第一学期八年级数学1月月考期末复习试卷(含解析)
- 格式:doc
- 大小:1.21 MB
- 文档页数:29
八年级上学期数学第一次月考试卷(满分150分时间:120分钟)一.单选题。
(每小题4分,共40分)1.在下列实数中,无理数有().A.﹣1B.3.14C.√2D.152.在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.﹣8的立方根是()A.﹣2B.﹣12C.12D.24.用式子表示16的平方根,正确的是()A.±√16=±4B.√16=4C.√16=±4D.±√16=45.根据下列描述,能确定准确位置的是()A.某影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°6.点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,则点P的坐标为()A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)7.与点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是()A.﹣1B.﹣5C.1D.58.下列运算正确的是()A.√2+√3=√5B.2×√3=√6C.3√2-√2=3D.√12÷√3=29.如图,已知小华的坐标为(﹣2,﹣1),小亮的坐标为(﹣1,0),则小东的坐标应该是()A.(﹣3,﹣2)B.(1,1)C.(1,2)D.(3,2)10.已知直线MN∥x轴,M点的坐标为(1,3),且线段MN=4,则点N的坐标为()A.(5,3)B.(3,5)C.(5,3)或(﹣3,3)D.(3,5)或(3,﹣3)二.填空题。
(每小题4分,共24分)11.如果用有序数对(1,4)表示第一单元4号的住户,则第二单元6号住户用有序数对表示为 .12.36的算式平方根是 .13.在平面直角坐标系中,点(﹣3,1)关于x 轴对称的点的坐标是 . 14.在平面直角坐标系中,点M (a+1,a -1)在x 轴上,则a= . 15.对于任意不相等的两个数a ,b ,定义一种运算如下:a ×b=√a+b a -b,如3×2=√3+23-2,那么6×3= .16.已知a ,b 都是实数,若|a -2|+√b -4=0,则√ab a= . 三.解答题。
2016-2017学年陕西省汉中市南郑县红庙中学八年级(上)第一次月考数学试卷一、选择题:(每题3分共30分)1.下列四组数据不能作为直角三角形的三边长的是()A.6、8、10 B.5、12、13 C.12、18、22 D.9、12、152.下列说法正确的是()A.7是49的算术平方根,即=±7B.7是(﹣7)2的平方根,即=7C.±7是49的平方根,即±=7D.±7是49的平方根,即=±73.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米4.已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为()A.80m B.30m C.90m D.120m5.下列各组数中,互为相反数的一组是()A.2与B.﹣2与C.﹣2与﹣D.2与|﹣2|6.等边三角形的边长是10,它的高的平方等于()A.50 B.75 C.125 D.2007.直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是()A.6厘米B.8厘米C.厘米D.厘米8.a、b在数轴上的位置如图所示,那么化简的结果是()A.2a﹣b B.b C.﹣b D.﹣2a+b9.已知|a|=5, =7,且|a+b|=a+b,则a﹣b的值为()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣1210.若将三个数,,表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.B.C. D.无法确定二、填空题(每小题4分,共24分)11.若三角形的三边之比为3:4:5,则此三角形为三角形.12.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.13.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为.14. = ; = ; = .15.已知|a﹣5|+=0,那么a﹣b= .16.已知a、b为有理数,m、n分别表示5﹣的整数部分和小数部分,且am+bn=9,则a+b= .三、解答题(共66分)17.计算:(1)(+)(﹣)﹣(2)(3)+﹣(4)﹣()2+(π+)0﹣+|﹣2|18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.19.已知一个数m的平方根是3a+1和a+11,求m的立方根.20.如图,在Rt△ABC中,∠C=90°,AC=8,在△ABE中,DE是AB边上的高,DE=12,S△ABE=60,求BC的长.21.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?22.若a,b为实数,且b=,求﹣的值.23.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为a、2a、a (a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.2016-2017学年陕西省汉中市南郑县红庙中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(每题3分共30分)1.下列四组数据不能作为直角三角形的三边长的是()A.6、8、10 B.5、12、13 C.12、18、22 D.9、12、15【考点】勾股定理的逆定理.【分析】利用勾股定理的逆定理即可求解.【解答】解:A、∵62+82=102,∴此三角形为直角三角形,故选项错误;B、∵52+122=132,∴此三角形为直角三角形,故选项错误;C、∵122+182≠222,∴此三角形不是直角三角形,故选项正确;D、∵92+122=152,∴此三角形为直角三角形,故选项错误.故选C.2.下列说法正确的是()A.7是49的算术平方根,即=±7B.7是(﹣7)2的平方根,即=7C.±7是49的平方根,即±=7D.±7是49的平方根,即=±7【考点】平方根;算术平方根.【分析】根据平方根的定义以及书写特点可知,代表的就是49的算术平方根,由排除法可得出结论.【解答】解:∵代表的就是49的算术平方根,∴A、C、D选项均错误,故选B.3.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.4.已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为()A.80m B.30m C.90m D.120m【考点】勾股定理.【分析】设出直角三角形的两直角边分别为a,b,斜边为c,利用勾股定理列出关系式,再由三边的平方和为1800,列出关系式,联立两关系式,即可求出斜边的长.【解答】解:设直角三角形的两直角边分别为acm,bcm,斜边为ccm,根据勾股定理得:a2+b2=c2,∵a2+b2+c2=1800,∴2c2=1800,即c2=900,则c=30cm.故选B.5.下列各组数中,互为相反数的一组是()A.2与B.﹣2与C.﹣2与﹣D.2与|﹣2|【考点】实数的性质.【分析】首先化简,然后根据互为相反数的定义即可判定选择项.【解答】解:A、=2,两数相等,不能互为相反数,故选项错误;B、=2与﹣2互为相反数,故选项正确;C、互为倒数,故选项错误;D、|﹣2|=2,两数相等,不能互为相反数,故选项错误.故选B.6.等边三角形的边长是10,它的高的平方等于()A.50 B.75 C.125 D.200【考点】等边三角形的性质.【分析】根据题意作出图形,利用勾股定理直接求得即可.【解答】解:如图,由题意得:AB=BC=AC=10,∵△ABC为等边三角形,∴BD=BC=5,∴AD2=AB2﹣BD2=102﹣52=75,故选B.7.直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是()A.6厘米B.8厘米C.厘米D.厘米【考点】勾股定理.【分析】先根据勾股定理求出斜边的长,再根据三角形的面积公式即可得出结论.【解答】解:∵直角三角形的两直角边分别为5厘米、12厘米,∴斜边长==13(厘米),∴斜边上的高==(厘米).故选D.8.a、b在数轴上的位置如图所示,那么化简的结果是()A.2a﹣b B.b C.﹣b D.﹣2a+b【考点】实数与数轴;二次根式的性质与化简.【分析】根据差的绝对值是大数减小数,二次根式的性质,可化简代数式,根据整式的加减,可得答案.【解答】解:原式=a﹣b﹣a=﹣b.故选:C.9.已知|a|=5, =7,且|a+b|=a+b,则a﹣b的值为()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12【考点】算术平方根.【分析】首先分别根据绝对值的和算术平方根的定义可求出a,b的值,然后把a,b的值代入|a+b|=a+b中,最终确定a,b的值,然后求解.【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选D.10.若将三个数,,表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.B.C. D.无法确定【考点】实数与数轴;估算无理数的大小.【分析】首先利用估算的方法分别得到,,前后的整数(即它们分别在哪两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.故选B.二、填空题(每小题4分,共24分)11.若三角形的三边之比为3:4:5,则此三角形为直角三角形.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理得出即可.【解答】解:∵三角形的三边之比为3:4:5,∴32+42=52,∴此三角形是直角三角形,故答案为:直角.12.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49 cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.13.