2017全国名校高考专题训练12导数与极限(解答题1).doc
- 格式:doc
- 大小:810.50 KB
- 文档页数:26
2017-2021年高考真题 导数 解答题全集 (学生版+解析版)1.(2021•新高考Ⅱ)已知函数f (x )=(x ﹣1)e x ﹣ax 2+b .(Ⅰ)讨论f (x )的单调性;(Ⅱ)从下面两个条件中选一个,证明:f (x )恰有一个零点.①12<a ≤e 22,b >2a ; ②0<a <12,b ≤2a .2.(2021•北京)已知函数f (x )=3−2x x 2+a. (1)若a =0,求y =f (x )在(1,f (1))处的切线方程;(2)若函数f (x )在x =﹣1处取得极值,求f (x )的单调区间,以及最大值和最小值.3.(2021•天津)已知a >0,函数f (x )=ax ﹣xe x .(1)求曲线f (x )在点(0,f (0))处的切线方程;(2)证明函数f (x )存在唯一的极值点;(3)若∃a ,使得f (x )≤a +b 对任意的x ∈R 恒成立,求实数b 的取值范围.4.(2021•浙江)设a ,b 为实数,且a >1,函数f (x )=a x ﹣bx +e 2(x ∈R ).(Ⅰ)求函数f (x )的单调区间;(Ⅱ)若对任意b >2e 2,函数f (x )有两个不同的零点,求a 的取值范围;(Ⅲ)当a =e 时,证明:对任意b >e 4,函数f (x )有两个不同的零点x 1,x 2,满足x 2>blnb 2e 2x 1+e 2b . (注:e =2.71828⋯是自然对数的底数)5.(2021•甲卷)设函数f (x )=a 2x 2+ax ﹣3lnx +1,其中a >0.(1)讨论f (x )的单调性;(2)若y =f (x )的图像与x 轴没有公共点,求a 的取值范围.6.(2021•乙卷)已知函数f (x )=ln (a ﹣x ),已知x =0是函数y =xf (x )的极值点.(1)求a ;(2)设函数g (x )=x+f(x)xf(x).证明:g (x )<1.7.(2021•新高考Ⅰ)已知函数f (x )=x (1﹣lnx ).(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且blna ﹣alnb =a ﹣b ,证明:2<1a +1b <e .8.(2021•乙卷)已知函数f (x )=x 3﹣x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.9.(2021•甲卷)已知a >0且a ≠1,函数f (x )=x a a x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.10.(2020•新课标Ⅰ)已知函数f (x )=e x ﹣a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.11.(2020•天津)已知函数f (x )=x 3+klnx (k ∈R ),f ′(x )为f (x )的导函数.(Ⅰ)当k =6时,(ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程;(ⅱ)求函数g (x )=f (x )﹣f ′(x )+9x 的单调区间和极值;(Ⅱ)当k ≥﹣3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f′(x 1)+f′(x 2)2>f(x 1)−f(x 2)x 1−x 2.12.(2020•海南)已知函数f (x )=ae x ﹣1﹣lnx +lna .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.13.(2020•北京)已知函数f (x )=12﹣x 2.(Ⅰ)求曲线y =f (x )的斜率等于﹣2的切线方程;(Ⅱ)设曲线y =f (x )在点(t ,f (t ))处的切线与坐标轴围成的三角形的面积为S (t ),求S (t )的最小值.14.(2020•浙江)已知1<a ≤2,函数f (x )=e x ﹣x ﹣a ,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数y =f (x )在 (0,+∞)上有唯一零点;(Ⅱ)记x 0为函数y =f (x )在 (0,+∞)上的零点,证明:(ⅰ)√a −1≤x 0≤√2(a −1);(ⅱ)x 0f (e x 0)≥(e ﹣1)(a ﹣1)a .15.(2020•江苏)已知关于x 的函数y =f (x ),y =g (x )与h (x )=kx +b (k ,b ∈R )在区间D 上恒有f (x )≥h (x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=﹣x 2+2x ,D =(﹣∞,+∞),求h (x )的表达式;(2)若f (x )=x 2﹣x +1,g (x )=klnx ,h (x )=kx ﹣k ,D =(0,+∞),求k 的取值范围;(3)若f (x )=x 4﹣2x 2,g (x )=4x 2﹣8,h (x )=4(t 3﹣t )x ﹣3t 4+2t 2(0<|t |≤√2),D =[m ,n ]⊂[−√2,√2],求证:n ﹣m ≤√7.16.(2020•新课标Ⅲ)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点(12,f (12))处的切线与y 轴垂直.(1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.17.(2020•新课标Ⅱ)已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:|f (x )|≤3√38; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n 4n . 18.(2020•新课标Ⅱ)已知函数f (x )=2lnx +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0,讨论函数g (x )=f(x)−f(a)x−a的单调性. 19.(2020•新课标Ⅰ)已知函数f (x )=e x +ax 2﹣x .(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.20.(2020•新课标Ⅲ)已知函数f (x )=x 3﹣kx +k 2.(1)讨论f (x )的单调性;(2)若f (x )有三个零点,求k 的取值范围.21.(2019•全国)已知函数f (x )=√x (x 2﹣ax ).(1)当a=1时,求f(x)的单调区间;(2)若f(x)在区间[0,2]的最小值为−23,求a.22.(2019•新课标Ⅲ)已知函数f(x)=2x3﹣ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为﹣1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.23.(2019•新课标Ⅲ)已知函数f(x)=2x3﹣ax2+2.(1)讨论f(x)的单调性;(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M﹣m的取值范围.24.(2019•浙江)已知实数a≠0,设函数f(x)=alnx+√1+x,x>0.(Ⅰ)当a=−34时,求函数f(x)的单调区间;(Ⅱ)对任意x∈[1e2,+∞)均有f(x)≤√x2a,求a的取值范围.注:e=2.71828…为自然对数的底数.25.(2019•新课标Ⅱ)已知函数f(x)=(x﹣1)lnx﹣x﹣1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.26.(2019•江苏)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤4 27.27.(2019•天津)设函数f(x)=lnx﹣a(x﹣1)e x,其中a∈R.(Ⅰ)若a≤0,讨论f(x)的单调性;(Ⅱ)若0<a<1 e,(ⅰ)证明f(x)恰有两个零点;(ⅱ)设x0为f(x)的极值点,x1为f(x)的零点,且x1>x0,证明3x0﹣x1>2.28.(2019•天津)设函数f (x )=e x cos x ,g (x )为f (x )的导函数.(Ⅰ)求f (x )的单调区间;(Ⅱ)当x ∈[π4,π2]时,证明f (x )+g (x )(π2−x )≥0; (Ⅲ)设x n 为函数u (x )=f (x )﹣1在区间(2n π+π4,2n π+π2)内的零点,其中n ∈N ,证明2n π+π2−x n <e −2nπsinx 0−cosx 0. 29.(2019•新课标Ⅰ)已知函数f (x )=2sin x ﹣x cos x ﹣x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.30.(2019•新课标Ⅱ)已知函数f (x )=lnx −x+1x−1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =lnx 在点A (x 0,lnx 0)处的切线也是曲线y =e x 的切线.31.(2019•北京)已知函数f (x )=14x 3﹣x 2+x .(Ⅰ)求曲线y =f (x )的斜率为1的切线方程;(Ⅱ)当x ∈[﹣2,4]时,求证:x ﹣6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )﹣(x +a )|(a ∈R ),记F (x )在区间[﹣2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.32.(2019•新课标Ⅰ)已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间(﹣1,π2)存在唯一极大值点; (2)f (x )有且仅有2个零点.33.(2018•北京)设函数f (x )=[ax 2﹣(4a +1)x +4a +3]e x .(Ⅰ)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(Ⅱ)若f (x )在x =2处取得极小值,求a 的取值范围.34.(2018•北京)设函数f (x )=[ax 2﹣(3a +1)x +3a +2]e x .(Ⅰ)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求a ;(Ⅱ)若f (x )在x =1处取得极小值,求a 的取值范围.35.(2018•新课标Ⅲ)已知函数f (x )=(2+x +ax 2)ln (1+x )﹣2x .(1)若a =0,证明:当﹣1<x <0时,f (x )<0;当x >0时,f (x )>0;(2)若x=0是f(x)的极大值点,求a.36.(2018•新课标Ⅰ)已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥1e时,f(x)≥0.37.(2018•新课标Ⅲ)已知函数f(x)=ax2+x−1e x.(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.38.(2018•新课标Ⅱ)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.39.(2018•浙江)已知函数f(x)=√x−lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.40.(2018•天津)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=−2lnlna lna;(Ⅲ)证明当a≥e 1e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.41.(2018•江苏)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S 点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=be xx.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.42.(2018•新课标Ⅱ)已知函数f(x)=13x3﹣a(x2+x+1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.43.(2018•新课标Ⅰ)已知函数f (x )=1x −x +alnx .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f(x 1)−f(x 2)x 1−x 2<a ﹣2.44.(2017•新课标Ⅰ)已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.45.(2017•全国)已知函数f (x )=ax 3﹣3(a +1)x 2+12x .(1)当a >0时,求f (x )的极小值;(Ⅱ)当a ≤0时,讨论方程f (x )=0实根的个数.46.(2017•新课标Ⅰ)已知函数f (x )=e x (e x ﹣a )﹣a 2x .(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.47.(2017•天津)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3﹣3x 2﹣6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.(Ⅰ)求g (x )的单调区间;(Ⅱ)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m ﹣x 0)﹣f (m ),求证:h (m )h (x 0)<0;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且p q ∈[1,x 0)∪(x 0,2],满足|p q −x 0|≥1Aq 4. 48.(2017•新课标Ⅱ)设函数f (x )=(1﹣x 2)•e x .(1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求实数a 的取值范围.49.(2017•山东)已知函数f (x )=x 2+2cos x ,g (x )=e x (cos x ﹣sin x +2x ﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y =f (x )在点(π,f (π))处的切线方程;(Ⅱ)令h (x )=g (x )﹣af (x )(a ∈R ),讨论h (x )的单调性并判断有无极值,有极值时求出极值.50.(2017•天津)设a ,b ∈R ,|a |≤1.已知函数f (x )=x 3﹣6x 2﹣3a (a ﹣4)x +b ,g (x )=e x f (x ).(Ⅰ)求f (x )的单调区间;(Ⅱ)已知函数y =g (x )和y =e x 的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:f (x )在x =x 0处的导数等于0;(ii )若关于x 的不等式g (x )≤e x 在区间[x 0﹣1,x 0+1]上恒成立,求b 的取值范围.51.(2017•北京)已知函数f (x )=e x cos x ﹣x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )在区间[0,π2]上的最大值和最小值. 52.(2017•江苏)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(Ⅰ)求b 关于a 的函数关系式,并写出定义域;(Ⅱ)证明:b 2>3a ;(Ⅲ)若f (x ),f ′(x )这两个函数的所有极值之和不小于−72,求实数a 的取值范围.53.(2017•新课标Ⅱ)已知函数f (x )=ax 2﹣ax ﹣xlnx ,且f (x )≥0.(1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2. 54.(2017•浙江)已知函数f (x )=(x −√2x −1)e ﹣x (x ≥12). (1)求f (x )的导函数;(2)求f (x )在区间[12,+∞)上的取值范围. 