内角互余的三角形是直角三角形的逆命题为:直角三角形有两个内角互余的,是真命题,不符合题意;D、在任何一个直角三角形中,都没有钝角的逆命题为:没有钝角的三角形是直角三角形,是假命题,符合题意;故选D.【点睛】本题主要考查了逆命题,判定命题真假,解题的关键在于能够熟知相关知识进行求解.2、A【分析】先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.【详解】解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,∴∠EFD=60°,∠ABC=45°,∵BC∥AD,∴∠EFD=∠FBC=60°,∴∠ABF=∠FBC-∠ABC=15°,故选A.【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.3、C【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数.【详解】解:∵AC CE ⊥,∴90C ∠=︒,∵20A ∠=︒,∴70ABC ∠=︒,∵AB DF ∥,∴70CED ABC ∠=∠=︒.故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.4、C【分析】作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小,最小值PE PQ PE EQ PQ +=+'=',据此求解即可.【详解】解:如图,ABC ∆是等边三角形,BA BC ∴=,∵D 为AC 中点,∴BD AC ⊥,4AQ =,3QD =, 7AD DC AQ QD ∴==+=, 作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小.最小值PE QE PE EQ PQ +=+'=', 4AQ =,7AD DC ==,3QD DQ ∴='=,4CQ BP ∴'==,10AP AQ ∴='=,60A ∠=︒,APQ ∴∆'是等边三角形,10PQ PA ∴'==,PE QE∴+的最小值为10.故选:C.【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.5、A【分析】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形,故③正确;④如图2,在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO =∠CPE ,∵OP =CP ,在△OPA 和△CPE 中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△OPA ≌△CPE (SAS ),∴AO =CE ,∴AC =AE +CE =AO +AP ,∴AB =AO +AP ,故④正确;正确的结论有:①③④,故选:A .【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.6、C【分析】利用等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质分别判断后即可确定正确的选项.【详解】解:①等腰三角形两腰上的中线相等,故原命题正确;②有两边及其中一边上的高线分别相等的两个三角形不一定全等,故原命题错误;③三角形纸片中,AB =8cm ,BC =6cm ,AC =5cm .沿过点B 的直线折叠这个三角形使点C 落在AB 边上的点E 处,折痕为BD .如图:由折叠知:BC=BE=6,CD=DE,则△AED的周长为AD+DE+AE=AD+CD+AB-BE= AC+AB-BC=7cm,故原命题正确;④AD是△ABC的角平分线,则S△ABD:S△ACD=AB:AC,故原命题正确,成立的有3个,故选:C.【点睛】要题考查了命题与定理的知识,解题的关键是了解等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质,难度不大.7、B【分析】根据直角三角形的性质,全等三角形的判定方法,平行线的性质,角平分线的性质逐项分析.【详解】A.直角三角形两锐角互余,正确,是真命题;B.有三组对应角相等的两个三角形,因为它们的边不一定相等,所以不一定全等,故错误,是假命题;C.两直线平行,同位角相等,正确,是真命题;D.角平分线上的点到角两边的距离相等,正确,是真命题;故选B.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.8、D【分析】由题意知,DE是线段AC的垂直平分线,据此得AD=CD,AE=EC,再由AB+BD+AD=15知AB+BD+CD=15,即AB+BC=15,结合AE=4可得答案.【详解】解:由题意知,DE是线段AC的垂直平分线,∴AD=CD,AE=EC,∵AB+BD+AD=15,∴AB+BD+CD=15,即AB+BC=15,∵AE=4,即AC=2AE=8,∴△ABC的周长为AB+BC+AC=15+8=23,故选:D.【点睛】本题主要考查作图—基本作图,线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9、C【分析】根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.【详解】解:∵ABC DEC≌△△,∴BC=CE,∠ACB=∠DCE,∴∠B =∠BEC ,∠ACD =∠BCE ,∵75B ∠=︒,∴∠ACD =∠BCE=180°-2×75°=30°,故选:C .