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为.【考点】角平分线的性质;等腰直角三角形.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得点D到AC的距离也等于DE,然后利用△ABC的面积列方程求出DE,再判断出△ADE是等腰直角三角形,根据等腰直角三角形的性质求出AE,再求出BE,然后利用勾股定理列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵AD平分∠BAC,∴点D到AC的距离也等于DE,∴S△ABC=×3•DE+×4•DE=×3×4,解得DE=,∵AD平分∠BAC,∠BAC=90°,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE=,∴BE=3﹣=,在Rt△BDE中,BD===.故答案为:.14. = 4 ; = ﹣6 ; = 196 .【考点】算术平方根;立方根.【分析】直接利用立方根的性质,平方运算法则,平方根的性质进行求解即可.【解答】解: =4;=﹣6;=196.15.已知|a﹣5|+=0,那么a﹣b= 8 .【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】首先据绝对值和二次根式的非负性可知,两个非负数相加为0,意味着每个式子都为0,求出a和b,代入a﹣b计算即可.【解答】解:∵|a﹣5|+=0,∴a﹣5=0,b+3=0,解得a=5,b=﹣3.∴a﹣b=5+3=8.故答案为:8.16.已知a 、b 为有理数,m 、n 分别表示5﹣的整数部分和小数部分,且am+bn=9,则a+b= 4.5 .【考点】估算无理数的大小.【分析】根据已知首先求出m ,n 的值,进而化简原式得出2a+3b=9,b=0,求出a 、b ,再代入a+b 计算即可求解.【解答】解:∵4<7<9,∴2<<3,根据题意得:m=2,n=5﹣﹣2=3﹣,代入am+bn=9得:2a+(3﹣)b=9,整理得:2a+3b=9,﹣b=0,解得:a=4.5,b=0,∴a+b=4.5+0=4.5.故答案为:4.5.三、解答题(共66分)17.计算:(1)(+)(﹣)﹣(2)(3)+﹣(4)﹣()2+(π+)0﹣+|﹣2|【考点】实数的运算;零指数幂.【分析】(1)原式利用平方差公式计算即可得到结果;(2)原式利用二次根式性质计算即可得到结果;(3)原式利用平方根及立方根定义计算即可得到结果;(4)原式利用零指数幂法则,绝对值的代数意义,以及二次根式性质计算即可得到结果.【解答】解:(1)原式=7﹣3﹣4=0;(2)原式=10﹣7=3;(3)原式=+0.3﹣=2.6;(4)原式=﹣3+1﹣3+2﹣=﹣3.18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.【考点】勾股定理的应用.【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+1)m,再利用勾股定理即可求得AB的长,即旗杆的高.【解答】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.19.已知一个数m的平方根是3a+1和a+11,求m的立方根.【考点】立方根;平方根.【分析】依据平方根的性质列出方程,从而可求得a的值,然后依据平方根的性质可求得m 的值,然后再求它的立方根即可.【解答】解:∵一个数m的平方根是3a+1和a+11,∴3a+1+a+11=0.解得:a=﹣3.∴a+11=8.∴m=82=64.64的立方根是4.∴m的立方根是4.20.如图,在Rt△ABC中,∠C=90°,AC=8,在△ABE中,DE是AB边上的高,DE=12,S△ABE=60,求BC的长.【考点】勾股定理;三角形的面积.【分析】利用面积法求得斜边AB的长度,然后在Rt△ABC中,利用勾股定理来求线段BC的长度.【解答】解:如图,∵在△ABE中,DE是AB边上的高,DE=12,S△ABE=60,∴AB•ED=60,即AB×12=60,解得AB=10.又∵在Rt△ABC中,∠C=90°,AC=8,∴BC===6.答:线段BC的长度是6.21.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?【考点】平面展开-最短路径问题.【分析】先将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB;或将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,然后分别在Rt△ABD与Rt△ABH,利用勾股定理求得AB的长,比较大小即可求得需要爬行的最短路程.【解答】解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:AB==15cm;将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:AB==10cm,则需要爬行的最短距离是15cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:AB==5cm,∵15<10<5,∴则需要爬行的最短距离是15cm.22.若a,b为实数,且b=,求﹣的值.【考点】二次根式有意义的条件.【分析】先根据二次根式的基本性质:有意义,则a≥0求出a的值,由分式有意义的条件得到a=1,进一步得到b的值,再代入即可得到﹣的值.【解答】解:∵b=,∴a2﹣1=0且a+1≠0,解得a=1,∴b==,∴﹣=﹣3.故﹣的值是﹣3.23.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为a、2a、a (a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.【考点】勾股定理.【分析】(1)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(2)先作出以a、2a为直角边的三角形的斜边,再根据勾股定理和网格结构作出2a、a 的长度,然后顺次连接即可;再根据三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)S△ABC=3×3﹣×1×2﹣×1×3﹣×2×3=9﹣1﹣﹣3=9﹣5.5=3.5;故答案为:3.5;(2)△ABC如图所示,S△ABC=2a•4a﹣×2a•a﹣×2a•2a﹣×4a•a=8a2﹣a2﹣2a2﹣2a2=3a2.。
2023-2024学年度第一学期南京八年级数学第一次月考试卷一、选择题(本大题共有10个小题,每小题3分,共30分)1.下列图形是几家电信公司的标志,其中是轴对称图形的是( )A .B .C .D .2. 如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去( )A .①B .②C .③D .①和②3. 满足下列条件的ABC 不是直角三角形的是( )A ::2:3:4ABC ∠∠∠= B. 123A B C ∠∠∠=::::C. A B C ∠−∠=∠D. 3BC =,4AC =,5AB = 4 . 如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( )A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC =.A .两个正方形全等B .有一个锐角相等的两个直角三角形全等C .有两边及一个角对应相等的两个三角形全等D .斜边和一个锐角对应相等的两个直角三角形全等6. 用直尺和圆规作一个角等于已知角,如图,能得出AOB AO B ′′′∠=∠的依据是( )A .SASB .SSSC .ASAD .AAS7. 如图,△ABC 中,AB=6cm ,AC = 8cm ,BC 的垂直平分线与 AC 相交于点 D ,则△ABD 的周长为( )A .10cmB .12cmC .14cmD .16cm8 . 如图,有一张直角三角形的纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,则BD 的长为( )A .5cmB .4cmC .3cmD .2cm8. 如图,EB 交AC 于点M ,交CF 于点D ,AB 交FC 于点N ,90E F ∠=∠=°,B C ∠=∠,AE AF =.下列结论:①12∠=∠;②CD BD =;③AFN BDN ≌;④AM AN =.其中所以正确结论的序号是( )A .①②③B .①②④C .①③④D .②③④10 . 如图,在△ABC 与△AEF 中,AB =AE ,BC =EF ,∠ABC =∠AEF ,∠EAB =40°,AB 交EF 于点D ,连接EB .下列结论:①∠FAC =40°;②AF =AC ;③∠EBC =110°;④AD =AC ;⑤∠EFB =40°, 其中正确的个数为( )个.A .1B .2C .3D .4二、填空题(本大题共有8个小题,每小题3分,共24分)12.如图所示,在 ABC 中,∠C =90°,BD 平分∠ABC ,作DE ⊥AB 于点E .若CD =3,那么DE 的长为 .13.如图:ABC DEF ≌△△,7BC =,4EC =,那么CF 的长为 .14 . 如图,AB AC =,AD AE =,BAC DAE ∠=∠,125∠=°,230∠=°, 连接BE ,点D 恰好在BE 上,则3∠=________15.如图,在△ABC 中,AB 的垂直平分线l 交BC 于点D ,B=7,AC =4,则△ACD 的周长为 .16.如图,在ABC 中,ABC ∠、ACB ∠的角平分线交于点O ,过O 作MN BC ∥,分别交AB AC 、于点M 、N .若AMN 的周长为10cm ,则AB AC +=cm .17.如图,已知:∠A =∠D ,∠1=∠2,下列条件中:①∠E =∠B ;②EF = BC ;③AB = EF ;④AF =C D .能使△ABC ≌△DEF 的有 ;(填序号)18.如图,△ABC 中,DE 、FG 分别是AB 、AC 的垂直平分线,BC =4cm ,∠BAC =100°.则△ADF 的周长是 cm ,∠DAF = °.19.如图,12,,AB AE AC AD ∠=∠==.求证:BC ED =.20.如图,在△ABC 中,AB =AC ,∠A =50°,DE 垂直平分AB ,求∠DBC 的度数.21.