55.(2017•新课标Ⅲ)已知函数f (x )=lnx +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明:f (x )≤−34a −2.56.(2017•新课标Ⅲ)已知函数f (x )=x ﹣1﹣alnx .(1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,(1+12)(1+122)…(1+12n )<m ,求m 的最小值.57.(2017•山东)已知函数f(x)=13x3−12ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cos x﹣sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.2017-2021年高考真题 导数 解答题全集(学生版+解析版)参考答案与试题解析1.(2021•新高考Ⅱ)已知函数f (x )=(x ﹣1)e x ﹣ax 2+b .(Ⅰ)讨论f (x )的单调性;(Ⅱ)从下面两个条件中选一个,证明:f (x )恰有一个零点.①12<a ≤e 22,b >2a ; ②0<a <12,b ≤2a .【解答】解:(Ⅰ)∵f (x )=(x ﹣1)e x ﹣ax 2+b ,f '(x )=x (e x ﹣2a ),①当a ≤0时,当x >0时,f '(x )>0,当x <0时,f '(x )<0,∴f (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,②当a >0时,令f '(x )=0,可得x =0或x =ln (2a ),(i )当0<a <12时,当x >0或x <ln (2a )时,f '(x )>0,当ln (2a )<x <0时,f '(x )<0,∴f (x )在(﹣∞,ln (2a )),(0,+∞)上单调递增,在(ln (2a ),0)上单调递减, (ii )a =12时,f '(x )=x (e x ﹣1)≥0 且等号不恒成立,∴f (x )在R 上单调递增,(iii )当a >12时,当x <0或x >ln (2a )时,f '(x )>0,当0<x <ln (2a )时,f '(x )<0,f (x )在(﹣∞,0),(ln (2a ),+∞)上单调递增,在(0,ln (2a ))上单调递减. 综上所述:当 a ⩽0 时,f (x ) 在 (﹣∞,0)上单调递减;在 (0,+∞)上 单调递增;当 0<a <12 时,f (x ) 在 (﹣∞,ln (2a )) 和 (0,+∞)上单调递增;在 (ln (2a ),0)上单调递减;当 a =12 时,f (x ) 在 R 上单调递增;当 a >12 时,f (x ) 在 (﹣∞,0)和 (ln (2a ),+∞) 上单调递增;在 (0,ln (2a )) 上单调递减.(Ⅱ)证明:若选①,由 (Ⅰ)知,f (x ) 在 (﹣∞,0)上单调递增,(0,ln (2a ))单调递减,(ln(2a),+∞)上f(x)单调递增.注意到f(−√ba)=(−√b a−1)e−√ba<0,f(0)=b−1>2a−1>0.∴f(x)在(−√ba,0]上有一个零点;f(ln(2a))=(ln(2a)﹣1)⋅2a﹣a⋅ln22a+b>2aln(2a)﹣2a﹣aln22a+2a=aln(2a)(2﹣ln(2a)),由12<a⩽e22得0<ln(2a)⩽2,∴aln(2a)(2﹣ln(2a))⩾0,∴f(ln(2a))>0,当x⩾0 时,f(x)⩾f(ln(2a))>0,此时f(x)无零点.综上:f(x)在R上仅有一个零点.若选②,则由(Ⅰ)知:f(x)在(﹣∞,ln(2a))上单调递增,在(ln(2a),0)上单调递减,在(0,+∞)上单调递增.f(ln(2a))=(ln(2a)﹣1)2a﹣aln22a+b⩽2aln(2a)﹣2a﹣aln22a+2a=aln(2a)(2﹣ln(2a)),∵0<a<12,∴ln(2a)<0,∴aln(2a)(2﹣ln(2a))<0,∴f(ln(2a))<0,∴当x⩽0 时,f(x)⩽f(ln(2a))<0,此时f(x)无零点.当x>0 时,f(x)单调递增,注意到f(0)=b﹣1⩽2a﹣1<0,取c=√2(1−b)+2,∵b<2a<1,∴c>√2>1,又易证e c>c+1,∴f(c)=(c−1)e c−ac2+b>(c−1)(c+1)−ac2+b=(1−a)c2+b−1>12c2+b−1=1−b+1+b−1=1>0,∴f(x)在(0,c)上有唯一零点,即f(x)在(0,+∞)上有唯一零点.综上:f(x)在R上有唯一零点.2.(2021•北京)已知函数f(x)=3−2x x2+a.(1)若a=0,求y=f(x)在(1,f(1))处的切线方程;(2)若函数f(x)在x=﹣1处取得极值,求f(x)的单调区间,以及最大值和最小值.【解答】解:(1)f(x)=3−2xx2的导数为f′(x)=−2x2−2x(3−2x)x4=2x−6x3,可得y=f(x)在(1,1)处的切线的斜率为﹣4,则y=f(x)在(1,f(1))处的切线方程为y﹣1=﹣4(x﹣1),即为y=﹣4x+5;(2)f(x)=3−2xx2+a的导数为f′(x)=−2(x2+a)−2x(3−2x)(x2+a)2,由题意可得f′(﹣1)=0,即8−2a(a+1)2=0,解得a=4,可得f(x)=3−2x x2+4,f′(x)=2(x+1)(x−4) (x2+4)2,当x>4或x<﹣1时,f′(x)>0,f(x)递增;当﹣1<x<4时,f′(x)<0,f(x)递减.函数y=f(x)的图象如右图,当x→﹣∞,y→0;x→+∞,y→0,则f(x)在x=﹣1处取得极大值1,且为最大值1;在x=4处取得极小值−14,且为最小值−1 4.所以f(x)的增区间为(﹣∞,﹣1),(4,+∞),减区间为(﹣1,4);f(x)的最大值为1,最小值为−1 4.3.(2021•天津)已知a>0,函数f(x)=ax﹣xe x.(1)求曲线f(x)在点(0,f(0))处的切线方程;(2)证明函数f(x)存在唯一的极值点;(3)若∃a,使得f(x)≤a+b对任意的x∈R恒成立,求实数b的取值范围.【解答】(1)解:因为f'(x)=a﹣(x+1)e x,所以f'(0)=a﹣1,而f(0)=0,所以在(0,f(0))处的切线方程为y=(a﹣1)x(a>0);(2)证明:令f'(x)=a﹣(x+1)e x=0,则a=(x+1)e x,令g(x)=(x+1)e x,则g'(x)=(x+2)e x,令g'(x)=0,解得x=﹣2,当x∈(﹣∞,﹣2)时,g'(x)<0,g(x)单调递减,当x∈(﹣2,+∞)时,g'(x)>0,g(x)单调递增,当x→﹣∞时,g(x)<0,当x→+∞时,g(x)>0,作出图象所以当a>0时,y=a与y=g(x)仅有一个交点,令g(m)=a,则m>﹣1,且f(m)=a﹣g(m)=0,当x∈(﹣∞,m)时,a>g(m),f'(x)>0,f(x)为增函数;当x∈(m,+∞)时,a<g(m),f'(x)<0,f(x)为减函数;所以x=m时f(x)的极大值点,故f(x)仅有一个极值点;(3)解:由(2)知f(x)max=f(m),此时a=(1+m)e m,(m>﹣1),所以{f(x)﹣a}max=f(m)﹣a=(1+m)e m﹣m﹣me m﹣(1+m)e m=(m2﹣m﹣1)e m (m>﹣1),令h(x)=(x2﹣x﹣1)e x(x>﹣1),若存在a,使f(x)≤a+b对任意的x∈R恒成立,则等价于存在x∈(﹣1,+∞),使得h(x)≤b,即b≥h(x)min,而h'(x)=(x2+x﹣2)e x=(x﹣1)(x+2)e x,(x>﹣1),当x∈(﹣1,1)时,h'(x)<0,h(x)为单调减函数,当x∈(1,+∞)时,h'(x)>0,h(x)为单调增函数,所以h(x)min=h(1)=﹣e,故b≥﹣e,所以实数b的取值范围[﹣e,+∞).4.(2021•浙江)设a,b为实数,且a>1,函数f(x)=a x﹣bx+e2(x∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围;(Ⅲ)当a=e时,证明:对任意b>e4,函数f(x)有两个不同的零点x1,x2,满足x2>blnb 2e2x1+e2b.(注:e=2.71828⋯是自然对数的底数)【解答】解:(Ⅰ)f′(x)=a x lna﹣b,①当b≤0时,由于a>1,则a x lna>0,故f′(x)>0,此时f(x)在R上单调递增;②当b>0时,令f′(x)>0,解得x>ln blnalna,令f′(x)<0,解得x<ln blnalna,∴此时f(x)在(−∞,ln blnalna)单调递减,在(ln blnalna,+∞)单调递增;综上,当b≤0时,f(x)的单调递增区间为(﹣∞,+∞);当b>0时,f(x)的单调递减区间为(−∞,ln blnalna),单调递增区间为(ln blnalna,+∞);(Ⅱ)注意到x→﹣∞时,f(x)→+∞,当x→+∞时,f(x)→+∞,由(Ⅰ)知,要使函数f(x)有两个不同的零点,只需f(x)min=f(ln blnalna)<0即可,∴a ln blnalna−b⋅ln blnalna+e2<0对任意b>2e2均成立,令t=ln blnalna,则at﹣bt+e2<0,即e tlna﹣bt+e2<0,即e lnblna−b⋅ln blnalna+e2<0,即blna−b⋅ln blnalna+e2<0,∴b−b⋅lnblna+e2lna<0对任意b>2e2均成立,记g(b)=b−b⋅lnblna+e2lna,b>2e2,则g′(b)=1−(ln b lna+b⋅lna b⋅1lna)=ln(lna)−lnb,令g′(b)=0,得b=lna,①当lna>2e2,即a>e2e2时,易知g(b)在(2e2,lna)单调递增,在(lna,+∞)单调递减,此时g(b)≤g(lna)=lna﹣lna•ln1+e2lna=lna•(e2+1)>0,不合题意;②当lna≤2e2,即1<a≤e2e2时,易知g(b)在(2e2,+∞)单调递减,此时g(b)<g(2e2)=2e2−2e2⋅ln 2e2lna+e2lna=2e2﹣2e2[ln(2e2)﹣ln(lna)]+e2lna,故只需2﹣2[ln2+2﹣ln(lna)]+lna≤0,即lna+2ln(lna)≤2+2ln2,则lna≤2,即a≤e2;综上,实数a的取值范围为(1,e2];(Ⅲ)证明:当a=e时,f(x)=e x﹣bx+e2,f′(x)=e x﹣b,令f′(x)=0,解得x=lnb >4,易知f(x)min =f(lnb)=e lnb −b ⋅lnb +e 2=b −blnb +e 2<b −4b +e 2=e 2﹣3b <e 2﹣3e 4=e 2(1﹣3e 2)<0,∴f (x )有两个零点,不妨设为x 1,x 2,且x 1<lnb <x 2,由f(x 2)=e x 2−bx 2+e 2=0,可得x 2=e x 2b +e 2b ,∴要证x 2>blnb 2e 2x 1+e 2b ,只需证e x 2b >blnb 2e 2x 1,只需证e x 2>b 2lnb 2e 2x 1, 而f(2e 2b )=e 2e 2b −2e 2+e 2=e 2e 2b −e 2<e 2e 2−e 2<0,则x 1<2e 2b , ∴要证e x 2>b 2lnb 2e 2x 1,只需证e x 2>blnb ,只需证x 2>ln (blnb ), 而f (ln (blnb ))=e ln(blnb )﹣bln (blnb )+e 2=blnb ﹣bln (blnb )+e 2<blnb ﹣bln (4b )+e 2=b ⋅ln 14+e 2=e 2−bln4<0,∴x 2>ln (blnb ),即得证.5.(2021•甲卷)设函数f (x )=a 2x 2+ax ﹣3lnx +1,其中a >0.(1)讨论f (x )的单调性;(2)若y =f (x )的图像与x 轴没有公共点,求a 的取值范围.【解答】解:(1)f ′(x )=2a 2x +a −3x =2a 2x 2+ax−3x =(2ax+3)(ax−1)x ,x >0, 因为a >0,所以−32a <0<1a ,所以在(0,1a )上,f ′(x )<0,f (x )单调递减, 在(1a ,+∞)上,f ′(x )>0,f (x )单调递增. 综上所述,f (x )在(0,1a )上单调递减,在(1a ,+∞)上f (x )单调递增. (2)由(1)可知,f (x )min =f (1a )=a 2×(1a )2+a ×1a −3ln 1a +1=3+3lna , 因为y =f (x )的图像与x 轴没有公共点,所以3+3lna >0,所以a >1e ,所以a 的取值范围为(1e,+∞).6.(2021•乙卷)已知函数f (x )=ln (a ﹣x ),已知x =0是函数y =xf (x )的极值点.(1)求a ;(2)设函数g (x )=x+f(x)xf(x).证明:g (x )<1. 【解答】(1)解:由题意,f (x )的定义域为(﹣∞,a ),令t (x )=xf (x ),则t (x )=xln (a ﹣x ),x ∈(﹣∞,a ),则t '(x )=ln (a ﹣x )+x •−1a−x =ln(a −x)+−x a−x ,因为x =0是函数y =xf (x )的极值点,则有t '(0)=0,即lna =0,所以a =1, 当a =1时,t '(x )=ln(1−x)+−x 1−x =ln(1−x)+−11−x +1,且t '(0)=0,因为t ''(x )=−11−x +−1(1−x)2=x−2(1−x)2<0,则t '(x )在(﹣∞,1)上单调递减,所以当x ∈(﹣∞,0)时,t '(x )>0,当x ∈(0,1)时,t '(x )<0,所以a =1时,x =0是函数y =xf (x )的一个极大值点.综上所述,a =1;(2)证明:由(1)可知,xf (x )=xln (1﹣x ),要证x+f(x)xf(x)<1,即需证明x+ln(1−x)xln(1−x)<1,因为当x ∈(﹣∞,0)时,xln (1﹣x )<0,当x ∈(0,1)时,xln (1﹣x )<0,所以需证明x +ln (1﹣x )>xln (1﹣x ),即x +(1﹣x )ln (1﹣x )>0,令h (x )=x +(1﹣x )ln (1﹣x ),则h '(x )=(1﹣x )⋅−11−x +1−ln(1−x),所以h '(0)=0,当x ∈(﹣∞,0)时,h '(x )<0,当x ∈(0,1)时,h '(x )>0,所以x =0为h (x )的极小值点,所以h (x )>h (0)=0,即x +ln (1﹣x )>xln (1﹣x ),故x+ln(1−x)xln(1−x)<1, 所以x+f(x)xf(x)<1.7.(2021•新高考Ⅰ)已知函数f(x)=x(1﹣lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna﹣alnb=a﹣b,证明:2<1a+1b<e.【解答】(1)解:由函数的解析式可得f'(x)=1﹣lnx﹣1=﹣lnx,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由blna﹣alnb=a﹣b,得−1aln1a+1b ln1b=1b−1a,即1a (1−ln1a)=1b(1−ln1b),由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令x1=1a,x2=1b,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2﹣x1>1,先证2<x1+x2,即证x2>2﹣x1,即证f(x2)=f(x1)<f(2﹣x1),令h(x)=f(x)﹣f(2﹣x),则h′(x)=f′(x)+f′(2﹣x)=﹣lnx﹣ln(2﹣x)=﹣ln[x(2﹣x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2﹣x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e﹣x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e﹣x1),令φ(x)=f(x)﹣f(e﹣x),x∈(0,1),则φ'(x)=﹣ln[x(e﹣x)],令φ′(x0)=0,x∈(0,x0),φ'(x)>0,φ(x)单调递增,x∈(x0,1),φ'(x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故limx→0φ(x)=0,φ(1)=f(1)﹣f(e﹣1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1﹣lnx1)=x2(1﹣lnx2),又x1∈(0,1),故1﹣lnx1>1,x1(1﹣lnx1)>x1,故x1+x2<x1(1﹣lnx1)+x2=x2(1﹣lnx2)+x2,x2∈(1,e),令g(x)=x(1﹣lnx)+x,g′(x)=1﹣lnx,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1﹣lnx2)+x2<e,所以x1+x2<e,得证,则2<1a+1b<e.8.