【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.10、B【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【详解】解:以点A 、B 为圆心,AB 长为半径画弧,交直线BC 于两个点12,P P ,然后作AB 的垂直平分线交直线BC 于点3P ,如图所示:∵∠C =90°,∠A =30°,∴60ABC ∠=︒,∵33AP BP =,∴3△ABP 是等边三角形,∴点32,P P 重合,∴符合条件的点P 有2个;故选B .【点睛】本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键.二、填空题1、3【分析】根据图中的圆心、半径已经角平分线、垂直平分线的作法,依次判断即可得.【详解】解:第一个图以C 为圆心,AC 长为半径,∴ACD △为等腰三角形,符合题意;第二个图为作BAC ∠的角平分线,无法得到ACD △为等腰三角形,不符合题意;第三个图以B 为圆心,AB 长为半径,∴ABD △为等腰三角形,∵30C ∠=︒,∴60B ∠=︒,∴ABD △为等边三角形,∴60BAD ∠=︒,∴906030DAC ∠=︒-︒=︒,∴C DAC ∠=∠,∴CD DA =,∴ACD △为等腰三角形,符合题意;第四个图为作线段AC 的垂直平分线,可得DA DC =,∴ACD △为等腰三角形,符合题意;综上可得:有三个图使得ACD △为等腰三角形,故答案为:3.【点睛】题目主要考查等腰三角形的性质及角平分线、垂直平分线的作法,熟练掌握各个图形的作法是解题关键.2、5:4【分析】过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F ,根据角平分线的性质得到DE =DF ,再由三角形面积公式可求得结论.【详解】解:过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F ,如图,∵AD 是BAC ∠的平分线,∴DE =DF∵10cm AB =,8cm AC , ∴110521842ABD ACDAB DE S AB S AC AC DF ∆∆====故答案为:5:4【点睛】本题考查了角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 3、10【分析】构造ABE △,再证得ABE ABC ≌,求得EB =BC ,再通过等量代换、等角的补角相等求得∠E =∠CDE ,则CE =2BC =10.【详解】解:延长AD .和CB 交于点E .∵AB 平分∠DAC∴∠EAB =∠CAB又∵AB BC ⊥∴∠ABE =∠ABC又∵AB =AB∴ABE ABC ≌∴BC =EB =5,∠E =∠ACB ,180ADC CDE ∠+∠=︒又∵180ADC ACB ∠+∠=︒∴∠ACB =∠CDE∴∠E=∠CDE∴.CD=CE又∵CE=2BC=10∴CD=10故答案为:10.【点睛】本题考查了全等三角形的性质和判定,等角的补角相等,能根据全等三角形的性质找到角与角之间的关系是解答此题的关键.4、3【分析】根据题意依据等腰三角形的性质,即可得到BD=12BC,进而分析计算即可得出结论.【详解】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3.故答案为:3.【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.5、①②④【分析】根据已知∠DBC=12∠ABE,BD⊥AC,想到构造一个等腰三角形,所以延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,就得到∠FBC=2∠DBC,然后再证明△FAB≌△CBE,就可以判断出BC平分∠DCE,再由角平分线的性质想到过点B作BG⊥CE,交CE的延长线于点G,从而证明△ABD≌△EBG,即可判断.【详解】解:延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,过点B作BG⊥CE,交CE的延长线于点G,∵FB=BC,BD⊥AC,∴DF=DC,∠DBC=∠DBF=1∠FBC,2∠ABE,∵∠DBC=12∴∠FBC=∠ABE,∴∠FBA=∠CBE,∵AB=AE,∴△FAB≌△CBE(SAS),∴∠F=∠BCE,∵BF=BC,∴∠F=∠BCD,∴∠BCD=∠BCE,∴BC平分∠DCE,故①正确;∵∠FBC+∠F+∠BCD=180°,∴∠ABE+∠BCE+∠BCD=180°,∴∠ABE+∠DCE=180°,故②正确;∵∠BDC=∠BGC=90°,BC=BC,∴△BDC≌△BGC(AAS),∴AD=GE,CD=CG,∵AC=AD+DC,∴AC=AD+CG=AD+GE+CE=2GE+CE,∵GE≠BE,∴AC≠2BE+CE,故③错误;∵AC=CF﹣AF,∴AC=2CD﹣CE,故④正确;故答案为:①②④.【点睛】本题主要是考查了全等三角形的判定和性质、角平分线的性质,综合运用全等三角形的判定和性质以及角平分线的性质,是求解该类问题的关键.三、解答题1、1【分析】由勾股定理可求CD =1,由“AAS ”可证△BFD ≌△ACD ,可得CD =DF =1.【详解】解:∵AD 和BE 是△ABC 的高,∴∠ADB =∠ADC =∠BEC =90°.∴∠C +∠DAC =90°;∠C +∠DBF =90°.∴∠DAC =∠DBF .∵∠ABC =45°,∴∠DAB =45°.∴∠ABC =∠DAB .∴DA =DB .