已知:AD 平分∠CAB , 且DC ⊥AC , DB ⊥AB ,求证:AB =AC22.如图,在边长为1的小正方形组成的网格中,点A 、B 、C 均在小正方形的顶点上.(1) 在图中画出与ABC 关于直线l 成轴对称的A B C ′′′ ;(2) 在直线l 上找一点P ,使得BPC △的周长最小;(3) 求A B C ′′′ 的面积.23.在ABC 中,AD BC ⊥于点D ,点E 为AD 上一点,连接CE ,CE =AB ,ED =BD .(1)求证:ABD CED △≌△;(2)若22ACE ∠°=,则B ∠的度数为 .24 .如图,在ABC 和ADE 中,90BAC DAE ∠=∠=°,AB AC =,AD AE =, 点C 、D 、E 三点在同一直线上,连接BD 交AC 于点F .(1)求证:BAD CAE ≌;CE25.已知△ABC中,AC=BC;△DEC中,DC=EC;∠ACB=∠DCE=α,(1)如图1,当α=60°时,①求证:AD=BE;②求出∠AEB的度数;(2)如图2,当α=90°时,求:①∠AEB的度数;②若∠CAF=∠BAF,BE=2,求AF的长.2023-2024学年度第一学期南京八年级数学第一次月考试卷(解答卷)一、选择题(本大题共有10个小题,每小题3分,共30分)1.下列图形是几家电信公司的标志,其中是轴对称图形的是( )A .B .C .D .【答案】C2. 如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去( )A .①B .②C .③D .①和②【答案】C3. 满足下列条件的ABC 不是直角三角形的是( )A ::2:3:4ABC ∠∠∠= B. 123A B C ∠∠∠=::::C. A B C ∠−∠=∠D. 3BC =,4AC =,5AB =【答案】A4 . 如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( ).A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC =5.下列结论正确的是( )A .两个正方形全等B .有一个锐角相等的两个直角三角形全等C .有两边及一个角对应相等的两个三角形全等D .斜边和一个锐角对应相等的两个直角三角形全等【答案】D6. 用直尺和圆规作一个角等于已知角,如图,能得出AOB AO B ′′′∠=∠的依据是()A .SASB .SSSC .ASAD .AAS【答案】B7. 如图,△ABC 中,AB=6cm ,AC = 8cm ,BC 的垂直平分线与 AC 相交于点 D ,则△ABD 的周长为( )A .10cmB .12cmC .14cmD .16cm【答案】C8 . 如图,有一张直角三角形的纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,则BD 的长为( )A .5cmB .4cmC .3cmD .2cm【答案】A8. 如图,EB 交AC 于点M ,交CF 于点D ,AB 交FC 于点N ,90E F ∠=∠=°,B C ∠=∠,AE AF =.下列结论:①12∠=∠;②CD BD =;③AFN BDN ≌;④AM AN =.其中所以正确结论的序号是( )A .①②③B .①②④C .①③④D .②③④【答案】B10 . 如图,在△ABC 与△AEF 中,AB =AE ,BC =EF ,∠ABC =∠AEF ,∠EAB =40°,AB 交EF 于点D ,连接EB .下列结论:①∠FAC =40°;②AF =AC ;③∠EBC =110°;④AD =AC ;⑤∠EFB =40°, 其中正确的个数为( )个.A .1B .2C .3D .4【答案】C二、填空题(本大题共有8个小题,每小题3分,共24分)11. 如图,12∠=∠,BC EC =,请补充一个条件:______,能使用“ASA ”方法判定ABC DEC ≌△△.【答案】∠B =∠E .12.如图所示,在 ABC 中,∠C =90°,BD 平分∠ABC ,作DE ⊥AB 于点E .【答案】313.如图:ABC DEF ≌△△,7BC =,4EC =,那么CF 的长为 .【答案】314 . 如图,AB AC =,AD AE =,BAC DAE ∠=∠,125∠=°,230∠=°, 连接BE ,点D 恰好在BE 上,则3∠=________【答案】55°15.如图,在△ABC 中,AB 的垂直平分线l 交BC 于点D ,B=7,AC =4,则△ACD 的周长为 .【答案】1116.如图,在ABC 中,ABC ∠、ACB ∠的角平分线交于点O ,过O 作MN BC ∥,分别交AB AC 、于点M 、N .若AMN 的周长为10cm ,则AB AC +=cm .【答案】1017.如图,已知:∠A =∠D ,∠1=∠2,下列条件中:①∠E =∠B ;②EF = BC ;③AB = EF ;④AF =C D .能使△ABC ≌△DEF 的有 ;(填序号)【答案】②④18.如图,△ABC 中,DE 、FG 分别是AB 、AC 的垂直平分线,BC =4cm ,∠BAC =100°.则△ADF 的周长是 cm ,∠DAF = °.【答案】 4 2019.如图,12,,AB AE AC AD ∠=∠==.求证:BC ED =.证明:∵12∠=∠,∴12EAC EAC ∠+∠=∠+∠,即BAC EAD ∠=∠, 在ABC 和AED △中,AB AE BAC EAD AC AD = ∠=∠ =∴()SAS ABC AED ≌,∴BC ED =.20.如图,在△ABC 中,AB =AC ,∠A =50°,DE 垂直平分AB ,求∠DBC 的度数.解:∵AB =AC ,50A ∠=∵DE 垂直平分AB∴DA =DB∴∠ABD =∠A =50°∴∠DBC =65°-50°=15°21.已知:AD 平分∠CAB , 且DC ⊥AC , DB ⊥AB ,求证:AB =AC证明 :∵AD 平分∠CAB ,∴∠CAD=∠BAD ,∵DC ⊥AC ,DB ⊥AB ,∴ ∠ACD=∠ABD=90°,在△ACD 和△ABD 中CAD BAD C D AD AD ∠=∠ ∠=∠ =∴△ACD ≌△ABD (AAS ),∴AC=AB .22.如图,在边长为1的小正方形组成的网格中,点A 、B 、C 均在小正方形的顶点上.(1) 在图中画出与ABC 关于直线l 成轴对称的A B C ′′′ ;(2) 在直线l 上找一点P ,使得BPC △的周长最小;(3) 求A B C ′′′ 的面积.解:(1)如图,A B C ′′′ 即为所求;(2)如图,点P 即为所求;(3)A B C ′′′ 的面积11134123242222=×−××−××−××4=.23.在ABC 中,AD BC ⊥于点D ,点E 为AD 上一点,连接CE ,CE =AB ,ED =BD .(1)求证:ABD CED △≌△;(2)若22ACE ∠°=,则B ∠的度数为 .解:(1)∵AD ⊥BC ,∴∠ADB =∠CDE =90°,在Rt ABD 与Rt CED 中,CE AB ED BD = =, ∴Rt ABD Rt CED HL ≌(); (2)∵Rt ABD Rt CED ≌,∴AD =CD ,∴ADC △是等腰直角三角形,∴∠ACD =45°,∴∠ECD =∠ACD ﹣∠ACE =45°﹣22°=23°, ∴∠CED =90°﹣23°=67°,∴∠B =∠CED =67°.24 .如图,在ABC 和ADE 中,90BAC DAE ∠=∠=°,AB AC =,AD AE =, 点C 、D 、E 三点在同一直线上,连接BD 交AC 于点F .(1)求证:BAD CAE ≌;(2)猜想BD ,CE 有何特殊位置关系,并说明理由.解:(1)证:∵90BAC DAE ∠=∠=°, ∴BAC CAD EAD CAD ∠+∠=∠+∠,∴BAD CAE ∠=∠, 在BAD 和CAE 中,===AB AC BAD CAE AD AE ∠∠,∴()SAS BAD CAE ≌△△.(2)证:猜想:BD CE ⊥,理由如下:由(1)知BAD CAE ≌,∴=BD CE ,ABD ACE ∠=∠, ∵=AB AC ,90BAC ∠=°,∴45ABC ACB ∠=∠=°, ∴45ABD DBC ABC +==°∠∠∠, ∵ABD ACE ∠=∠, ∴45ACE DBC∠+∠=°, ∴90DBC DCB DBC ACE ACB ∠+∠=∠+∠+∠=°,∴1801809090BDCDBC DCB ∠=°−∠−∠=°−°=°, ∴BD CE ⊥.25.已知△ABC 中,AC =BC ;△DEC 中,DC =EC ;∠ACB =∠DCE =α,(1)如图1,当α=60°时,①求证:AD =BE ;②求出∠AEB 的度数;(2)如图2,当α=90°时,求:①∠AEB 的度数;②若∠CAF =∠BAF ,BE =2,求AF 的长. 解:(1)①∵AC =BC ,DC =EC ,∠ACB =∠DCE =60°, ∴△ABC 和△DEC 是等边三角形,∴∠ACB =∠DCE =∠CDE =∠CED =60°,CA =CB ,CD =CE ,∴∠ACB ﹣∠DCF =∠DCE ﹣∠DCF , ∴∠ACD =∠BCE ,在△CDA 和△CEB 中,AC BC ACD BCE CD CE = ∠=∠ =, ∴△CDA ≌△CEB (SAS ), ∴AD =BE ;②∵△CDA ≌△CEB , ∴∠CEB =∠CDA =180°﹣∠CDE =120°, ∵∠CED =60°, ∴∠AEB =∠CEB ﹣∠CED =120°﹣60°=60°;(2)①∵AC =BC ,CD =CE ,∠ACB =∠DCE =90°, ∴△ACB 和△DCE 均为等腰直角三角形, ∴∠CDE =45°=∠CED , ∴∠ACB ﹣∠DCB =∠DCE ﹣∠DCB , 即∠ACD =∠BCE , ∴∠ADC =180°﹣∠CDE =135°, 在△ACD 和△BCE 中,AC BC ACD BCE CD CE = ∠=∠ = ,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°,②∵△ACD≌△BCE,BE=2,∴BE=AD=2,∵∠CAF=∠BAF=22.5°,∠CDE=45°=∠CAD+∠ACD,∴∠ACD=∠CAD=22.5°,∴AD=CD=2,∵∠DCF=90°﹣∠ACD=67.5°,∠AFC=∠ABC+∠BAF=67.5°,∴∠DCF=∠AFC,∴DC=DF=2,∴AF=AD+DF=4,。