(2021•乙卷)已知函数f(x)=x3﹣x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.【解答】解:(1)f′(x)=3x2﹣2x+a,△=4﹣12a,①当△≤0,即a≥13时,由于f′(x)的图象是开口向上的抛物线,故此时f′(x)≥0,则f(x)在R上单调递增;②当△>0,即a<13时,令f′(x)=0,解得x1=1−√1−3a3,x2=1+√1−3a3,令f′(x)>0,解得x<x1或x>x2,令f′(x)<0,解得x1<x<x2,∴f(x)在(﹣∞,x1),(x2,+∞)单调递增,在(x1,x2)单调递减;综上,当a≥13时,f(x)在R上单调递增;当a<13时,f(x)在(−∞,1−√1−3a3),(1+√1−3a3,+∞)单调递增,在(1−√1−3a3,1+√1−3a3)单调递减.(2)设曲线y=f(x)过坐标原点的切线为l,切点为(x0,x03−x02+ax0+1),f′(x0)= 3x02−2x0+a,则切线方程为y−(x03−x02+ax0+1)=(3x02−2x0+a)(x−x0),将原点代入切线方程有,2x 03−x 02−1=0,解得x 0=1,∴切线方程为y =(a +1)x ,令x 3﹣x 2+ax +1=(a +1)x ,即x 3﹣x 2﹣x +1=0,解得x =1或x =﹣1,∴曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标为(1,a +1)和(﹣1,﹣a ﹣1).9.(2021•甲卷)已知a >0且a ≠1,函数f (x )=x a a x (x >0). (1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.【解答】解:(1)a =2时,f (x )=x 22x , f ′(x )=2x⋅2x −2x ln2⋅x 2(2x )2=x(2−xln2)2x =ln2⋅x(2ln2−x)2x , 当x ∈(0,2ln2)时,f ′(x )>0,当x ∈(2ln2,+∞)时,f ′(x )<0, 故f (x )在(0,2ln2)上单调递增,在(2ln2,+∞)上单调递减.(2)由题知f (x )=1在(0,+∞)有两个不等实根,f (x )=1⇔x a =a x ⇔alnx =xlna ⇔lnx x =lna a , 令g (x )=lnx x ,g ′(x )=1−lnx x 2,g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,又lim x→0g (x )=﹣∞,g (e )=1e ,g (1)=0,lim x→+∞g (x )=0, 作出g (x )的图象,如图所示:由图象可得0<lna a <1e ,解得a >1且a ≠e ,即a 的取值范围是(1,e )∪(e ,+∞).10.(2020•新课标Ⅰ)已知函数f (x )=e x ﹣a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解答】解:由题意,f (x )的定义域为(﹣∞,+∞),且f ′(x )=e x ﹣a .(1)当a =1时,f ′(x )=e x ﹣1,令f ′(x )=0,解得x =0.∴当x ∈(﹣∞,0)时,f ′(x )<0,f (x )单调递减,当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.∴f (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增;(2)当a ≤0时,f ′(x )=e x ﹣a >0恒成立,f (x )在(﹣∞,+∞)上单调递增,不合题意;当a >0时,令f ′(x )=0,解得x =lna ,当x ∈(﹣∞,lna )时,f ′(x )<0,f (x )单调递减,当x ∈(lna ,+∞)时,f ′(x )>0,f (x )单调递增.∴f (x )的极小值也是最小值为f (lna )=a ﹣a (lna +2)=﹣a (1+lna ).又当x →﹣∞时,f (x )→+∞,当x →+∞时,f (x )→+∞.∴要使f (x )有两个零点,只要f (lna )<0即可,则1+lna >0,可得a >1e .综上,若f (x )有两个零点,则a 的取值范围是(1e ,+∞). 11.(2020•天津)已知函数f (x )=x 3+klnx (k ∈R ),f ′(x )为f (x )的导函数.(Ⅰ)当k =6时,(ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程;(ⅱ)求函数g (x )=f (x )﹣f ′(x )+9x 的单调区间和极值;(Ⅱ)当k ≥﹣3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f′(x 1)+f′(x 2)2>f(x 1)−f(x 2)x 1−x 2.【解答】解:(I )(i )当k =6时,f (x )=x 3+6lnx ,故f ′(x )=3x 2+6x,∴f ′(1)=9,∵f (1)=1,∴曲线y =f (x )在点(1,f (1))处的切线方程为y ﹣1=9(x ﹣1),即9x ﹣y ﹣8=0.(ii )g (x )=f (x )﹣f ′(x )+9x =x 3+6lnx ﹣3x 2+3x,x >0,∴g ′(x )=3x 2﹣6x +6x −3x 2=3(x−1)3(x+1)x 2,令g ′(x )=0,解得x =1, 当0<x <1,g ′(x )<0, 当x >1,g ′(x )>0,∴函数g (x )在(0,1)上单调递减,在(1,+∞)上单调递增, x =1是极小值点,极小值为g (1)=1,无极大值 证明:(Ⅱ)由f (x )=x 3+klnx ,则f ′(x )=3x 2+kx, 对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x 1x 2=t ,t >1,则(x 1﹣x 2)[f ′(x 1)+f ′(x 2)]﹣2[f (x 1)﹣f (x 2)]=(x 1﹣x 2)(3x 12+kx 1+3x 22+kx 2)﹣2(x 13﹣x 23+klnx 1x 2),=x 13﹣x 23﹣3x 12x 2+3x 1x 22+k (x 1x 2−x 2x 1)﹣2klnx 1x 2,=x 23(t 3﹣3t 2+3t ﹣1)+k (t −1t−2lnt ),① 令h (x )=x −1x −2lnx ,x >1, 当x >1时,h ′(x )=1+1x2−2x =(1−1x )2>0, ∴h (x )在(1,+∞)单调递增,∴当t >1,h (t )>h (1)=0,即t −1t −2lnt >0, ∵x 2≥1,t 3﹣3t 2+3t ﹣1=(t ﹣1)3>0,k ≥﹣3,∴x 23(t 3﹣3t 2+3t ﹣1)+k (t −1t −2lnt )≥t 3﹣3t 2+3t ﹣1﹣3(t −1t −2lnt )=t 3﹣3t 2+6lnt +3t −1,②,由(Ⅰ)(ii )可知当t ≥1时,g (t )>g (1) 即t 3﹣3t 2+6lnt +3t >1,③,由①②③可得(x 1﹣x 2)[f ′(x 1)+f ′(x 2)]﹣2[f (x 1)﹣f (x 2)]>0, ∴当k ≥﹣3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f′(x 1)+f′(x 2)2>f(x 1)−f(x 2)x 1−x 2.12.(2020•海南)已知函数f (x )=ae x ﹣1﹣lnx +lna .(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.【解答】解:(1)当a=e时,f(x)=e x﹣lnx+1,∴f′(x)=e x−1 x,∴f′(1)=e﹣1,∵f(1)=e+1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(e+1)=(e﹣1)(x﹣1),当x=0时,y=2,当y=0时,x=−2e−1,∴曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积S=12×2×2e−1=2e−1.(2)方法一:由f(x)≥1,可得ae x﹣1﹣lnx+lna≥1,即e x﹣1+lna﹣lnx+lna≥1,即e x﹣1+lna+lna+x﹣1≥lnx+x=e lnx+lnx,令g(t)=e t+t,则g′(t)=e t+1>0,∴g(t)在R上单调递增,∵g(lna+x﹣1)≥g(lnx)∴lna+x﹣1≥lnx,即lna≥lnx﹣x+1,令h(x)=lnx﹣x+1,∴h′(x)=1x−1=1−x x,当0<x<1时,h′(x)>0,函数h(x)单调递增,当x>1时,h′(x)<0,函数h(x)单调递减,∴h(x)≤h(1)=0,∴lna≥0,∴a≥1,故a的范围为[1,+∞).方法二:由f(x)≥1可得ae x﹣1﹣lnx+lna≥1,x>0,a>0,即ae x﹣1﹣1≥lnx﹣lna,设g(x)=e x﹣x﹣1,∴g′(x)=e x﹣1>0恒成立,∴g(x)在(0,+∞)单调递增,∴g(x)>g(0)=1﹣0﹣1=0,∴e x﹣x﹣1>0,即e x>x+1,再设h(x)=x﹣1﹣lnx,∴h′(x)=1−1x=x−1x,当0<x<1时,h′(x)<0,函数h(x)单调递减,当x>1时,h′(x)>0,函数h(x)单调递增,∴h(x)≥h(1)=0,∴x﹣1﹣lnx≥0,即x﹣1≥lnx∴e x﹣1≥x,则ae x﹣1≥ax,此时只需要证ax≥x﹣lna,即证x(a﹣1)≥﹣lna,当a≥1时,∴x(a﹣1)>0>﹣lna恒成立,当0<a<1时,x(a﹣1)<0<﹣lna,此时x(a﹣1)≥﹣lna不成立,综上所述a的取值范围为[1,+∞).方法三:由题意可得x∈(0,+∞),a∈(0,+∞),∴f′(x)=ae x﹣1−1 x,易知f′(x)在(0,+∞)上为增函数,①当0<a<1时,f′(1)=a﹣1<0,f′(1a )=a e1a−1−a=a(e1a−1−1)>0,∴存在x0∈(1,1a)使得f′(x0)=0,当x∈(1,x0)时,f′(x)<0,函数f(x)单调递减,∴f(x)<f(1)=a+lna<a<1,不满足题意,②当a≥1时,e x﹣1>0,lna>0,∴f(x)≥e x﹣1﹣lnx,令g(x)=e x﹣1﹣lnx,∴g′(x)=e x﹣1−1 x,易知g′(x)在(0,+∞)上为增函数,∵g′(1)=0,∴当x∈(0,1)时,g′(x)<0,函数g(x)单调递减,当x∈(1,+∞)时,g′(x)>0,函数g(x)单调递增,∴g(x)≥g(1)=1,即f(x)≥1,综上所述a的取值范围为[1,+∞).方法四:∵f(x)=ae x﹣1﹣lnx+lna,x>0,a>0,∴f′(x)=ae x﹣1−1x,易知f′(x)在(0,+∞)上为增函数,∵y=ae x﹣1在(0,+∞)上为增函数,y=1x在0,+∞)上为减函数,∴y=ae x﹣1与y=1x在0,+∞)上有交点,∴存在x0∈(0,+∞),使得f′(x0)=a e x0−1−1x0=0,则a e x0−1=1x0,则lna+x0﹣1=﹣lnx0,即lna=1﹣x0﹣lnx0,当x∈(0,x0)时,f′(x)<0,函数f(x)单调递减,当x∈(x0,+∞)时,f′(x)>0,函数f(x)单调递增,∴f(x)≥f(x0)=a e x0−1−lnx0+lna=1x0−lnx0+1﹣x0﹣lnx0=1x−2lnx0+1﹣x0≥1∴1x0−2lnx0﹣x0≥0设g(x)=1x−2lnx﹣x,易知函数g(x)在(0,+∞)上单调递减,且g(1)=1﹣0﹣1=0,∴当x∈(0,1]时,g(x)≥0,∴x0∈(0,1]时,1x0−2lnx0﹣x0≥0,设h(x)=1﹣x﹣lnx,x∈(0,1],∴h′(x)=﹣1−1x<0恒成立,∴h(x)在(0,1]上单调递减,∴h(x)≥h(1)=1﹣1﹣ln1=0,当x→0时,h(x)→+∞,∴lna≥0=ln1,∴a≥1.方法五:f(x)≥1等价于ae x﹣1﹣lnx+lna≥1,该不等式恒成立.当x=1时,有a+lna≥1,其中a>0.设g(a)=a+lna﹣1,则g'(a)=1+1a>0,则g(a)单调递增,且g(1)=0.所以若a+lna≥1成立,则必有a≥1.∴下面证明当a≥1时,f(x)≥1成立.设h(x)=e x﹣x﹣1,∴h′(x)=e x﹣1,∴h(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增,∴h(x)≥h(0)=1﹣0﹣1=0,∴e x﹣x﹣1≥0,即e x≥x+1,把x换成x﹣1得到e x﹣1≥x,∵x﹣1≥lnx,∴x﹣lnx≥1.∴f(x)=ae x﹣1﹣lnx+lna≥e x﹣1﹣lnx≥x﹣lnx≥1,当x=1时等号成立.综上,a≥1.13.(2020•北京)已知函数f(x)=12﹣x2.(Ⅰ)求曲线y=f(x)的斜率等于﹣2的切线方程;(Ⅱ)设曲线y=f(x)在点(t,f(t))处的切线与坐标轴围成的三角形的面积为S(t),求S(t)的最小值.【解答】解:(Ⅰ)f(x)=12﹣x2的导数f′(x)=﹣2x,令切点为(m,n),可得切线的斜率为﹣2m=﹣2,∴m=1,∴n=12﹣1=11,∴切线的方程为y=﹣2x+13;(Ⅱ)曲线y=f(x)在点(t,f(t))处的切线的斜率为k=﹣2t,切线方程为y﹣(12﹣t2)=﹣2t(x﹣t),令x=0,可得y=12+t2,令y=0,可得x=12t+6t,∴S(t)=12•|12t+6t|•(12+t2),由S(﹣t)=S(t),可知S(t)为偶函数,不妨设t>0,则S(t)=14(t+12t)(12+t2),∴S′(t)=14(3t2+24−144t2)=34•(t2−4)(t2+12)t2,由S′(t)=0,得t=2,当t>2时,S′(t)>0,S(t)递增;当0<t<2时,S′(t)<0,S(t)递减,则S(t)在t=2和﹣2处取得极小值,且为最小值32,所以S(t)的最小值为32.14.(2020•浙江)已知1<a≤2,函数f(x)=e x﹣x﹣a,其中e=2.71828…为自然对数的底数.(Ⅰ)证明:函数y=f(x)在(0,+∞)上有唯一零点;(Ⅱ)记x0为函数y=f(x)在(0,+∞)上的零点,证明:(ⅰ)√a−1≤x0≤√2(a−1);(ⅱ)x0f(e x0)≥(e﹣1)(a﹣1)a.【解答】证明:(Ⅰ)∵f(x)=e x﹣x﹣a=0(x>0),∴f′(x)=e x﹣1>0恒成立,∴f(x)在(0,+∞)上单调递增,∵1<a≤2,∴f(2)=e2﹣2﹣a≥e2﹣4>0,又f(0)=1﹣a<0,∴函数y=f(x)在(0,+∞)上有唯一零点.(Ⅱ)(i)f(x0)=0,∴e x0−x0﹣a=0,∴√a−1≤x0≤√2(a−1),∴e x0−x0−1≤x02≤2(e x0−x0−1),令g(x)=e x﹣x﹣1﹣x2(0<x<2),h(x)=e x﹣x﹣1−x22,(0<x<2),一方面,h′(x)=e x﹣1﹣x=h1(x),ℎ1′(x)=e x−1>0,∴h′(x)>h′(0)=0,∴h(x)在(0,2)单调递增,∴h(x)>h(0)=0,∴e x﹣x﹣1−x22>0,2(ex﹣x﹣1)>x2,另一方面,1<a≤2,∴a﹣1≤1,∴当x0≥1时,√a−1≤x0成立,∴只需证明当0<x<1时,g(x)=e x﹣x﹣1﹣x2≤0,∵g′(x)=e x﹣1﹣2x=g1(x),g1'(x)=e x﹣2=0,∴x=ln2,当x∈(0,ln2)时,g1'(x)<0,当x∈(ln2,1)时,g1'(x)>0,∴g′(x)<max{g′(0),g′(1)},g′(0)=0,g′(1)=e﹣3<0,∴g′(x)<0,∴g(x)在(0,1)单调递减,∴g(x)<g(0)=0,∴e x﹣x﹣1<x2,综上,e x0−x0−1≤x02≤2(e x0−x0−1),∴√a−1≤x0≤√2(a−1).