在△ADC 与△BDF 中,ADC BDF DA DBDAC DBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADC ≌△BDF (ASA ).∴AC =BF在Rt △BDF 中,∠BDF =90°,∴BD 2+DF 2=BF 2.∵BD =2,BF∴DF =1【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,掌握全等三角形的判定定理是本题的关键.2、10【分析】依据垂直平分线的性质得DB DC =.ABD ∆周长转化为+AB AC 即可求解.【详解】解:由已知作图方法可得,DN 是线段BC 的垂直平分线,所以,BD CD =,因为,6AC =,4AB =,所以,4610AB BD AD AB CD AD AB AC ++=++=+=+=,因此,ABD △的周长是10.【点睛】本题主要考查中垂线性质,解题的关键是掌握中垂线上一点到线段两端点距离相等,将所求周长转化为+AB AC 的和即可.3、则该直线的解析式为:y =x +令x =0,则y =5,即B (0,5);(2)由(1)知,C (-3,2).如图1,设Q(a,-23 a).∵S△QAC=2S△AOC,∴S△QAO=3S△AOC,或S△Q′AO=S△AOC,①当Q在第二象限即S△QAO=3S△AOC时,1 2OA•y Q=3×12OA•y C,∴y Q=3y C,即-23a=3×2=6,解得a=-9,∴Q(-9,6);②当Q在第四象限S△Q′AO=S△AOC时,1 2OA•y Q=12OA•y C,∴y Q=2y C,即23a=2,解得a=3(舍去负值),综上,点Q的坐标为(-9,6)或(3,-2);(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(-3,2),A(-5,0),∴AC∵P2H=P2G,P2H⊥CD,P2G⊥OC,∴CP2是∠OCD的平分线,∴∠OCP2=∠DCP2,∴∠AP2C=∠AOC+∠OCP2,∵∠ACP2=∠ACD+∠DCP2,∴∠ACP2=∠AP2C,∴AP2=AC,∴P2(0).同理:P1(,0).综上,点P的坐标为(0)或(0).【点睛】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强.5.(1)40°;(2)10°;(3)AB∥CF,理由见解析【分析】(1)根据三角形的角和定理和角平分线的定义可求得∠BAC+∠ACB=140°即可求解;(2)根据三角形的外角性质求得∠B+∠BAE=47°即可求解;(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到∠FCG=2∠F,再根据角平分线的定义和等角的余角相等得到∠BCF=2∠F,则有∠B=∠BCF,根据平行线在判定即可得出结论.【详解】解:(1)∵∠ADC=110°,∴∠DAC+∠DCA=180°-110°=70°,∵AE平分∠BAC,CD平分∠ACB,∴∠BAC=2∠DAC,∠ACB=2∠DCA,∴∠BAC+∠ACB=2(∠DAC+∠DCA)=140°,∴∠B=180°-(∠BAC+∠ACB)=180°-140°=40°,故答案为:40°;(2)∵∠ADC=∠DCE+∠DEC=100°,∠DCE=53°,∴∠DEC=100°-53°=47°,∴∠B+∠BAE=∠DEC=47°,∵∠B-∠BAE=27°,∴∠BAE=10°,故答案为:10°;(3)AB∥CF,理由为:如图,延长AC到G,∵AC=CF,∴∠F=∠FAC,∴∠FCG=∠F+∠FAC=2∠F,∵CF⊥CD,∴∠BCF+∠BCD=90°,∠FCG+∠ACD=90°,∵CD平分∠ACB,∴∠BCD=∠ACD,∴∠BCF=∠FCG=2∠F,∵∠B=2∠F,∴∠B=∠BCF,∴AB∥CF.【点睛】本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键.4、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC;等边对等角.【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可.(2)根据垂直平分线的性质以及等边对等角进行解答即可.【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;(2)解:证明:连接BD,BC,∵直线l为线段AB的垂直平分线,∴DA=DB,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)∴∠A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A.∵BC=BD,∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)∴∠ACB=2∠A.【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.5、60APE ∠=︒【分析】由题意易得60ABC ACB ∠=∠=︒,AB AC BC ==,则有30BDE ∠=︒,然后可得BE CD =,进而可证BEC CDA ≌,则有BCE =∠∠CAD ,最后问题可求解.【详解】解:∵ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,AB AC BC ==,∵DE AB ⊥,∴90DEB ∠=︒,∴30BDE ∠=︒,∴2BD BE =,∵2BD CD =,∴BE CD =,∴BEC CDA ≌(SAS ),∴BCE =∠∠CAD ,∵,60APE PAC ACP ACB DAC ACP ∠=∠+∠∠=∠+∠=︒,∴60APE ACB ∠=∠=︒.【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.。