2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .52.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2 B .﹣2与√−83 C .﹣2与−12 D .2与|﹣2|3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 24.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0 B .x ≥﹣1 C .x <﹣1 D .x >﹣1且x ≠05.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .256.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C 到旗杆底部B 的距离为5米,则旗杆的高度为( )米.A.5B.12C.13D.177.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:58.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√139.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤1610.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为,面积为.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为米.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.18.计算:(1)2√3(√12−√75+13√108)(2)(√a3b−√ab3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法;(填“正确”或“错误”)(2)已知△ABC的其中两边长分别为1,√7,若△ABC为“类勾股三角形”,则另一边长为;(3)如果Rt△ABC是“类勾股三角形”,它的三边长分别为x,y,z(x,y为直角边长且x<y,z为斜边长),用只含有x的式子表示其周长和面积.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .5 【答案】D【分析】直接利用算术平方根的定义得出答案.【解答】解:25的算术平方根是:5.故选:D .【点评】此题主要考查了算术平方根,正确把握定义是解题关键.2.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2B .﹣2与√−83C .﹣2与−12D .2与|﹣2| 【答案】A【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A 、√(−2)2=2,﹣2与√(−2)2是互为相反数,故本选项正确; B 、√−83=−2,﹣2与√−83相等,不是互为相反数,故本选项错误;C 、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D 、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A .【点评】本题考查了实数的性质,对各项准确计算是解题的关键.3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 2 【答案】C【分析】A 选项的被开方数中含有分母;B 、D 选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C 选项符合最简二次根式的要求.【解答】解:因为:A 、√0.2b =√5b 5; B 、√12a −12b =2√3a −3b ;D 、√5ab 2=√5a |b |;所以这三项都可化简,不是最简二次根式.故选:C .【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.4.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0B .x ≥﹣1C .x <﹣1D .x >﹣1且x ≠0【答案】A【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意,得{x +1≥0x ≠0, 解得:x ≥﹣1且x ≠0.故选:A .【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值后,应排除在取值范围内使分母为0的x 的值.5.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .25【答案】C【分析】先根据勾股定理求出AB的长,再由正方形的面积公式即可得出结论.【解答】解:∵∠C=90°,AC=3,BC=2,∴AB=√AC2+BC2=√32+22=√13,∴正方形的面积=(√13)2=13.故选:C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.6.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,则旗杆的高度为()米.A.5B.12C.13D.17【答案】B【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【解答】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12.答:旗杆的高度为12米.故选:B.【点评】此题考查了勾股定理的应用,熟知勾股定理是解题关键.7.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【答案】C【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.8.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√13【答案】C【分析】先估算√13的大小,再估算9−√13的大小,进而确定a、b的值,最后代入计算即可.【解答】解:∵3<√13<4,∴﹣4<−√13<−3,∴5<9−√13<6,又∵9−√13的整数部分为a,小数部分为b,∴a=5,b=9−√13−5=4−√13,∴2a+b=10+(4−√13)=14−√13,故选:C.【点评】本题考查估算无理数,掌握无理数估算的方法是解决问题的前提,理解无理数的整数部分和小数部分的表示方法是得出正确答案的关键.9.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤16【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB=√AD2+BD2=17,∴此时h=24﹣17=7,所以h的取值范围是7≤h≤16.故选:D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.10.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个【答案】A【分析】利用面积法证明勾股定理即可解决问题.【解答】解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×12ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×12ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=12(a+b)(a+b)=2×12×ab+12c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b−b−a2)(a+b−a2)=12ab+12c⋅12c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.【点评】本题考查了勾股定理的证明、正方形的性质、直角三角形面积的计算;熟练掌握正方形的性质,运用面积法得出等式是解决问题的关键.二.填空题(共6小题)11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=1.【答案】见试题解答内容【分析】先把√8化为最简二次根式2√2,再根据同类二次根式得到m+1=2,然后解方程即可.【解答】解:∵√8=2√2,∴m+1=2,∴m=1.故答案为1.【点评】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为2√3cm,面积为√5cm2.【答案】见试题解答内容【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长=√(√2)2+(√10)2=2√3cm;直角三角形的面积=12×√2×√10=√5cm2.故填2√3cm,√5cm2.【点评】此题主要考查勾股定理及三角形的面积.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈249.3.【答案】249.3.【分析】根据“被开方数的小数点向右或向左移动2位,它们的算术平方根的小数点就相应地向右或向左移动1位”解答即可.【解答】解:∵被开方数62130可由6.213的小数点向右移动4位得到,∴√62130可由√6.123的算术平方根2.493的小数点向右移动2位得到,即√62130≈249.3.故答案为:249.3.【点评】本题考查算术平方根的规律,熟悉被开方数小数点移动与其算术平方根小数点移动的规律是解题的关键.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=4√2.【答案】见试题解答内容【分析】根据二次根式的运算法则即可求出答案.【解答】解:∵a=3+2√2,b=3﹣2√2,∴ab=9﹣8=1,a﹣b=4√2,∴原式=ab(a﹣b)=4√2,故答案为:4√2【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【答案】见试题解答内容【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=√5,OC=√6,OD=√7∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为600√3米.