(ii)要证明x0f(e x0)≥(e﹣1)(a﹣1)a,只需证x0f(x0+a)≥(e﹣1)(a﹣1)a,由(i)得只需证e√a−1+a−√a−1−2a≥(e﹣1)a√a−1,∵e x≥1+x+12x2,∴只需证1+12(√a−1+a)2﹣a≥(e﹣1)a√a−1,只需证a2−(√a−1)2−2(e﹣2)a√a−1≥0,即证√a−1−√a−1a≥2(e﹣2),∵√a−1=√a−1+√a−1∈[2,+∞),∴√a−1−√a−1a≥2−12=32≥2(e−2),∴x0f(e x0)≥(e﹣1)(a﹣1)a.15.(2020•江苏)已知关于x的函数y=f(x),y=g(x)与h(x)=kx+b(k,b∈R)在区间D上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x2+2x,g(x)=﹣x2+2x,D=(﹣∞,+∞),求h(x)的表达式;(2)若f(x)=x2﹣x+1,g(x)=klnx,h(x)=kx﹣k,D=(0,+∞),求k的取值范围;(3)若f(x)=x4﹣2x2,g(x)=4x2﹣8,h(x)=4(t3﹣t)x﹣3t4+2t2(0<|t|≤√2),D=[m,n]⊂[−√2,√2],求证:n﹣m≤√7.【解答】解:(1)由f(x)=g(x)得x=0,又f′(x)=2x+2,g′(x)=﹣2x+2,所以f′(0)=g′(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x,经检验:h(x)=2x,符合任意,(2)h(x)﹣g(x)=k(x﹣1﹣lnx),设φ(x)=x﹣1﹣lnx,设φ′(x)=1−1x=x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当h(x)﹣g(x)≥0时,k≥0,令p(x)=f(x)﹣h(x)所以p(x)=x2﹣x+1﹣(kx﹣k)=x2﹣(k+1)x+(1+k)≥0,得,当x=k+1≤0时,即k≤﹣1时,f(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥﹣1,所以k=﹣1,当k+1>0时,即k>﹣1时,△≤0,即(k+1)2﹣4(k+1)≤0,解得﹣1<k≤3,综上,k∈[0,3].(3)①当1≤t≤√2时,由g(x)≤h(x),得4x2﹣8≤4(t3﹣t)x﹣3t4+2t2,整理得x2﹣(t3﹣t)x+3t4−2t2−84≤0,(*)令△=(t3﹣t)2﹣(3t4﹣2t2﹣8),则△=t6﹣5t4+3t2+8,记φ(t)=t6﹣5t4+3t2+8(1≤t≤√2),则φ′(t)=6t5﹣20t3+6t=2t(3t2﹣1)(t2﹣3)<0,恒成立,所以φ(t)在[1,√2]上是减函数,则φ(√2)≤φ(t)≤φ(1),即2≤φ(t)≤7,所以不等式(*)有解,设解为x1≤x≤x2,因此n﹣m≤x2﹣x1=√△≤√7.②当0<t<1时,f(﹣1)﹣h(﹣1)=3t4+4t3﹣2t2﹣4t﹣1,设v (t )=3t 4+4t 3﹣2t 2﹣4t ﹣1,则v ′(t )=12t 3+12t 2﹣4t ﹣4=4(t +1)(3t 2﹣1), 令v ′(t )=0,得t =√33, 当t ∈(0,√33)时,v ′(t )<0,v (t )是减函数, 当t ∈(√33,1)时,v ′(t )>0,v (t )是增函数, v (0)=﹣1,v (1)=0, 则当0<t <1时,v (t )<0,则f (﹣1)﹣h (﹣1)<0,因此﹣1∉(m ,n ), 因为[m ,n ]⊆[−√2,√2],所以n ﹣m ≤√2+1<√7,③当−√2≤t <0时,因为f (x ),g (x )为偶函数,因此n ﹣m ≤√7也成立, 综上所述,n ﹣m ≤√7.16.(2020•新课标Ⅲ)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点(12,f (12))处的切线与y 轴垂直. (1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.【解答】(1)解:由f (x )=x 3+bx +c ,得f ′(x )=3x 2+b , ∴f ′(12)=3×(12)2+b =0,即b =−34;(2)证明:法一、设x 0为f (x )的一个零点,根据题意,f(x 0)=x 03−34x 0+c =0,且|x 0|≤1,则c =−x 03+34x 0,且|x 0|≤1, 令c (x )=−x 3+34x (﹣1≤x ≤1), ∴c ′(x )=−3x 2+34=−3(x +12)(x −12), 当x ∈(﹣1,−12)∪(12,1)时,c ′(x )<0,当x ∈(−12,12)时,c ′(x )>0 可知c (x )在(﹣1,−12),(12,1)上单调递减,在(−12,12)上单调递增.又c (﹣1)=14,c (1)=−14,c (−12)=−14,c (12)=14,∴−14≤c ≤14.设x 1 为f (x )的零点,则必有f(x 1)=x 13−34x 1+c =0, 即−14≤c =−x 13+34x 1≤14,∴{4x 13−3x 1−1=(x 1−1)(2x 1+1)2≤04x 13−3x 1+1=(x 1+1)(2x 1−1)2≥0,得﹣1≤x 1≤1, 即|x 1|≤1.∴f (x )所有零点的绝对值都不大于1. 法二、由(1)可得,f (x )=x 3−34x +c . f ′(x )=3x 2−34=3(x +12)(x −12), 可得当x ∈(﹣∞,−12)∪(12,+∞)时,f ′(x )>0,当x ∈(−12,12)时,f ′(x )<0,则f (x )在(﹣∞,−12),(12,+∞)上单调递增,在(−12,12)上单调递减.且f (﹣1)=c −14,f (−12)=c +14,f (12)=c −14,f (1)=x +14,若f (x )的所有零点中存在一个绝对值大于1的零点x 0,则f (﹣1)>0或f (1)<0. 即c >14或c <−14.当c >14时,f (﹣1)=c −14>0,f (−12)=c +14>0,f (12)=c −14>0,f (1)=c +14>0,又f (﹣4c )=﹣64c 3+3c +c =4c (1﹣16c 2)<0,由零点存在性定理可知,f (x )在(﹣4c ,﹣1)上存在唯一一个零点. 即f (x )在(﹣∞,﹣1)上存在唯一零点,在(1,+∞)上不存在零点. 此时f (x )不存在绝对值不大于1的零点,与题设矛盾;当c <−14时,f (﹣1)=c −14<0,f (−12)=c +14<0,f (12)=c −14<0,f (1)=c +14<0,又f (﹣4c )=64c 3+3c +c =4c (1﹣16c 2)>0,由零点存在性定理可知,f (x )在(1,﹣4c )上存在唯一一个零点. 即f (x )在(1,+∞)上存在唯一零点,在(﹣∞,1)上不存在零点.。
全国名校高考专题训练12导数与极限(解答题3)51、已知函数)0(1)1ln()(≥-+-=x x e x f x,(1)求函数)(x f 的最小值; (2)若x y <≤0,求证:)1ln()1ln(1+-+>--y x e yx .解:(1))(x f '=11+-x e x ,………………2分 当0≥x 时,111,1≤+≥x e x ,所以当0≥x 时,)(x f '0≥,则函数)(x f 在[)∞+,0上单调递增,所以函数)(x f 的最小值0)0(=f ;…………………………5分(2)由(1)知,当0>x 时,0)(>x f ,∵y x >, ∴01)1ln()(>-+--=--y x ey x f yx ,)1ln(1+->--y x e y x ①……7分∵011)(ln)]1ln()1[ln()1ln(≥+++-=+-+-+-x x y x y y x y x ,∴)1ln()1ln()1ln(+-+≥+-y x y x ②………………………10分 由①②得)1ln()1ln(1+-+>--y x eyx …………………………12分52、(某某省某某市2008年上期末质量评估)已知函数f (x)=x 2+2ax ,g(x)=3a 2lnx +b,其中a>0.设两曲线y =f (x),y =g(x)有公共点,且在公共点处的切线相同. (Ⅰ)用a 表示b ;(Ⅱ)求证:f (x)≥g(x),(x>0).53、(某某省某某九中2008年第三次模拟考试)已知函数x x a x x f --+=2)ln()(在0=x 处取得极值,(1)某某数a 的值;(2)若关于x 的方程b x x f +-=25)(在区间]2,0[上恰有两个不同的实数根,某某数b 的取值X 围.解:①11)(.)ln()(2--+='∴--+=x ax x f x x a x x f 又1.011,0)0(=∴=-='a a f 即…………4分 由023)ln(25)(2=-+-++-=b x x a x b x x f 得设23211)(,23)1ln()(2+-+='-+-+=x x x g b x x x x g 则即)1(2)1)(54()(+-+-='x x x x g(](]⎪⎪⎩⎪⎪⎨⎧-≥≤-+-+=+<>-+-+=≥≤-=∴=+-=<'∈∴>'∈13ln 034)21ln()2(212ln 0231)21ln()1(00)0(2,00)(2,025)(8.)2,1()(,0)()2,1()1,0()(0)()1,0(b b g b b g b b g x g b x x f x g x g x x g x g x 恰有两个不同实数根在得于恰有两个不同实数根等在分上单调递减在当上单调递增在当212ln 13ln +<≤-b …………12分 54、(某某省某某三中2008年高三上期末)已知函数22),1(log 2,2)(232=⎪⎩⎪⎨⎧≥-<+=-x x x x a e x f x 在处连续。
2012--2017全国卷高考真题导数大题1.(2012新课标全国卷1文21,本小题满分12分)设函数()2xf x e ax =--. (Ⅰ)求()f x 的单调区间;(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值. 解:(Ⅰ)()f x 定义域为(,)-∞+∞,()xf x e a '=-,若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增;若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,)0f x '>(, 所以()f x 在(,ln )a -∞,单调递减,在(ln ,)a +∞单调递增; (Ⅱ)由于1a =,所以()()1()(1)1xx k f x x x k e x '-++=--++, 故当0x >时,()()10x k f x x '-++>等价于1(0)1x x k x x e +<+>-,① 令1()1x x g x x e +=+-,则221(2)()1(1)(1)x x x xx xe e e x g x e e ----'=+=--, 由(Ⅰ)知,函数()2xh x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x 在(0,)+∞存在唯一零点,故()g x '在(0,)+∞存在唯一零点, 设此零点为α,则(1,2)α∈,当(0,)x α∈时,()0g x '<;当(,)x α∈+∞时,)0g x '>(, 所以()g x 在(0,)+∞的最小值是()g α,又()0g α'=,可得2e αα=+,所以()1(2,3)g αα=+∈, 由于①等价于()k g α<,故整数k 的最大值为2. 2.(2013新课标全国卷1文21,本小题满分12分)已知函数2()()4xf x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+.(Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值. 解:(Ⅰ)2()()24f x e ax a b x '=++--,由此得(0)4f =,1(0)4f =,故4b =,8a b += 从而4a =,4b =;(Ⅱ)由(Ⅰ)知,2)4(1)4x f x e x x x =+--(, 1()4(2)244(2)().2x x f x e x x x e '=+--=+-令()0f x '=得,ln 2x =或2x =-, 从而当(,2)(ln 2,)x ∈-∞--+∞时,()0f x '>;当(2,ln 2)x ∈--时,)0f x '<(, 故()f x 在(,2)-∞-,(ln 2,)-+∞单调递增,在(2,ln 2)--单调递减, 当2x =-时,函数()f x 取得极大值,极大值是2(2)4(1)f e --=-. 3.(2013新课标Ⅱ卷文21,本小题满分12分)己知函数2()xf x x e -=. (Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 解:(Ⅰ)()f x 定义域是(,)-∞+∞,()(2)xf x e x x -'=--,①当(,0)x ∈-∞或(2,)x ∈+∞时,)0f x '<(;当(0,2)x ∈时,()0f x '>, 所以故()f x 在(,0)-∞,(2,)+∞单调递减,在(0,2)单调递增, 故当0x =时,()f x 取得极小值,极小值是(0)0f =, 当2x =时,()f x 取得极大值,极大值是2(2)2f e -=, (Ⅱ)设切点是(,())t f t ,则l 的方程是()()()y f t x t f t '=-+, 所以l 在x 轴上截距是()2()23()22f t t m t t t t f t t t =-=+=-++'--,由已知和①得,(,0)t ∈-∞(2,)+∞,令2()h x x x=+,则当(0,)x ∈+∞时,()h x 的取值范围为2,)+∞, 当(,2)x ∈-∞-时,()h x 的取值范围为(,3)-∞-, 所以(,0)t ∈-∞(2,)+∞时,()m t 的取值范围为(,3)-∞-[22,)+∞,综上,l 在x 轴上截距的取值范围(,3)-∞-[22,)+∞.4.(2014新课标全国卷1文21,本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围. 解:(Ⅰ)'()(1)af x a x b x=+--,由题设知(1)0f '=,解得1b =. (Ⅱ)()f x 的定义域为(0,)+∞,由(Ⅰ)知,21()ln 2a f x a x x x -=+-,1()(1)1()(1)1a a af x a x x x x x a-'=+--=---(Ⅰ)若12a ≤,则11aa≤-,当(1,)x ∈+∞时,()0f x '>,()f x 在(1,)+∞单调递增,所以,存在01x ≥,使得0()1a f x a <-的充要条件为(1)1af a <-,即1121a a a --<-,解得2121a -<<. (Ⅱ)若112a <<,则11a a >-,故当(1,)1ax a ∈-时,()0f x '<;当(,)1a x a ∈+∞-时,()0f x '>,()f x 在(1,)1a a -单调递减,在(,)1aa+∞-单调递增.所以,存在01x ≥,使得0()1a f x a <-的充要条件为()11a af a a <--,而2()ln 112(1)11a a a a af a a a a a a =++>-----,所以不合题意. (ⅡⅠ)若1a >,则11(1)1221a a af a ---=-=<-. 综上,a 的取值范围是(221)(1,)+∞.5.(2014新课标Ⅱ卷文21,本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线和x 轴交点的横坐标为2-.(Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =和直线2y kx =-只有一个交点. 