2017~2018学年度第二学期三月八年级质量检测
数 学 试 卷 时间:90分钟 满分:100分 试卷:共4页
注意事项:
1.答题前,考生先将自己的姓名、准考证号号码填写清楚。
2.在答题卡上必须用黑色字迹的签字笔书写,字体工整清楚。
3.请按照题号顺序在各题目区域内作答,超出答题区域、在草稿纸和试卷上答题无效。
一、选择题(每题3分,共30分)
1. 如图,数轴所表示的不等式的解集是( )
A. 3<x
B. 3≤x
C. 3>x
D. 3≥x
2.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )
A .120°
B .90°
C .60°
D .30°
3.若等腰三角形的两边长是3cm 和6cm ,则周长为( )
A.9cm
B.12cm C .15cm D.12cm 或15cm
4.下列定理中,没有逆定理的是 ( )
A .内错角相等,两直线平行
B .直角三角形中两锐角互余
C .相反数的绝对值相等
D .等边对等角
5.三角形内有一点到三角形三边的距离相等,则这点一定是三角形的( )
A. 三条中线的交点;
B. 三边垂直平分线的交点;
C. 三条高的交点;
D. 三条角平分线的交点.
6. 如图,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )
A. 80°
B. 70°
C. 60°
D. 50°
7. 如图,已知AD//BC ,AE=CF ,∠AFD=∠CEB ,证明△ADF ≌△CBE 的依据是( )
A .SAS
B .AAS
C .ASA
D .HL
8.已知五个正数的和等于1,求证这五个正数中至少有一个大于或等于5
1,若用反证法来证明这个结论,可以假设 ( )
A .这五个正数全都小于51
B .这五个正数至少有一个小于5
1 第6题图 第7题图
C .这五个正数至多有一个小于51
D .这五个正数至多有一个大于或等于51 9.由下列条件不能判定△ABC 为直角三角形的是( )
A .∠A +∠
B =∠
C B .31=a ,41=b ,5
1=c C .(b +c )(b -c )=a 2 D. ∠A :∠B :∠C =1:2:3
10.已知关于x 的不等式3
122-≥+x a x 的解集是1-≤x ,则a 的值是( ) A.0 B.1 C.1- D.3
1-
二、填空题(每题3分,共15分)
11.设a >b ,用“<”,或“>”填空:
(1) a+3____b+3; (2) -2a____-2b ; (3)121--a _____12
1--b 12. 如图,若AB=AC=5,BC=6,AD ⊥BC ,则AD=__________
13. 如图,△ABC 中,∠C=90°,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则点D 到AB 的距离是_________cm .
14. 如图,在△ABC 中,MN 是BC 的垂直平分线,DC=6cm ,DB=10cm ,则△ACD 的周长为_________cm .
15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 边上一点,若AE=2,EM+CM 的最小值为__________.
三、解答题(第17题5分,其他每题6分,共41分)
16.(1)求下列不等式的正整数解....
: 329->+-x x
(2)解下列不等式,并把它的解集在数轴上表示出来:
3
121x x ≥+-
D C B A M N 第13题图
第12题图 第14题图 第15题图
17.如图,已知在两条公路OA,OB的附近有C,D两个超市,现准备在两条公路的交叉路口附近安装一个监控摄像头,要求摄像头P的位置到两个超市的距离相等,且到两条公路的距离也相等,请你找出摄像头P的位置。
18.已知∠1=∠2,∠BAC=90°,BC=DE, AC=AE,求证△ABC≌△ADE.
19.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,CD是△ABC的高,且AB=4,求CD的长?
20.已知:如图,D是△ABC的BC边的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF.
求证:△ABC是等腰三角形.
21.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,求证:AE=2CE.
22.在四边形ABCD中,AB=AD=8,CD=6,BC=10,∠A=60°,求∠ADC的度数.
四、解答题(每题7分,共14分)
23.在△ABC中,AC=BC,∠C=90°,点D在AD上,DE⊥AB,垂足分别为E,且CD=DE.
(1)求证:AD是∠BAC的平分线;
(2)已知CD=DE=2,求AB的长.
24.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B 向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)若设AP=x,则PC=__________,QC=__________;(用含x的代数式表示)
(2)当∠BQD=30°时,求AP的长;
(3)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE的长;如果变化请说明理由.。