【答案】见试题解答内容【分析】过点C作CO⊥AB,垂足为O,由图可看出,三角形OAC为一直角三角形,已知一直角边和一角,则可求斜边.【解答】解:过点C作CO⊥AB,垂足为O,∵BD=900,∴OC=900,∵∠EAC=30°,∴∠ACO=30°.在Rt△AOC中,∵AC=2OA,设OA=x,则AC=2x,(2x)2﹣x2=OC2=9002,∴x2=270000,∴x=300√3∴AC=600√3米.故答案为600√3.【点评】本题考查了直角三角形的性质和勾股定理.三.解答题(共7小题)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.【答案】见试题解答内容【分析】(1)根据题意,可以分别求得BC 、AC 、AB 的长,然后利用勾股定理的逆定理,即可判断△ABC 的形状;(2)根据等积法,可以求得AB 边上的高.【解答】解:(1)△ABC 为直角三角形, 理由:由图可知,AC =√22+42=2√5,BC =√12+22=√5,AB =√32+42=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形;(2)设AB 边上的高为h , 由(1)知,AC =2√5,BC =√5,AB =5,△ABC 是直角三角形,∴12BC ⋅AC =12AB ⋅ℎ, 即12×√5×2√5=12×5h ,解得,h =2, 即AB 边上的高为2.【点评】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.18.计算: (1)2√3(√12−√75+13√108)(2)(√a 3b −√ab 3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.【答案】见试题解答内容【分析】(1)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(2)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(3)先把各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(4)先进行二次根式的乘法运算,然后合并即可;(5)利用平方差公式计算;(6)利用积的乘方进行计算.【解答】解:(1)原式=2√3(2√3−5√3+2√3)=2√3×(−√3)=﹣6;(2)原式=(a√ab−b√ab)•√ab=(a﹣b)√ab•√ab=ab(a﹣b)=a2b﹣ab2;(3)原式=(√2−2√3)(3√2+4√3)=6+4√6−6√6−24=﹣2√6−18;(4)原式=54√12×8+5√12×23−32√32×8−6√32×23=52+5√33−3√3−6=−72−4√33;(5)原式=(5√2)2﹣(2√7)2=50﹣28=22;(6)原式=[(√3+√2)(√3−√2)]2012•(√3+√2)=√3+√2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.【答案】见试题解答内容【分析】先由勾股定理求AB=10.再用勾股定理从△DEB中建立等量关系列出方程即可求CD的长.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.【点评】此题不但考查了勾股定理,还考查了学生折叠的知识,折叠中学生一定要弄清其中的等量关系.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.【答案】见试题解答内容【分析】(1)根据立方根、算术平方根、无理数的估算即可求出a、b、c的值;(2)求出代数式2a﹣b+92c的值,再求这个数的平方根.【解答】解:(1)∵3a+1的立方根是﹣2,∴3a+1=﹣8,解得,a=﹣3,∵2b﹣1的算术平方根是3,∴2b﹣1=9,解得,b=5,∵√36<√43<√49,∴6<√43<7,∴√43的整数部分为6,即,c=6,因此,a=﹣3,b=5,c=6,(2)当a=﹣3,b=5,c=6时,2a﹣b+92c=−6﹣5+92×6=16,2a﹣b+92c的平方根为±√16=±4.【点评】本题考查算术平方根、立方根、无理数的估算,掌握算术平方根、立方根和无理数的估算是正确解答的前提.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=14﹣x;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.【答案】见试题解答内容【分析】(1)直接利用BC的长表示出DC的长;(2)直接利用勾股定理进而得出x的值;(3)利用三角形面积求法得出答案.【解答】解:(1)∵BC=14,BD=x,∴DC=14﹣x,故答案为:14﹣x;(2)∵AD⊥BC,∴AD2=AC2﹣CD2,AD2=AB2﹣BD2,∴132﹣(14﹣x)2=152﹣x2,解得:x=9;(3)由(2)得:AD=√AB2−BD2=√152−92=12,∴S△ABC=12•BC•AD=12×14×12=84.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出AD的长是解题关键.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法 正确 ;(填“正确”或“错误”)(2)已知△ABC 的其中两边长分别为1,√7,若△ABC 为“类勾股三角形”,则另一边长为 2或√13 ; (3)如果Rt △ABC 是“类勾股三角形”,它的三边长分别为x ,y ,z (x ,y 为直角边长且x <y ,z 为斜边长),用只含有x 的式子表示其周长和面积.【答案】(1)正确;(2)2或√13;(3)周长为(1+√2+√3)x ,面积为√22x 2. 【分析】(1)根据“类勾股三角形”的定义进行判断即可;(2)设出第三边,利用“类勾股三角形”的定义分三种情况讨论求解并进行验证即可;(3)根据勾股定理和类勾股三角形的性质将b 、c 用a 表示,即可求出结果.【解答】解:(1)设等边三角形三边长分别是a ,b ,c ,则a =b =c ,∴a 2+b 2=2c 2,∴等边三角形是“类勾股三角形”,∴小璐的说法正确.故答案为:正确;(2)设另一边长为x ,①12+(√7)2=2x 2,解得x =2,符合题意;②12+x 2=2(√7)2,解得x =√13,符合题意;③x 2+(√7)2=2×12,x 无解;故答案为:2或√13;(3)∵Rt △ABC 是“类勾股三角形”且x <y ,z 为斜边长,∴x 2+z 2=2y 2,由勾股定理得x 2+y 2=z 2,整理得x 2+x 2+y 2=2y 2,即2x 2=y 2,∴y =√2x , ∴z 2=3x 2,∴z =√3x ,∴Rt △ABC 的周长为x +y +z =(1+√2+√3)x ,Rt △ABC 的面积为12xy =12x •√2x =√22x 2. 【点评】本题考查勾股定理,理解题目中的新定义及掌握勾股定理是解题关键.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.【答案】(1)7;(2)答案见解答.【分析】(1)先根据等腰三角形三线合一的性质得BD=5,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论;(2)如图2,作辅助线,构建全等三角形,证明△CHB≌△AEF(SAS),得AE=CH,∠AEF=∠BHC,由等腰三角形三线合一的性质得EF=FH,最后由勾股定理和等量代换可得结论.【解答】(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD=√AB2−BD2=√132−52=12,Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH在△CHB和△AEF中,∵{BH=EF∠CBH=∠AFE=45°BC=AF,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.【点评】本题考查的是勾股定理,全等三角形的性质和判定,等腰三角形和等腰直角三角形的性质和判定,第二问有难度,正确作出辅助线是关键.。
某某省某某市黄亭中学2016-2017学年八年级(上)第一次月考数学试卷一、选择题(30分)1.下列式子:,,,1+,,其中是分式个数为()A.5 B.4 C.3 D.22.如果分式的值为0,那么x的值是()A.x=±1 B.x=1 C.x=﹣1 D.x=﹣23.下列等式成立的是()A. +=B. =C. =D. =﹣4.计算的结果为()A.B.C.D.5.下列算式中,你认为正确的是()A.B.C.D.6.下列分式是最简分式的是()A.B.C.D.7.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =18.某某市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =9.解分式方程,可知方程()A.解为x=7 B.解为x=8 C.解为x=15 D.无解10.关于x的分式方程的解是负数,则m的取值X围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠0二、填空题(24分)11.若=,则=.12.分式与的最简公分母是.13.若(x+)2=9,则(x﹣)2的值为.14.若方程无解,则m=.15.2015×(1.5)﹣2016的结果是.16.使分式的值为0,这时x=.17.方程的解为.18.现有纯农药一桶,倒出20升后用水补满;然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3:5,则桶的容积为升.三、解答题(24分)19.计算:(1)(1﹣)÷(2)(﹣)•.20.解方程: +=1.21.先化简,再求值:(﹣)•,其中x=4.四、应用题(22分)22.一列火车从车站开出,预计行程450千米.当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.23.