解:(Ⅰ)26()3f x x x a =-'+,(0)f a '=,曲线()y f x =在点(0,2)处的切线方程为2y ax =+ 由题设22a-=-,所以1a =. (Ⅱ)由(Ⅰ)知,1a =,故32()32f x x x x =-++ 设32()()23(1)4g x f x kx x x k x =-+=-+-+, 由题设知10k ->,当0x ≤时,2()26(1)0g x x x k '=-+->,()g x 单调递增,(1)10g k -=-<,(0)40g =>,所以()0g x =在(,0]-∞有唯一实根,当0x >时,因为(1)0k x ->,所以32()34g x x x >-+, 令32()34h x x x =-+,()3(2)h x x x '=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=, 所以()0g x =在(0,)+∞没有实根,综上()0g x =在R 有唯一实根,即曲线()y f x =和直线2y kx =-只有一个交点. 6. (2015新课标全国卷1文21,本小题满分12分)设函数()2ln xf x ea x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时()22lnf x a a a≥+. 解:(I )()f x 的定义域为0+,,2()=20xaf x e x x. 当0a时,()0f x ,()f x 没有零点;当0a时,因为2x e 单调递增,ax单调递增,所以()f x 在0+,单调递增.又()0f a ,当b 满足04a b且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点.(II )由(I ),可设()f x 在0+,的唯一零点为0x ,当00xx ,时,()0f x ;当0+xx ,时,()0f x .故()f x 在00x ,单调递减,在0+x ,单调递增,所以当0xx 时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a ex ,所以00022()=2ln2ln2af x ax a a a x aa. 故当0a时,2()2ln f x a a a.考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像和性质;利用导数证明不等式;运算求解能力.7. (2016新课标全国卷1文21,本小题满分12分)已知函数.2)1()2()(-+-=x a e x x f x(I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求a 的取值范围. 【答案】(Ⅰ)见分析(Ⅱ)()0,+∞解:(Ⅰ)()()()()()'12112.x x f x x e a x x e a =-+-=-+(i )设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >. 所以在(),1-∞单调递减,在()1,+∞单调递增. (ii )设0a <,由()'0f x =得x=1或x=ln (-2a ).①若2ea =-,则()()()'1x f x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2ea >-,则ln (-2a )<1,故当()()(),ln 21,x a ∈-∞-+∞时,()'0f x >;当()()ln 2,1x a ∈-时,()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减.③若2ea <-,则()21ln a ->,故当()()(),1ln 2,x a ∈-∞-+∞时,()'0f x >,当()()1,ln 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(Ⅱ)(i )设0a >,则由(I )知,()f x 在(),1-∞单调递减,在()1,+∞单调递增. 又()()12f e f a =-=,,取b 满足b <0且ln 22b a<, 则()()()23321022a f b b a b a b b ⎛⎫>-+-=->⎪⎝⎭,所以()f x 有两个零点. (ii )设a=0,则()()2xf x x e =-所以()f x 有一个零点.(iii )设a <0,若2ea ≥-,则由(I )知,()f x 在()1,+∞单调递增. 又当1x ≤时,()f x <0,故()f x 不存在两个零点;若2ea <-,则由(I )知,()f x 在()()1,ln 2a -单调递减,在()()ln 2,a -+∞单调递增.又当1x ≤时()f x <0,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.8. (2017新课标全国卷1文21,本小题满分12分)已知函数()f x =e x (e x ﹣a )﹣a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围. 解:(12分)(1)函数()f x 的定义域为(,)-∞+∞,22()2(2)()x x x x f x e ae a e a e a '=--=+-,①若0a =,则2()xf x e =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. ③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()xf x e =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2ax =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥. 综上,a 的取值范围为34[2e ,1]-.。
2017 年高考真题导数专题一.解答题(共 12 小题)1.已知函数 f (x )=ae 2x +(a ﹣2)e x ﹣x .(1)讨论 f (x )的单调性;(2)若 f (x )有两个零点,求 a 的取值范围.2.已知函数 f (x )=ax 2﹣ax ﹣xlnx ,且 f (x )≥0.(1)求 a ;(2)证明:f (x )存在唯一的极大值点 x 0,且 e ﹣2<f (x 0)<2﹣2.3.已知函数 f (x )=x ﹣1﹣alnx .(1)若 f (x )≥0,求 a 的值;(2)设 m 为整数,且对于任意正整数 n ,(1+ )(1+ )…(1+ )<m ,求m 的最小值.4.已知函数 f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数 f′(x )的极值点是 f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求 b 关于 a 的函数关系式,并写出定义域;(2)证明:b 2>3a ;(3)若 f (x ),f′(x )这两个函数的所有极值之和不小于﹣ ,求 a 的取值范围.5.设函数 f (x )=(1﹣x 2)e x .(1)讨论 f (x )的单调性;(2)当 x ≥0 时,f (x )≤ax +1,求 a 的取值范围.6.已知函数 f (x )=(x ﹣ )e ﹣x (x ≥ ).(1)求 f (x )的导函数;(2)求 f (x )在区间[ ,+∞)上的取值范围.7.已知函数 f (x )=x 2+2cosx ,g (x )=e x (cosx ﹣sinx +2x ﹣2),其中 e ≈2.17828…是自然对数的底数.(Ⅰ)求曲线 y=f (x )在点(π,f (π))处的切线方程;(Ⅱ)令 h (x )=g (x )﹣a f (x )(a ∈R ),讨论 h (x )的单调性并判断有无极值,有极值时求出极值.8.已知函数 f (x )=e x cosx ﹣x .(1)求曲线 y=f (x )在点(0,f (0))处的切线方程;(2)求函数 f (x )在区间[0,]上的最大值和最小值.9.设 a ∈Z ,已知定义在 R 上的函数 f (x )=2x 4+3x 3﹣3x 2﹣6x +a 在区间(1,2)内有一个零点 x 0,g (x )为 f (x )的导函数.(Ⅰ)求 g (x )的单调区间;(Ⅱ)设 m ∈[1,x 0)∪(x 0,2],函数 h (x )=g (x )(m ﹣x 0)﹣f (m ),求证: h (m )h (x 0)<0;(Ⅲ)求证:存在大于0 的常数 A ,使得对于任意的正整数 p ,q ,且 ∈[1,x 0)∪(x 0,2],满足| ﹣x 0|≥.10.已知函数 f (x )= x 3﹣ ax 2,a ∈R ,(1)当 a=2 时,求曲线 y=f (x )在点(3,f (3))处的切线方程;(2)设函数 g (x )=f (x )+(x ﹣a )cosx ﹣sinx ,讨论 g (x )的单调性并判断有无极值,有极值时求出极值.11.设 a ,b ∈R ,|a |≤1.已知函数 f (x )=x 3﹣6x 2﹣3a (a ﹣4)x +b ,g (x )=e x f(x ).(Ⅰ)求 f (x )的单调区间;(Ⅱ)已知函数 y=g (x )和 y=e x 的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:f (x )在 x=x 0 处的导数等于 0;(ii )若关于 x 的不等式 g (x )≤e x 在区间[x 0﹣1,x 0+1]上恒成立,求 b 的取值范围.12.已知函数 f (x )=e x (e x ﹣a )﹣a 2x .(1)讨论 f (x )的单调性;(2)若 f (x )≥0,求 a 的取值范围.2017年高考真题导数专题参考答案与试题解析一.解答题(共12小题)1.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)=f(ln)=a×()+(a﹣2)×﹣ln<0,min∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)=f(﹣min lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当 a ∈(0,1)时,1﹣ ﹣ln <0,f (﹣lna )<0,由 f (﹣2)=ae ﹣4+(a ﹣2)e ﹣2+2>﹣2e ﹣2+2>0,故 f (x )在(﹣∞,﹣lna )有一个零点,假设存在正整数 n 0,满足 n 0>ln ( ﹣1),则 f (n 0)=(a +a ﹣2)﹣n 0>﹣n 0> ﹣n 0>0,由 ln ( ﹣1)>﹣lna ,因此在(﹣lna ,+∞)有一个零点.∴a 的取值范围(0,1).2.(2017•新课标Ⅱ)已知函数 f (x )=ax 2﹣ax ﹣xlnx ,且 f (x )≥0.(1)求 a ;(2)证明:f (x )存在唯一的极大值点 x 0,且 e ﹣2<f (x 0)<2﹣2.【解答】(1)解:因为 f (x )=ax 2﹣ax ﹣xlnx=x (ax ﹣a ﹣lnx )(x >0), 则 f (x )≥0 等价于 h (x )=ax ﹣a ﹣lnx ≥0,求导可知 h′(x )=a ﹣ . 则当 a ≤0 时 h′(x )<0,即 y=h (x )在(0,+∞)上单调递减,所以当 x 0>1 时,h (x 0)<h (1)=0,矛盾,故 a >0.因为当 0<x < 时 h′(x )<0、当 x > 时 h′(x )>0,所以 h (x )min =h ( ),又因为 h (1)=a ﹣a ﹣ln1=0,所以 =1,解得 a=1;(2)证明:由(1)可知 f (x )=x 2﹣x ﹣xlnx ,f′(x )=2x ﹣2﹣lnx ,令 f′(x )=0,可得 2x ﹣2﹣lnx=0,记 t (x )=2x ﹣2﹣lnx ,则 t′(x )=2﹣ ,令 t′(x )=0,解得:x= ,所以 t (x )在区间(0, )上单调递减,在( ,+∞)上单调递增,所以 t (x )min =t ( )=ln2﹣1<0,从而 t (x )=0 有解,即 f′(x )=0 存在两根x 0,x 2,且不妨设 f′(x )在(0,x 0)上为正、在(x 0,x 2)上为负、在(x 2,+∞)上为正,所以 f (x )必存在唯一极大值点 x 0,且 2x 0﹣2﹣lnx 0=0,所以 f (x 0)=﹣x 0﹣x 0lnx 0= ﹣x 0+2x 0﹣2 =x 0﹣ ,由 x 0< 可知 f (x 0)<(x 0﹣ )max =﹣+ = ;由 f′( )<0 可知 x 0< < ,所以 f (x )在(0,x 0)上单调递增,在(x 0, )上单调递减,所以 f (x 0)>f ( )=;综上所述,f (x )存在唯一的极大值点 x 0,且 e ﹣2<f (x 0)<2﹣2.3.(2017•新课标Ⅲ)已知函数 f (x )=x ﹣1﹣alnx .(1)若 f (x )≥0,求 a 的值;(2)设 m 为整数,且对于任意正整数 n ,(1+ )(1+ )…(1+ )<m ,求m 的最小值.【解答】解:(1)因为函数 f (x )=x ﹣1﹣alnx ,x >0,所以 f′(x )=1﹣ =,且 f (1)=0.所以当 a ≤0 时 f′(x )>0 恒成立,此时 y=f (x )在(0,+∞)上单调递增,这与 f (x )≥0 矛盾;当 a >0 时令 f′(x )=0,解得 x=a ,所以 y=f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,即 f (x )min =f(a ),又因为 f (x )min =f (a )≥0,所以 a=1;(2)由(1)可知当 a=1 时 f (x )=x ﹣1﹣lnx ≥0,即 lnx ≤x ﹣1,所以 ln (x +1)≤x 当且仅当 x=0 时取等号,所以 ln (1+)<,k ∈N *.(一方面,ln (1+ )+ln (1+即(1+ )(1+) (1))+…+ln (1+)<e ;)< + +…+ =1﹣ <1,另一方面,(1+ )(1+) (1))>(1+ )(1+)(1+)=>2;从而当 n ≥3 时,(1+ )(1+)…(1+ )∈(2,e ),因为 m 为整数,且对于任意正整数 n ,(1+ )(1+)…(1+ )<m 成立,所以 m 的最小值为 3.4.(2017•江苏)已知函数 f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f′(x )的极值点是 f (x )的零点. 极值点是指函数取极值时对应的自变量的值)(1)求 b 关于 a 的函数关系式,并写出定义域;(2)证明:b 2>3a ;(3)若 f (x ),f′(x )这两个函数的所有极值之和不小于﹣ ,求 a 的取值范围.【解答】(1)解:因为 f (x )=x 3+ax 2+bx +1,所以 g (x )=f′(x )=3x 2+2ax +b ,g′(x )=6x +2a ,令 g′(x )=0,解得 x=﹣ .由于当 x >﹣ 时 g′(x )>0,g (x )=f′(x )单调递增;当 x <﹣ 时 g′(x )<0,g (x )=f′(x )单调递减;所以 f′(x )的极小值点为 x=﹣ ,由于导函数 f′(x )的极值点是原函数 f (x )的零点,所以 f (﹣ )=0,即﹣+ ﹣ +1=0,所以 b=+ (a >0).因为 f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,所以 f′(x )=3x 2+2ax +b=0 的实根,所以 4a 2﹣12b ≥0,即 a 2﹣所以 b= + (a ≥3).+ ≥0,解得 a ≥3,(2)证明:由( 1)可知 h (a )=b 2﹣3a=﹣27),由于 a >3,所以 h (a )>0,即 b 2>3a ;﹣ + = (4a 3﹣27)(a 3(3)解:由(1)可知 f′(x )的极小值为 f′(﹣ )=b ﹣,设 x 1,x 2 是 y=f (x )的两个极值点,则 x 1+x 2= ,x 1x 2= ,所以 f (x 1)+f (x 2)=++a (+)+b (x 1+x 2)+2=(x 1+x 2)[(x 1+x 2)2﹣3x 1x 2]+a [(x 1+x 2)2﹣2x 1x 2]+b (x 1+x 2)+2=﹣+2,又因为 f (x ),f′(x )这两个函数的所有极值之和不小于﹣ ,所以 b ﹣+ ﹣+2= ﹣ ≥﹣ ,因为 a >3,所以 2a 3﹣63a ﹣54≤0,所以 2a (a 2﹣36)+9(a ﹣6)≤0,所以(a ﹣6)(2a 2+12a +9)≤0,由于 a >3 时 2a 2+12a +9>0,所以 a ﹣6≤0,解得 a ≤6,所以 a 的取值范围是(3,6].5.(2017•新课标Ⅱ)设函数 f (x )=(1﹣x 2)e x .(1)讨论 f (x )的单调性;(2)当 x ≥0 时,f (x )≤ax +1,求 a 的取值范围.