某某火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?2016-2017学年某某省某某市黄亭中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(30分)1.下列式子:,,,1+,,其中是分式个数为()A.5 B.4 C.3 D.2【考点】分式的定义.【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【解答】解:,,1+是分式,共3个,故选:C.【点评】此题主要考查了分式的定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.如果分式的值为0,那么x的值是()A.x=±1 B.x=1 C.x=﹣1 D.x=﹣2【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得:(x+1)(x﹣1)=0,且x2﹣2x+1≠0,再解即可.【解答】解:由题意得:(x+1)(x﹣1)=0,且x2﹣2x+1≠0,解得:x=﹣1,故选:C.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.3.下列等式成立的是()A. +=B. =C. =D. =﹣【考点】分式的混合运算.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D、原式==﹣,错误,故选C【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.计算的结果为()A.B.C.D.【考点】分式的混合运算.【分析】先计算括号里的,再相乘.【解答】解:==﹣=﹣.故选A.【点评】本题的关键是通分、分解因式、约分,用到了平方差公式.5.下列算式中,你认为正确的是()A.B.C.D.【考点】分式的混合运算.【分析】根据分式的混合运算法则对每一项进行计算,然后作出正确的选择.【解答】解:A、,错误;B、1×=,错误;C、3a﹣1=,错误;D、==,正确.故选D.【点评】互为相反数的两个数为分母,那么最简公分母是其中的一个;除法应统一成乘法再计算;分式的分子分母能因式分解的要先因式分解,可以简化运算.6.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、原式=,分子、分母中含有公因式(x﹣1),则它不是最简分式,故本选项错误;B、它的分子、分母都不能再分解,且不能约分,是最简分式,故本选项正确;C、原式=,分子、分母中含有公因式(x﹣1),则它不是最简分式,故本选项错误;D、它的分子、分母中含有公因式ab,则它不是最简分式,故本选项错误;故选:B.【点评】本题考查了最简分式.分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1 B. =1 C. =1 D. =1【考点】由实际问题抽象出分式方程.【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.8.某某市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.【解答】解:设每个笔记本的价格为x元,则每个笔袋的价格为(x+3)元,根据题意得: =,故选B.【点评】本题考查了由实际问题抽象出分式方程的知识,解题的关键是能够找到概括题目全部含义的等量关系,难度不大.9.解分式方程,可知方程()A.解为x=7 B.解为x=8 C.解为x=15 D.无解【考点】解分式方程.【分析】本题考查解分式方程的能力,解分式方程首先要确定最简公分母,将分式方程化成整式方程求解,再将所求解代入最简公分母进行检验,若最简公分母为零,则方程无解.【解答】解:最简公分母为(x﹣7),去分母,得x﹣8+1=8(x﹣7),解得x=7,代入x﹣7=0.∴此方程无解.故选D.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)解分式方程去分母时一定要注意不要漏乘.10.关于x的分式方程的解是负数,则m的取值X围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠0【考点】分式方程的解.【分析】由题意分式方程的解为负数,解方程求出方程的解x,然后令其小于0,解出m的X围.注意最简公分母不为0.【解答】解:方程两边同乘(x+1),得m=﹣x﹣1解得x=﹣1﹣m,∵x<0,∴﹣1﹣m<0,解得m>﹣1,又x+1≠0,∴﹣1﹣m+1≠0,∴m≠0,即m>﹣1且m≠0.故选:B.【点评】此题主要考查分式的解,关键是会解出方程的解,此题难度中等,容易漏掉隐含条件最简公分母不为0.二、填空题(24分)11.若=,则=.【考点】比例的性质.【分析】由=,根据比例的性质可得:3(2m﹣n)=n,则可求得m=n,继而求得答案.【解答】解:∵ =,∴3(2m﹣n)=n,∴6m﹣3n=n,解得:m=n,∴=.故答案为:.【点评】此题考查了比例的性质.此题难度不大,注意掌握比例变形与比例的性质是解此题的关键.12.分式与的最简公分母是x(x+3)(x﹣3).【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的最简公分母是x(x+3)(x﹣3);故答案为:x(x+3)(x﹣3).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.13.若(x+)2=9,则(x﹣)2的值为 5 .【考点】完全平方公式.【分析】先由(x+)2=9计算出x2+=7,再由(x﹣)2,按完全平方公式展开,代入数值即可.【解答】解:由(x+)2=9,∴x2++2=9,∴x2+=7,则(x﹣)2=x2+﹣2=7﹣2=5.故答案为:5.【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14.若方程无解,则m= 1 .【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣3)(2﹣x)=m(x﹣2)解得:x=3﹣m,∴当x=2时分母为0,方程无解,即3﹣m=2,∴m=1时方程无解.故答案为:1.【点评】本题考查了分式方程无解的条件,是需要识记的内容.15.(﹣)2015×(1.5)﹣2016的结果是﹣.【考点】负整数指数幂.【分析】由于指数大,底数不是±1、0,不能先乘方再乘除;观察底数互为相反数,观察指数,有负整数指数,考虑逆用幂的相关公式计算.【解答】解:原式=﹣()2015×()2016=﹣[()2015×()2015]×()=﹣(×)2015×()=﹣故答案为:﹣【点评】本题考察了幂的相关计算法则,解决本题逆运用了积的乘方法则及同底数幂的乘法法则.16.使分式的值为0,这时x= 1 .【考点】分式的值为零的条件.【分析】让分子为0,分母不为0列式求值即可.【解答】解:由题意得:,解得x=1,故答案为1.【点评】考查分式值为0的条件;需考虑两方面的情况:分子为0,分母不为0.17.方程的解为x=﹣1 .【考点】解分式方程.【分析】本题考查解分式方程的能力,观察可得方程最简公分母为:x(x﹣2),去分母,化为整式方程求解.【解答】解:方程两边同乘x(x﹣2),得x﹣2=3x,解得:x=﹣1,经检验x=﹣1是方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.18.现有纯农药一桶,倒出20升后用水补满;然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3:5,则桶的容积为40 升.【考点】分式方程的应用.【分析】设桶的容积为x升,根据设桶的容积为X升,倒出20升农药后用水补满,浓度为,第二次倒出的10升中含农药10•,可计算出共倒出多少农药,根据这时,桶中纯农药与水的体积之比为3:5,纯农药占容积的,可列方程求解.【解答】解:设桶的容积为x升,=x=40或x=﹣8(舍去).经检验x=40是方程的解.故桶的容积为40升.【点评】本题考查理解题意的能力,关键将剩下农药的和容积的比值做为等量关系列方程求解.三、解答题(24分)19.计算:(1)(1﹣)÷(2)(﹣)•.【考点】分式的混合运算.【分析】(1)先计算括号的式子,再根据分式的除法即可解答本题;(2)先计算括号的式子,再根据分式的乘法即可解答本题.【解答】解:(1)(1﹣)÷==;(2)(﹣)•===.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.20.解方程: +=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣x2+2x+4=4﹣x2,解得:x=0,经检验x=0是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.先化简,再求值:(﹣)•,其中x=4.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=x+2,当x=4时,原式=6.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、应用题(22分)22.(10分)(2010春•昌宁县校级期末)一列火车从车站开出,预计行程450千米.当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.【考点】分式方程的应用.【分析】如果设这列火车原来的速度为每小时x千米,那么提速后的速度为每小时(x+0.2x)千米,根据等量关系:按原速度行驶所用时间﹣提速后时间=,列出方程,求解即可.【解答】解:设这列火车原来的速度为每小时x千米.由题意得:﹣=.整理得:12x=900.解得:x=75.经检验:x=75是原方程的解.(4分)答:这列火车原来的速度为每小时75千米.(5分)【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.如本题:车速提高了0.2倍,是一种隐含条件.23.(12分)(2015•某某)某某火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【考点】分式方程的应用;二元一次方程组的应用.【分析】(1)首先设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得等量关系:种植A,B两种花木共6600棵,根据等量关系列出方程,再解即可;(2)首先设安排a人种植A花木,由题意得等量关系:a人种植A花木所用时间=(26﹣a)人种植B花木所用时间,根据等量关系列出方程,再解即可.【解答】解:(1)设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得:x+2x﹣600=6600,解得:x=2400,2x﹣600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原分式方程的解,26﹣a=26﹣14=12,答:安排14人种植A花木,12人种植B花木.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.。
八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm6.六边形共有几条对角线()A.6B.7C.8D.97.下列图形具有稳定性的是()A.B.C.D.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.15.一个多边形的内角和是1800°,这个多边形是边形.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =.三、画图题17.(7分)作BC边上的中线AD,作∠B的角平分线线BE.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.22.(7分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;23.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD =10°,∠B=50°,求∠C的度数.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【分析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选:D.【点评】本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.6.六边形共有几条对角线()A.6B.7C.8D.9【分析】根据对角线公式计算即可得到结果.【解答】解:根据题意得:=9,则六边形共有9条对角线,故选:D.【点评】此题考查了多边形的对角线,n边形对角线公式为.7.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【分析】根据多边形的外角和等于360°即可得到结论.【解答】解:∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.故选:B.【点评】本题考查了多边形的内角和外角,熟记多边形的外角和等于360°是解题的关键.10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD 中,AB =AD ,∠B =80°,∴∠B =∠ADB =80°,∴∠ADC =180°﹣∠ADB =100°,∵AD =CD ,∴∠C ===40°.故选:B .【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 3 根木条才能固定.【分析】首先根据三角形的稳定性,把六边形活动支架ABCDEF 分成三角形,然后根据从同一个顶点出发可以作出的对角线的条数解答即可.【解答】解:如图,,要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.【点评】此题主要考查了三角形的稳定性,要熟练掌握,解答此题的关键是熟记三角形具有稳定性.12.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 19cm .【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm 是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm 是腰时,周长=8+8+3=19cm .故它的周长为19cm .故答案为:19cm .【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =40°.【分析】先根据角平分线的定义得到∠OBC =∠ABC ,∠OCB =∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB =180°,则∠BOC =180°﹣(∠ABC +∠ACB ),由于∠ABC +∠ACB =180°﹣∠A ,所以∠BOC =90°+∠A ,然后把∠BOC =110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,而∠BOC +∠OBC +∠OCB =180°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣(∠ABC +∠ACB ),∵∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°﹣∠A ,∴∠BOC =180°﹣(180°﹣∠A )=90°+∠A ,而∠BOC =110°,∴90°+∠A =110°∴∠A =40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.三、画图题17.(7分)作BC 边上的中线AD ,作∠B 的角平分线线BE .【分析】根据尺规作图的要求作出中线AD ,角平分线BE 即可.【解答】解:如图,△ABC 的中线AD ,角平分线BE 即为所求.【点评】本题考查作图﹣复杂作图,三角形的中线,角平分线等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.【分析】根据直角三角形的两个角互余构建方程即可解决问题.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.答:这个直角三角形中这两个锐角的度数分别为18°和72°.【点评】本题主要考查了直角三角形的性质,两锐角互余,解题的关键是学会利用参数构建方程解决问题.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.【分析】根据全等三角形的判定定理SSS证得△ACB≌△ADB,则其对应角相等:∠CAB =∠DAB,即AB是∠CAD的平分线.【解答】解:AB是∠CAD的平分线.理由如下:在△ACB与△ADB中,,∴△ACB≌△ADB(SSS),∴∠CAB=∠DAB,即AB是∠CAD的平分线.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∴∠ACB=∠AED=70°.∵CD平分∠ACB,∴∠BCD=∠ACB=35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.22.(7分)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高;(2)若△ABC 的面积为10,求△ADC 的面积;【分析】(1)利用尺规作AE ⊥BC ,垂足为E ,线段AE 即为所求;(2)利用三角形的中线把三角形分成两个面积相等的三角形即可;【解答】解:(1)如图线段AE 即为所求;(2)∵AD 是△ABC 的中线,∵S △ABD =S △ADC ,∵S △ABC =10,∴S △ADC =•S △ABC =5.【点评】本题考查作图﹣复杂作图,三角形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =10°,∠B =50°,求∠C 的度数.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A 时,所经过的路线正好构成一个外角是20度的正多边形是关键.。
2023-2024学年吉林省吉林市八年级(上)第一次月考数学试卷一、选择题(本大题共6小题,共12.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠C=90°,∠A=55°,则∠B的度数为( )A. 25°B. 35°C. 45°D. 55°2. 如图,△ABC中,∠ACB=90°,D为BC上一点,DE⊥AB于点E,下列说法中,错误的是( )A. △ABC中,AC是BC上的高B. △ABD中,DE是AB上的高C. △ABD中,AC是BD上的高D. △ADE中,AE是AD上的高3. 将一副三角板按如图所示方式摆放,使有刻度的边互相垂直,则∠1=( )A. 45°B. 50°C. 60°D. 75°4. 如图,点E、点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )A. ∠A=∠DB. ∠AFB=∠DECC. AB=DCD. AF=DE5. 如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是( )A. AD=AEB. AD=DFC. DF=EFD. AF⊥DE6. 图中表示被撕掉一块的正n边形纸片,若a⊥b,则n的值是( )A. 6B. 8C. 10D. 12二、填空题(本大题共8小题,共24.0分)7. 如图,钢架桥的设计中采用了三角形的结构,其数学道理是______ .8. 一个三角形的两边长分别是2和5,则第三边长可以是______ .(写出一个即可)9. 如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO=______度.10. 如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为______ .11. 将正六边形与正方形按如图所示摆放,且正六边形的边AB与正方形的边CD在同一条直线上,则∠BOC的度数是______ .12. 如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为20cm,则△A BD的周长为__cm.13. 如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC边于点D,△ABD的面积为30,AB=15,则线段CD的长度为______ .14. 如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.三、解答题(本大题共12小题,共84.0分。