【解答】解:(1)因为 f (x )=(1﹣x 2)e x ,x ∈R ,所以 f′(x )=(1﹣2x ﹣x 2)e x ,令 f′(x )=0 可知 x=﹣1± ,当 x <﹣1﹣ 或 x >﹣1+时 f′(x )<0,当﹣1﹣ <x <﹣1+ 时 f′(x )>0,所以 f (x )在(﹣∞,﹣1﹣),(﹣1+ ,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知 f (x )=(1﹣x )(1+x )e x .下面对 a 的范围进行讨论:①当 a ≥1 时,设函数 h (x )=(1﹣x )e x ,则 h′(x )=﹣xe x <0(x >0),因此 h (x )在[0,+∞)上单调递减,又因为 h (0)=1,所以 h (x )≤1,所以 f (x )=(1﹣x )h (x )≤x +1≤ax +1;②当 0<a <1 时,设函数 g (x )=e x ﹣x ﹣1,则 g′(x )=e x ﹣1>0(x >0),所以 g (x )在[0,+∞)上单调递增,又 g (0)=1﹣0﹣1=0,所以 e x ≥x +1.因为当 0<x <1 时 f (x )>(1﹣x )(1+x )2,所以(1﹣x )(1+x )2﹣ax ﹣1=x (1﹣a ﹣x ﹣x 2),取 x 0=∈(0,1),则(1﹣x 0)(1+x 0)2﹣ax 0﹣1=0,所以 f (x 0)>ax 0+1,矛盾;③当 a ≤0 时,取 x 0=∈(0,1),则 f (x 0)>(1﹣x 0)(1+x 0)2=1≥ax 0+1,矛盾;综上所述,a 的取值范围是[1,+∞).6.(2017•浙江)已知函数 f (x )=(x ﹣)e ﹣x (x ≥ ).(1)求 f (x )的导函数;(2)求 f (x )在区间[ ,+∞)上的取值范围.【解答】解:(1)函数 f (x )=(x ﹣ )e ﹣x (x ≥ ),导数 f′(x )=(1﹣ • •2)e ﹣x ﹣(x ﹣)e ﹣x=(1﹣x +)e ﹣x =(1﹣x )(1﹣ )e ﹣x ;(2)由 f (x )的导数 f′(x )=(1﹣x )(1﹣可得 f′(x )=0 时,x=1 或 ,)e ﹣x ,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].7.(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g(x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.0 (∴x=0 时,函数 h (x )取得极小值,h (0)=﹣1﹣2a .(2)a >0 时,令 h′(x )=2(x ﹣sinx )(e x ﹣e lna )=0.解得 x 1=lna ,x 2=0.①0<a <1 时,x ∈(﹣∞,lna )时,e x ﹣e lna <0,h′(x )>0,函数 h (x )单调 递增;x ∈(lna ,0)时,e x ﹣e lna >0,h′(x )<0,函数 h (x )单调递减;x ∈(0,+∞)时,e x ﹣e lna >0,h′(x )>0,函数 h (x )单调递增.∴当 x=0 时,函数 h (x )取得极小值,h (0)=﹣2a ﹣1.当 x=lna 时,函数 h (x )取得极大值,h (lna )=﹣a [ln 2a ﹣2lna +sin (lna )+cos(lna )+2].②当 a=1 时,lna=0,x ∈R 时,h′(x )≥0,∴函数 h (x )在 R 上单调递增.③1<a 时,lna >0,x ∈(﹣∞,0)时,e x ﹣e lna <0,h′(x )>0,函数 h (x )单调递增;x ∈(0,lna )时,e x ﹣e lna <0,h′(x )<0,函数 h (x )单调递减;x ∈(lna ,+∞)时,e x ﹣e lna >0,h′(x )>0,函数 h (x )单调递增.∴当 x=0 时,函数 h (x )取得极大值,h (0)=﹣2a ﹣1.当 x=lna 时,函数 h (x )取得极小值,h (lna )=﹣a [ln 2a ﹣2lna +sin (lna )+cos(lna )+2].综上所述:a ≤0 时,函数 h (x )在(0,+∞)单调递增;x <0 时,函数 h (x )在(﹣∞,0)单调递减.x=0 时,函数 h (x )取得极小值,h (0)=﹣1﹣2a .0<a <1 时,函数 h (x )在 x ∈(﹣∞,lna )是单调递增;函数 h (x )在 x ∈(lna ,0)上单调递减.当 x=0 时,函数 h (x )取得极小值,h (0)=﹣2a ﹣1.当 x=lna时,函数 h (x )取得极大值,h (lna )=﹣a [ln 2a ﹣2lna +sin (lna )+cos (lna )+2].当 a=1 时,lna=0,函数 h (x )在 R 上单调递增.a >1 时,函数 h (x )在(﹣∞, ), lna ,+∞)上单调递增;函数h (x )在(0,lna )上单调递减.当 x=0 时,函数 h (x )取得极大值,h (0)=﹣2a ﹣1.当 x=lna时,函数 h (x )取得极小值,h (lna )=﹣a [ln 2a ﹣2lna +sin (lna )+cos (lna )+2].(8.(2017•北京)已知函数 f (x )=e x cosx ﹣x .(1)求曲线 y=f (x )在点(0,f (0))处的切线方程;(2)求函数 f (x )在区间[0,]上的最大值和最小值.【解答】解:(1)函数 f (x )=e x cosx ﹣x 的导数为 f′(x )=e x (cosx ﹣sinx )﹣1,可得曲线 y=f (x )在点(0,f (0))处的切线斜率为 k=e 0(cos0﹣sin0)﹣1=0,切点为(0,e 0cos0﹣0),即为(0,1),曲线 y=f (x )在点(0,f (0))处的切线方程为 y=1;(2)函数 f (x )=e x cosx ﹣x 的导数为 f′(x )=e x (cosx ﹣sinx )﹣1,令 g (x )=e x (cosx ﹣sinx )﹣1,则 g (x )的导数为 g′(x )=e x (cosx ﹣sinx ﹣sinx ﹣cosx )=﹣2e x •sinx ,当 x ∈[0,],可得 g′(x )=﹣2e x •sinx ≤0,即有 g (x )在[0,则 f (x )在[0,]递减,可得 g (x )≤g (0)=0,]递减,即有函数 f (x )在区间[0,最小值为 f ()=ecos]上的最大值为 f (0)=e 0cos0﹣0=1;﹣ =﹣ .9.(2017•天津)设 a ∈Z ,已知定义在 R 上的函数 f (x )=2x 4+3x 3﹣3x 2﹣6x +a 在区间(1,2)内有一个零点 x 0,g (x )为 f (x )的导函数.(Ⅰ)求 g (x )的单调区间;(Ⅱ)设 m ∈[1,x 0)∪(x 0,2],函数 h (x )=g (x )(m ﹣x 0)﹣f (m ),求证: h (m )h (x 0)<0;(Ⅲ)求证:存在大于0 的常数 A ,使得对于任意的正整数 p ,q ,且 ∈[1,x 0)∪(x 0,2],满足| ﹣x 0|≥.【解答】 Ⅰ)解:由 f (x )=2x 4+3x 3﹣3x 2﹣6x +a ,可得 g (x )=f′(x )=8x 3+9x 2﹣6x ﹣6,进而可得 g′(x )=24x 2+18x ﹣6.令 g′(x )=0,解得 x=﹣1,或 x= .当 x 变化时,g′(x ),g (x )的变化情况如下表:xg′(x )g (x )(﹣∞,﹣1)+↗ (﹣1, )﹣↘ ( ,+∞)+↗所以,g (x )的单调递增区间是(﹣∞,﹣1),( ,+∞),单调递减区间是(﹣1, ). (Ⅱ)证明:由 h (x )=g (x )(m ﹣x 0)﹣f (m ),得 h (m )=g (m )(m ﹣x 0) ﹣f (m ),h (x 0)=g (x 0)(m ﹣x 0)﹣f (m ). 令函数 H 1(x )=g (x )(x ﹣x 0)﹣f (x ),则 H′1(x )=g′(x )(x ﹣x 0).由(Ⅰ)知,当 x ∈[1,2]时,g′(x )>0,故当 x ∈[1,x 0)时,H′1(x )<0,H 1(x )单调递减; 当 x ∈(x 0,2]时,H′1(x )>0,H 1(x )单调递增.因此,当 x ∈[1,x 0)∪(x 0,2]时,H 1(x )>H 1(x 0)=﹣f (x 0)=0,可得 H 1(m )>0 即 h (m )>0,令函数 H 2(x )=g (x 0)(x ﹣x 0)﹣f (x ),则 H′2(x )=g′(x 0)﹣g (x ).由(Ⅰ) 知,g (x )在[1,2]上单调递增,故当 x ∈[1,x 0)时,H′2(x )>0,H 2(x )单 调递增;当 x ∈(x 0,2]时,H′2(x )<0,H 2(x )单调递减.因此,当 x ∈[1, x 0)∪(x 0,2]时,H 2(x )>H 2(x 0)=0,可得得 H 2(m )<0 即 h (x 0)<0,. 所以,h (m )h (x 0)<0.(Ⅲ)对于任意的正整数 p ,q ,且,令 m= ,函数 h (x )=g (x )(m ﹣x 0)﹣f (m ).由(Ⅱ)知,当 m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点; 当 m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点.所以 h (x )在(1,2)内至少有一个零点,不妨设为 x 1,则 h (x 1)=g (x 1)(﹣x 0)﹣f ( )=0.由(Ⅰ)知 g (x )在[1,2]上单调递增,故 0<g (1)<g (x 1)<g (2),于是| ﹣x 0|=≥=.因为当 x ∈[1,2]时,g (x )>0,故 f (x )在[1,2]上单调递增,所以 f (x )在区间[1,2]上除 x 0 外没有其他的零点,而 ≠x 0,故 f ( )≠0.又因为 p ,q ,a 均为整数,所以|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|是正整数,从而|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|≥1.所以| ﹣x 0|≥ .所以,只要取 A=g (2),就有| ﹣x 0|≥ .10.(2017•山东)已知函数 f (x )= x 3﹣ ax 2,a ∈R ,(1)当 a=2 时,求曲线 y=f (x )在点(3,f (3))处的切线方程;(2)设函数 g (x )=f (x )+(x ﹣a )cosx ﹣sinx ,讨论 g (x )的单调性并判断有无极值,有极值时求出极值.【解答】解:(1)当 a=2 时,f (x )= x 3﹣x 2,∴f′(x )=x 2﹣2x ,∴k=f′(3)=9﹣6=3,f (3)= ×27﹣9=0,∴曲线 y=f (x )在点(3,f (3))处的切线方程 y=3(x ﹣3),即 3x ﹣y ﹣9=0(2)函数 g (x )=f (x )+(x ﹣a )cosx ﹣sinx= x 3﹣ ax 2+(x ﹣a )cosx ﹣sinx ,∴g′(x )=(x ﹣a )(x ﹣sinx ),令 g′(x )=0,解得 x=a ,或 x=0,①若 a >0 时,当 x <0 时,g′(x )>0 恒成立,故 g (x )在(﹣∞,0)上单调递增,当 x >a 时,g′(x )>0 恒成立,故 g (x )在(a ,+∞)上单调递增,当 0<x <a 时,g′(x )<0 恒成立,故 g (x )在(0,a )上单调递减,∴当 x=a 时,函数有极小值,极小值为 g (a )=﹣ a 3﹣sina当 x=0 时,有极大值,极大值为 g (0)=﹣a ,②若 a <0 时,当 x >0 时,g′(x )>0 恒成立,故 g (x )在(﹣∞,0)上单调递增,当 x <a 时,g′(x )>0 恒成立,故 g (x )在(﹣∞,a )上单调递增,当 a <x <0 时,g′(x )<0 恒成立,故 g (x )在(a ,0)上单调递减,∴当 x=a 时,函数有极大值,极大值为 g (a )=﹣ a 3﹣sina当 x=0 时,有极小值,极小值为 g (0)=﹣a③当 a=0 时,g′(x )=x (x +sinx ),当 x >0 时,g′(x )>0 恒成立,故 g (x )在(0,+∞)上单调递增,当 x <0 时,g′(x )>0 恒成立,故 g (x )在(﹣∞,0)上单调递增,∴g (x )在 R 上单调递增,无极值.11.(2017•天津)设 a ,b ∈R ,|a |≤1.已知函数 f (x )=x 3﹣6x 2﹣3a (a ﹣4)x +b ,g (x )=e x f (x ). (Ⅰ)求 f (x )的单调区间;(Ⅱ)已知函数 y=g (x )和 y=e x 的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:f (x )在 x=x 0 处的导数等于 0;(ii )若关于 x 的不等式 g (x )≤e x 在区间[x 0﹣1,x 0+1]上恒成立,求 b 的取值范围.【解答】(Ⅰ)解:由 f (x )=x 3﹣6x 2﹣3a (a ﹣4)x +b ,可得 f'(x )=3x 2﹣12x﹣3a (a ﹣4)=3(x ﹣a )(x ﹣(4﹣a )),令 f'(x )=0,解得 x=a ,或 x=4﹣a .由|a |≤1,得 a <4﹣a .当 x 变化时,f'(x ),f (x )的变化情况如下表:xf'(x )f (x )(﹣∞,a )+↗ (a ,4﹣a )﹣↘ (4﹣a ,+∞)+↗∴f (x )的单调递增区间为(﹣∞, a ),(4﹣a ,+∞),单调递减区间为( a ,4﹣a );(Ⅱ)(i )证明:∵g'(x )=e x (f (x )+f'(x )),由题意知,∴,解得 .∴f (x )在 x=x 0 处的导数等于 0;(ii )解:∵g (x )≤e x ,x ∈[x 0﹣1,x 0+1],由 e x >0,可得 f (x )≤1. 又∵f (x 0)=1,f'(x 0)=0,故 x 0 为 f (x )的极大值点,由(I )知 x 0=a .另一方面,由于|a |≤1,故 a +1<4﹣a ,由(Ⅰ)知 f (x )在(a ﹣1,a )内单调递增,在(a ,a +1)内单调递减,故当 x 0=a 时,f (x )≤f (a )=1 在[a ﹣1,a +1]上恒成立,从而 g (x )≤e x 在[x 0 ﹣1,x 0+1]上恒成立.由 f (a )=a 3﹣6a 2﹣3a (a ﹣4)a +b=1,得 b=2a 3﹣6a 2+1,﹣1≤a ≤1. 令 t (x )=2x 3﹣6x 2+1,x ∈[﹣1,1],∴t'(x )=6x 2﹣12x ,令 t'(x )=0,解得 x=2(舍去),或 x=0.∵t (﹣1)=﹣7,t (1)=﹣3,t (0)=1,故 t (x )的值域为[﹣7,1].∴b 的取值范围是[﹣7,1].12.(2017•新课标Ⅰ)已知函数 f (x )=e x (e x ﹣a )﹣a 2x .(1)讨论 f (x )的单调性;(2)若 f (x )≥0,求 a 的取值范围.【解答】解:(1)f (x )=e x (e x ﹣a )﹣a 2x=e 2x ﹣e x a ﹣a 2x ,∴f′(x )=2e 2x ﹣ae x ﹣a 2=(2e x +a )(e x ﹣a ),①当 a=0 时,f′(x )>0 恒成立,∴f (x )在 R 上单调递增,②当 a >0 时,2e x +a >0,令 f′(x )=0,解得 x=lna ,当 x <lna 时,f′(x )<0,函数 f (x )单调递减,当 x >lna 时,f′(x )>0,函数 f (x )单调递增,③当 a <0 时,e x ﹣a >0,令 f′(x )=0,解得 x=ln (﹣ ),当x<ln(﹣)时,f′(x)<0,函数f(x)单调递减,当x>ln(﹣)时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)=f(lna)=﹣a2lna≥0,min∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得f(x)﹣a2ln(﹣)≥0,=f(ln(﹣))=min∴ln(﹣)≤,∴﹣2≤a<0,综上所述a的取值范围为[﹣2,1]P。
导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。
2017年高考真题导数专题一.解答题(共12小题)1.已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.6.已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.8.已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.10.已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f (x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.12.已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2017年高考真题导数专题参考答案与试题解析一.解答题(共12小题)1.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).2.(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f (a),又因为f(x)min=f(a)≥0,所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;从而当n≥3时,(1+)(1+)…(1+)∈(2,e),因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,所以m的最小值为3.4.(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0的实根,所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,所以b=+(a≥3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].5.(2017•新课标Ⅱ)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1﹣x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).6.(2017•浙江)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].7.(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].8.(2017•北京)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.9.(2017•天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.10.(2017•山东)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(1)当a=2时,f(x)=x3﹣x2,∴f′(x)=x2﹣2x,∴k=f′(3)=9﹣6=3,f(3)=×27﹣9=0,∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0(2)函数g(x)=f(x)+(x﹣a)cosx﹣sinx=x3﹣ax2+(x﹣a)cosx﹣sinx,∴g′(x)=(x﹣a)(x﹣sinx),令g′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina当x=0时,有极大值,极大值为g(0)=﹣a,②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina当x=0时,有极小值,极小值为g(0)=﹣a③当a=0时,g′(x)=x(x+sinx),当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,∴g(x)在R上单调递增,无极值.11.(2017•天津)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x ﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:x(﹣∞,a)(a,4﹣a)(4﹣a,+∞)f'(x)+﹣+f(x)↗↘↗∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i)证明:∵g'(x)=e x(f(x)+f'(x)),由题意知,∴,解得.∴f(x)在x=x0处的导数等于0;(ii)解:∵g(x)≤e x,x∈[x0﹣1,x0+1],由e x>0,可得f(x)≤1.又∵f(x0)=1,f'(x0)=0,故x0为f(x)的极大值点,由(I)知x0=a.另一方面,由于|a|≤1,故a+1<4﹣a,由(Ⅰ)知f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.令t(x)=2x3﹣6x2+1,x∈[﹣1,1],∴t'(x)=6x2﹣12x,令t'(x)=0,解得x=2(舍去),或x=0.∵t(﹣1)=﹣7,t(1)=﹣3,t(0)=1,故t(x)的值域为[﹣7,1].∴b的取值范围是[﹣7,1].12.(2017•新课标Ⅰ)已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(﹣),当x<ln(﹣)时,f′(x)<0,函数f(x)单调递减,当x>ln(﹣)时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得f(x)min=f(ln(﹣))=﹣a2ln(﹣)≥0,∴ln(﹣)≤,∴﹣2≤a<0,综上所述a的取值范围为[﹣2,1]。
2017高考数学导数部分考题汇编详细解析太好了(请收藏)
高中数学导数部分相关知识,无论文理学科,在高考中,都是作为难题,压轴题存在。
本章难度高,综合性较强,想要在数学成绩上达到中上等水平,就必须在本章有所突破。
本章的【学习目标】如下:1. 会利用导数解决曲线的切线的问题.2. 会利用导数解决函数的单调性等有关问题.3. 会利
用导数解决函数的极值、最值等有关问题.4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题5. 定积分的应用。
下面是收集整理的2017年高考数学理科试卷的导数部分的考题汇编与详细解析,全部解析文档有16页,另外有原题文档,需要全部可编辑打印文档的可回复或私信输入“004”索取。
大家喜欢我的文章的话可以顺手点个赞,更可以加关注,我会经常发些初高中学习与教育方面的文章来供大家阅读与
参考,如有不当之处也多请大家包涵,谢谢!。
纵观2012到2016年全国的高考试题,对导数部分的考查基本上集中在以下几个热点问题上: 热点一、导数的几何意义导数的概念及几何意义的考查仍是命题的热点。
一般在问题中充当“穿针引线”的作用,但是我们还是要掌握好切线的斜率与函数导数间的关系,对很多同学来说,有时在压轴题中,这也是不多的得分点之一;主要有两种类型;(1)求曲线上某点处的切线方程。
(2)已知曲线上某点处的切线方程,求参数。
1.【2016高考新课标3理数】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________. 【答案】21y x =--【考点】1、函数的奇偶性与解析式;2、导数的几何意义.【名师点睛】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.2.【2014高考新课标2】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3【答案】D【解析】令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.【考点】导数的几何意义及方程思想.【名师点睛】本题主要考查了导数的几何意义,导数公式及求导法则;本题属于基础题,解决本题的关健在于正确求出已知函数的导数.【命题的趋势与预测】全国高考中导数几何意义的问题难度为中等,预计2017年高考中导数的几何意义依然是热点,考查考生对导数概念和几何意义的理解,求导运算及方程思想。
高考数学真题导数专题及答案2017年高考真题:导数专题一、解答题(共12小题)1.已知函数f(x) = ae^(2x) + (a-2)e^x - x。
1) 讨论f(x)的单调性;2) 若f(x)有两个零点,求a的取值范围。
2.已知函数f(x) = ax^2 - ax - xlnx,且f(x) ≥ 0.1) 求a;2) 证明:f(x)存在唯一的极大值点x,且e^-2 < f(x) < 2^-2.3.已知函数f(x) = x^-1 - alnx。
1) 若f(x) ≥ 0,求a的值;2) 设m为整数,且对于任意正整数n,(1+1/n)^m 的最小值。
4.已知函数f(x) = x^3 + ax^2 + bx + 1 (a。
0,b∈R)有极值,且导函数f'(x)的极值点是f(x)的零点。
1) 求b关于a的函数关系式,并写出定义域;2) 证明:b^2.3a;3) 若f(x)和f'(x)这两个函数的所有极值之和不小于 -1,求a的取值范围。
5.设函数f(x) = (1-x^2)e^x。
1) 讨论f(x)的单调性;2) 当x≥1时,f(x) ≤ ax+1,求a的取值范围。
6.已知函数f(x) = (x-1)/(x+1)。
1) 求f(x)的导函数;2) 求f(x)在区间(-1.+∞)上的取值范围。
7.已知函数f(x) = x^2 + 2cosx,g(x) = e^x(cosx-sinx+2x^-2),其中e≈2.…是自然对数的底数。
I) 求曲线y=f(x)在点(π。
f(π))处的切线方程;II) 令h(x) = g(x) - af(x) (a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值。
8.已知函数f(x) = e^x*cosx - x。
1) 求曲线y=f(x)在点(0.f(0))处的切线方程;2) 求函数f(x)在区间[0.π]上的最大值和最小值。
9.设a∈Z,已知定义在R上的函数f(x) = 2x^4 + 3x^3 -3x^2 - 6x + a在区间(1.2)内有一个零点x,g(x)为f(x)的导函数。
专题12 函数的极(最)值问题【热点聚焦与扩展】从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.导数是研究函数性质的重要工具,它的突出作用是用于研究函数的单调性、极值与最值、函数的零点等.从题型看,往往有一道选择题或填空题,有一道解答题.其中解答题难度较大,常与不等式、方程等结合考查.在高考导数的综合题中,所给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临分类讨论.(一)函数的极值问题 1、函数极值的概念:(1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点(2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点,极大值与极小值统称为极值 2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点: (1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点3、极值点的作用:(1)极值点为单调区间的分界点 (2)极值点是函数最值点的候选点4、()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点⇒()0'0f x = 说明:①前提条件:()f x 在0x x =处可导②单向箭头:在可导的前提下,极值点⇒导数0=,但是导数0=不能推出0x x =为()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点③上述结论告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点) 5、求极值点的步骤: (1)筛选: 令()'0fx =求出()'f x 的零点(此时求出的点有可能是极值点)(2)精选:判断函数通过()'f x 的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性: 通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点 6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程.7、对于在定义域中处处可导的函数,极值点是导函数的一些零点,所以涉及到极值点个数或所在区间的问题可转化成导函数的零点问题.但要注意检验零点能否成为极值点. 8、极值点与函数奇偶性的联系:(1)若()f x 为奇函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极小(极大)值点 (2)若()f x 为偶函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极大(极小)值点 (二)函数的最值问题 1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≤,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≥,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值.例如:()[)ln ,1,4f x x x =∈,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln4,但就是达不到.()f x 没有最大值.) (5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z ππ=+∈,有无穷多个.2.“最值”与“极值”的区别和联系如图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x(1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点.5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下: (1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点 (2)极小值点不会是最大值点,极大值点也不会是最小值点 8、最值点的作用 (1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =-+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ≥=,即不等式ln 1x x ≤-.【经典例题】例1【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1例2【2018届湖北省黄冈、黄石等八市高三3月联考】已知函数(1)当时,求的极值;(2)若有两个不同的极值点,求的取值范围;例3【2018届江苏省淮安市等四市高三上一模】已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.例4【2018届福建省厦门市高三下第一次检查(3月)】已知函数,其中为自然对数的底数. (1)当时,证明:;(2)讨论函数极值点的个数.例5【2017北京,理19】已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.例6【2018届北京市人大附高三十月月考】已知a 是实数,函数()()2f x xx a =-(Ⅰ)若()13,f '=求a 的值及曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)求()f x 在区间[]0,2上的最小值.例7【2018届北京市城六区高三一模】.已知函数(I)当时,求函数的单调递增区间;(Ⅱ)当时,若函数的最大值为,求的值.例8【2018届北京市清华附中高三十月月考】已知()()320f x ax bx cx a =++≠在1x =±时取得极值,且()11f =-.(Ⅰ)试求常数a , b , c 的值;(Ⅱ)求函数()f x 在[]0,2x ∈上的最大值.例9【2018届北京市首师大附高三十月月考】已知函数()()()322111.32f x x x x a x x a R ⎛⎫=-++--∈ ⎪⎝⎭(Ⅰ)若1x =是()f x 的极小值点,求实数a 的取值范围及函数()f x 的极值; (Ⅱ)当1a ≥时,求函数()f x 在区间[]0,2上的最大值.例10【2018届陕西省榆林市二模】已知函数,.(1)若时,求函数的最小值;(2)若函数既有极大值又有极小值,求实数的取值范围.【精选精练】1.【2018届安徽省安庆市2018届高三二模】已知函数()()2ln xf x ef e x e'=-(e 是自然对数的底数), 则f (x )的极大值为( ) A. 2e-1 B. 1e -C. 1D. 2ln22.【2018届福建省三明市第一中学高三下开学】函数在的最小值是( )A. B. 1 C. 0 D.3.【2018届广东省茂名市五大联盟学校高三3月联考】已知函数 (其中,为自然对数的底数)在处取得极大值,则实数的取值范围是( ) A. B.C.D.4.【2018届海南省高三第二次联考】若1x =是函数()()ln x f x e a x =+的极值点,则实数a =__________. 5.【2018届北京市北京19中高三十月月考】已知函数()y f x =的导函数有且仅有两个零点,其图像如图所示,则函数()y f x =在x =______________处取得极值.6.【2018届东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高三一模】已知函数,是函数的极值点,给出以下几个命题:①;②;③;④;其中正确的命题是______________.(填出所有正确命题的序号)7【2018届北京市清华附中高三十月月考】设函数()ln f x x a x =-(其中a R ∈). (Ⅰ)当1a =时,求函数()f x 在1x =时的切线方程; (Ⅱ)求函数()f x 的极值.8.【2018届北京市丰台区高三一模】已知函数()()()=e ln 1xf x a x a R -+∈.(Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)若函数()y f x =在1,12⎛⎫⎪⎝⎭上有极值,求a 的取值范围.9.【2018届江西省上饶市高三下二模】设函数()22ln x e kf x k x x x=++(k 为常数, 2.71828e =为自然对数的底数).(1)当0k ≥时,求函数()f x 的单调区间;(2)若函数()f x 在()0,3内存在三个极值点,求实数k 的取值范围.10.【2018届北京市城六区高三一模】已知函数()1e ln xf x a x x ⎛⎫=⋅++ ⎪⎝⎭,其中a R ∈. (Ⅰ)若曲线()y f x =在1x =处的切线与直线exy =-垂直,求a 的值; (Ⅱ)当()0,ln2a ∈时,证明: ()f x 存在极小值.11【2018届北京师范大学附中高三下二模】已知函数,其中,为自然对数底数.(1)求函数的单调区间; (2)已知,若函数对任意都成立,求的最大值.12.【2018届新疆维吾尔自治区高三二模】已知函数()1xf x e ax =++(a R ∈).若0x =是()f x 的极值点.(I )求a ,并求()f x 在[]2,1-上的最小值;(II )若不等式()'1xkf x xe <+对任意0x >都成立,其中k 为整数, ()'f x 为()f x 的导函数,求k 的最大值.。
全国名校高考专题训练12导数与极限(解答题1)1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设函数()ln 1f x x px =-+(Ⅰ)求函数()f x 的极值点;(Ⅱ)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围;(Ⅲ)证明:).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n nn 解:(1)),0()(,1ln )(+∞∴+-=的定义域为x f px x x f ,xpxp x x f -=-='11)(当),0()(,0)(0+∞>'≤在时,x f x f p 上无极值点 当p>0时,令x x f x f px x f 随、,)()(),,0(10)('+∞∈=∴='的变化情况如下表:从上表可以看出:当p>0 时,()f x 有唯一的极大值点px 1=(Ⅱ)当p>0时在1x=p 处取得极大值11()ln f p p=,此极大值也是最大值, 要使()0f x £恒成立,只需11()ln0f pp=?, ∴1p ³ ∴p 的取值范围为[1,+∞)(Ⅲ)令p=1,由(Ⅱ)知,2,1ln ,01ln ≥∈-≤∴≤+-n N n x x x x ,∴1ln 22-≤n n ,∴22222111ln n n n n n -=-≤∴)11()311()211(ln 33ln 22ln 222222222n n n -++-+-≤+++ )13121()1(222nn +++--= ))1(1431321()1(+++⨯+⨯--<n n n )11141313121()1(+-++-+---=n n n)1(212)1121()1(2+--=+---=n n n n n ∴结论成立2、(江苏省启东中学2008年高三综合测试一)已知32()(,0]f x x bx cx d =+++-∞在上是增函数,在[0,2]上是减函数,且()0,2,(f x αβαβ=≤≤有三个根。
(1)求c 的值,并求出b 和d 的取值范围。
(2)求证(1)2f ≥。
(3)求||βα-的取值范围,并写出当||βα-取最小值时的()f x 的解析式。
解:(1)](]((),0f x -∞ 在上是增函数,在0,2上是减函数20'()0'()32'(0)0x f x f x x bx c f ∴===++∴= 是的根又0c ∴=()0,2,(2)0840'(2)01240384f x f b d f b b d b αβ=∴=∴++=≤∴+≤∴≤-=-- 又的根为又又4d ∴≥(2)(1)1(2)0f b df =++=8463(1)184673d b f b b∴=--≤-∴=+--=--且2≥(3)()0f x αβ= 有三根,2,32()()(2)()(2)222f x x x x x x b d αβαβαβαβαβ∴=---=-++-++=-⎧⎪∴⎨=-⎪⎩222222|2|()4(2)244168412(2)163||3b d b b bb b b b βαβαββα∴-=+-=++=++--=--=--≤-∴-≥ 又当且仅当b=-3时取最小值,此时d=432()34f x x x ∴=-+3、(江苏省启东中学高三综合测试三)已知函数f(x)=x 3+ax 2+b 的图象在点P(1,0)处的切线与直线3x+y=0平行,(1)求常数a 、b 的值;(2)求函数f(x)在区间[0,t]上的最小值和最大值。
(t>0) 解:(1)a=-3,b=2;(2)当2<t ≤3时,f(x)的最大值为f(0)=2;当t>3时,f(x)的最大值为f(t)=t 3-3t 2+2;当x=2时,f(x)的最小值为f(2)=-2。
5、(江苏省启东中学高三综合测试四)已知4221)(223--+=x m mx x x f (m 为常数,且m >0)有极大值25-, (Ⅰ)求m 的值;(Ⅱ)求曲线)(x f y =的斜率为2的切线方程.解:(Ⅰ)2223)(m mx x x f -+='0)23)((=-+=m x m x 则m x -=,m x 32==-)(m f 254221333-=-++-m m m ,∴1=m . (Ⅱ)由(Ⅰ)知4221)(23--+=x x x x f ,则223)(2=-+='x x x f∴1=x 或34-=x由29)1(-=f ,2776)34(-=-f .所以切线方程为:)1(229-=+x y 即01324=--y x ;或)34(22776+=+x y 即042754=--y x 4、(安徽省皖南八校2008届高三第一次联考)已知函数12231)(23++-=x x a x x f 且21,x x 是)(x f 的两个极值点,31021<<<<x x ,(1)求a 的取值范围;(2)若22||221--≥-bm m x x ,对]1,1[-∈b 恒成立。
求实数m 的取值范围;解:(1)2)(2/+-=ax x x f ,由题知:31130239)3(021)1(//<<⇒⎪⎩⎪⎨⎧>+-=<+-=a a f a f ; (2)由(1)知:18||221>-=-a x x ,∴1222≤--bm m 对]1,1[-∈b 恒成立,所以:1103203222≤≤-⇒⎪⎩⎪⎨⎧≤--≤-+m m m m m 5、(江西省五校2008届高三开学联考)已知函数.23)32ln()(2x x x f -+= (I )求f (x )在[0,1]上的极值;(II )若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;(III )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取值范围.解:(I )23)13)(1(33323)(+-+-=-+='x x x x x x f ,令1310)(-==='x x x f 或得(舍去) )(,0)(,310x f x f x >'<≤∴时当单调递增;当)(,0)(,131x f x f x <'≤<时单调递减. ]1,0[)(613ln )31(在为函数x f f -=∴上的极大值(II )由0]3)(ln[|ln |>+'+-x x f x a 得xx a x x a 323ln ln 323lnln ++<+->或, …………① 设332ln 323ln ln )(2x x x x x h +=+-=,xxx x x g 323ln 323lnln )(+=++=,依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立,0)32(2)32(33)32(3332)(2>+=+⋅-+⋅+='x x x x x x x x g , 03262)62(31323)(22>++=+⋅+='xx xx x x x h , ]31,61[)()(都在与x h x g ∴上单增,要使不等式①成立,当且仅当.51ln 31ln ),61()31(<><>a a g a h a 或即或(III )由.0223)32ln(2)(2=-+-+⇒+-=b x x x b x x f令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则,当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增; 当]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减 而)1()37(),0()37(ϕϕϕϕ>>, ]1,0[0)(2)(在即=+-=∴x b x x f ϕ恰有两个不同实根等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+=>-+-+=≤-=0215ln )1(067267)72ln()37(02ln )0(b b b ϕϕϕ .37267)72ln(215ln +-+<≤+∴b 6、(安徽省蚌埠二中2008届高三8月月考)求下列各式的的极限值 ①x mx x 113lim-+→ ②nnn n 632632632(222lim ++++++∞→ ) 答:①3m②32 7、(四川省巴蜀联盟2008届高三年级第二次联考)设f (x )=21ax bx x c+++(a>0)为奇函数,且|f (x )|min={a n }与{b n }满足如下关系:a 1=2,1()2n n n f a a a +-=,11n n n a b a -=+. (1)求f (x )的解析表达式;(2)证明:当n ∈N *时, 有b n ≤1()3n.解:(1)由f (x )是奇函数,得 b=c=0,由|f (x )min |=22,得a=2,故f (x )= 221x x+(2) 22121()1222n nn n n n n na a f a a a a a a ++--+===22221122111122111121112n n n n n n n n n n n n n na a a a a ab b a a a a a a ++++-⎛⎫--+-===== ⎪+++++⎝⎭+∴n b =21-n b =42-n b =…=121-n b ,而b 1=31,∴n b =12)31(-n当n=1时, b 1=31,命题成立, 当n≥2时,∵2n-1=(1+1)n-1=1+112111----+++n n n n C C C ≥1+11-n C =n∴12)31(-n <n )31(,即 b n ≤n )31(.8、(四川省成都市新都一中高2008级一诊适应性测试)设 f (x ) = px -qx -2 ln x ,且 f (e ) = qe -pe -2(e 为自然对数的底数)(1)求 p 与 q 的关系;(2)若 f (x ) 在其定义域内为单调函数,求 p 的取值范围; 解:(I) 由题意得 f (e ) = pe -q e -2ln e = qe -pe -2 ⇒ (p -q ) (e + 1e ) = 0而 e + 1e ≠0 ∴ p = q ………… 4分(II) 由 (I) 知 f (x ) = px -px -2ln x f’(x ) = p + p x 2 -2x = px 2-2x + px 2令 h (x ) = px 2-2x + p ,要使 f (x ) 在其定义域 (0,+∞) 内为单调函数,只需 h (x ) 在 (0,+∞) 内满足:h (x )≥0 或 h (x )≤0 恒成立.① 当 p = 0时, h (x ) = -2x ,∵ x > 0,∴ h (x ) < 0,∴ f’(x ) = -2xx 2 < 0, ∴ f (x ) 在 (0,+∞) 内为单调递减,故 p = 0适合题意.② 当 p > 0时,h (x ) = px 2-2x + p ,其图象为开口向上的抛物线,对称轴为 x = 1p ∈(0,+∞),∴ h (x )m i n = p -1p只需 p -1p ≥1,即 p ≥1 时 h (x )≥0,f’(x )≥0 ∴ f (x ) 在 (0,+∞) 内为单调递增, 故 p ≥1适合题意.③ 当 p < 0时,h (x ) = px 2-2x + p ,其图象为开口向下的抛物线,对称轴为 x = 1p ∉ (0,+∞) 只需 h (0)≤0,即 p ≤0时 h (x )≤0在 (0,+∞) 恒成立. 故 p < 0适合题意. ………… 11分 综上可得,p ≥1或 p ≤0 ………… 12分 另解:(II)由 (I) 知 f (x ) = px -px -2ln xf’(x ) = p + p x 2 -2x = p (1 + 1x 2 )-2x要使 f (x ) 在其定义域 (0,+∞) 内为单调函数,只需 f’(x ) 在 (0,+∞) 内满足:f’(x )≥0 或 f’(x )≤0 恒成立. ………… 6分由 f’(x )≥0 ⇔ p (1 + 1x 2 )-2x ≥0 ⇔ p ≥2x + 1x ⇔ p ≥(2x + 1x)max ,x > 0∵2x + 1x≤22x · 1x= 1,且 x = 1 时等号成立,故 (2x + 1x )max = 1 ∴ p ≥1 ………… 9分由 f’(x )≤0 ⇔ p (1 + 1x 2 )-2x ≤0 ⇔ p ≤ 2x x 2 + 1 ⇔ p ≤(2xx 2 + 1 )m i n ,x > 0 而 2x x 2 + 1 > 0 且 x → 0 时,2xx 2 + 1 → 0,故 p ≤0………… 11分 综上可得,p ≥1或 p ≤09、(四川省成都市一诊)已知函数()ln f x x =,()(0)ag x a x=>,设()()()F x f x g x =+.(Ⅰ)求函数()F x 的单调区间;(Ⅱ)若以函数()((0,3])y F x x =∈图像上任意一点00(,)P x y 为切点的切线的斜率12k ≤恒成立,求实数a 的最小值; (Ⅲ)是否存在实数m,使得函数2211a y g m x ⎛⎫=+-⎪+⎝⎭的图像与函数2(1)y f x =+的图像恰有四个不同的交点?若存在,求出实数m 的取值范围;若不存在,说明理由。