2024-2025学年度第一学期学业质量阶段性检测八年级数学试题(A 卷)(满分分值:150分 考试时间:100分钟)一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上)1.《国语・楚语》记载:“夫美也者,上下、内外、大小、远近皆无害焉,故曰美.”这一记载充分表明传统美的本质特征在于对称和谐。
下列四个图案中,是轴对称图形的是( )A. B. C. D.2.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形3.有下列说法:(1)线段是轴对称图形;(2)成轴对称的两个图形中,对应点的连线被对称轴垂直平分;(3)成轴对称的两个图形一定全等;(4)轴对称图形的对称点一定在对称轴的两侧。
其中正确的有( )A.1个B.2个C.3个D.44.如图,已知,那么添加下列一个条件后,不能判定的是( )A. B. C. D.5.如图,若,四个点B 、E 、C 、F 在同一直线上,,,则CF 的长是( )A.2 B.3 C.5 D.76.如图,两个三角形是全等三角形,x 的值是( )A.30B.45C.50D.857.如图,在中,,平分交边BC 于点,若,,则的面积是()AB AD =ABC ADC ≅△△CB CD=BAC DAC ∠=∠BCA DCA ∠=∠90B D ︒∠=∠=ABC DEF ≅△△7BC =5EC =ABC △90C ∠=︒AD BAC ∠D 3CD =8AB =ABD △A.36B.24C.12D.108.如图,已知,为的平分线,、、…为的平分线上的若干点.如图1,连接BD 、CD ,图中有1对全等三角形;如图2,连BD 、CD 、BE 、CE ,图中有3对全等三角形;如图3,连接BD 、CD 、BE 、CE 、BF ,CF ,图中有6对全等三角形,依此规律,第2025个图形中全等三角形的对数是( )图1 图2 图3A.2049300 B.2051325 C.2068224 D.2084520二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.如图,,则AD 的对应边是________。
2023-2024学年陕西省西安市铁一中学八年级(上)第一次月考数学试卷一、选择题(共10小题)1.在实数﹣、、、中,是无理数的是( )A.B.C.D.解析:解:,=2,是整数,属于有理数;是分数,属于有理数;故在实数﹣、、、中,是无理数的是.故选:D.2.如图,分别以直角三角形的三边为直径向三角形外作三个半圆,图中的字母是它们的面积其中S2=6π,S3=10π,则S1为( )A.8πB.4πC.16πD.4解析:解:∵S1=AC2,S2=BC2,S3=AB2,又BC2+AC2=AB2,∴S1=S2﹣S3=10π﹣6π=4π.故选:B.3.若△ABC中,AB=c,AC=b,BC=a,下列不能判定△ABC为直角三角形的是( )A.a=32,b=42,c=52B.a:b:c=5:12:13C.(c+b)(c﹣b)=a2D.∠A+∠B=∠C解析:解:a=32,b=42,c=52,则a2+b2≠c2,故选项A符合题意;当a:b:c=5:12:13时,设a=5x,b=12x,c=13x,则a2+b2=(5x)2+(12x)2=c2,故选项B不符合题意;由(c+b)(c﹣b)=a2整理得:a2+b2=c2,故选项C不符合题意;由∠A+∠B=∠C,可知∠C=90°,故选项D不符合题意;故选:A.4.勾股定理被誉为“几何明珠”.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图所示,把一个边长分别为3,4,5的三角形和三个正方形放置在大长方形ABCD中,则该长方形中空白部分的面积为( )A.54B.60C.100D.110解析:解:如图延长EG交BC于M,其他字母标注如图示:根据题意,EF=3,EG=4,FG=5,在Rt△EFG和Rt△MGQ中,∵∠FEG=∠GMQ=90°,∠EFG=∠MGQ,FG=QG,∴Rt△EFG≌Rt△MGQ(AAS),∴GM=EF=3,MQ=EG=4∴AB=3+4+3=10,同理可证△GMQ≌△QCH,∴CQ=GM=3,∴BC=4+4+3=11.空白部分的面积=长方形面积﹣三个正方形的面积和=11×10﹣(32+42+52)=60.故选:B.5.一个正数a的平方根是2x﹣3与5﹣x,则a的值是( )A.﹣2B.7C.﹣7D.49解析:解:∵2x﹣3与5﹣x是正数a的平方根,∴2x﹣3+5﹣x=0.解得x=﹣2.∴2x﹣3=﹣7,5﹣x=7.∵(±7)2=49.∴a的值为49.故选:D.6.下列说法:①实数和数轴上的点是一一对应的;②实数分为正实数和负实数;③立方根等于它本身的数是±1和0;④无理数都是无限小数;⑤平方根等于本身的数是1和0.正确的个数是( )A.1B.2C.3D.4解析:解:①实数和数轴上的点是一一对应的,故说法正确;②实数分为正实数、负实数和零,故说法错误;③立方根等于它本身的数有﹣1,0和1,故说法正确;④无理数是开方开不尽的数,即无理数是无限不循环小数,也是无限小数,故说法正确;⑤算术平方根等于本身的数是1和0,故说法错误;故选:C.7.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )A.5B.25C.10+5D.35解答】解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选:B.8.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是( )A.B.C.D.解析:解:根据图形可得:AB=AC==,BC==,∠BAC=90°,设△ABC中BC的高是x,则AC•AB=BC•x,×=•x,x=.故选:A.9.已知实数a满足|2022﹣a|+=a,则a﹣20222的值为( )A.2022B.2023C.20222D.20232解析:解:由题意得:a﹣2023≥0,解得:a≥2023,则a﹣2022+=a,∴=2022,∴a﹣2023=20222,∴a﹣20222=2023,故选:B.10.如图,在△ABC中,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F.AC=17,AD=15,BC=28,则AE的长等于( )A.5B.20C.D.解析:解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵AD=15,AC=17,∴DC===8,∵BC=28,∴BD=28﹣8=20,由勾股定理得:AB==25,过点E作EG⊥AB于G,∵BF平分∠ABC,AD⊥BC,∴EG=ED,在Rt△BDE和Rt△BGE中,∵,∴Rt△BDE≌Rt△BGE(HL),∴BG=BD=20,∴AG=25﹣20=5,设AE=x,则ED=15﹣x,∴EG=15﹣x,Rt△AGE中,x2=52+(15﹣x)2,x=,∴AE=.故选:D.二、填空题(共6小题)11.81的算术平方根的平方根是 ±3 .解析:解:81的算术平方根的平方根是±3,故答案为:±3.12.比较大小: < .(填“>”,“<”或“=”)解析:解:﹣==∵,∴4,∴,∴﹣<0,∴<.故答案为:<.13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是 32或42 .解析:解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故填:42或32.14.已知实数a、b在数轴上的对应点如图所示,化简:|a﹣b|= a .解析:解:由数轴可知,b<0<a,|b|>|a|,∴a﹣b>0,∴|a﹣b|=a+a﹣b﹣(a﹣b)=a,故答案为:a.15.如图,在一个长方形草坪ABCD上,放着一根长方体的木块.已知AD=6米,AB=5米,该木块的较长边与AD平行,横截面是边长为2米的正方形,一只蚂蚁从点A爬过木块到达C处需要走的最短路程是 3 米.解析:解:由题意可知,将木块展开,相当于是AB﹣2+3个正方形的宽,∴长为5﹣2+3×2=9米;宽为6米.于是最短路径为:=3米.故答案为:3.16.如图,等边△ABC,边长是8.点M、N分别是边AB、BC上的动点,且BM=BN,点P是边AC上的动点,连接PM、PN.若PM+PN=4,则线段PC的长为 4 .解析:解:如图,过点P分别作PD⊥AB于点D,PE⊥BC于点E,AG⊥BC于点G,连接BP,∵△ABC是等边三角形,∴AB=AC=BC=8,∠ABG=60°,∴∠BAG=30°,∴BG=AB=4,∴AG=BG=4,∴S△ABC=BC•AG=8×4=16,∵S△ABC=S△ABP+S△BCP=AB•PD=BC•PE,∴8(PD+PE)=16,∴PD+PE=4,∵PM≥PD,PN≥PE,∴PM+PN≥PD+PE=4,∵PM+PN=4,∴PM+PN=4=PD+PE,∴此时M,D重合,N、E重合,即BD=BE,在Rt△BPD和Rt△BPE中,BP=BP,BD=BE,∴Rt△BPD≌Rt△BPE(HL),∴∠DBP=∠CBP=30°,∵AB=BC=AC=8,∴PC=BC=4,故答案为:4.三、解答题17.化简:(1);(2);(3);(4).解析:解:(1)原式=2﹣3+5=4;(2)原式=﹣+2=4﹣+2=4+;(3)原式=2+﹣﹣=2+﹣﹣=+;(4)原式=4+4+3﹣(9﹣2)+4﹣2=4+2.18.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来,(1)如图1,点A表示的数是 ;(2)如图2,直线l垂直数轴于原点在数轴上,请用尺规作出表示1﹣的点(不写作法,保留作图痕迹).解析:解:(1)如图:∵OA=OB==,∴点A表示的数是,故答案为:;(2)如图所示:点P即为所求.19.求下列各式中x的值:(1)25x2﹣64=0;(2)343(x+3)3+27=0.解析:解:(1)∵25x2﹣64=0∴25x2=64∴x2=,解得,x1=,x2=﹣;(2)∵343(x+3)3+27=0∴343(x+3)3=﹣27∴(x+3)3=∴x+3=﹣,解得,x=﹣3.20.(1)在如图中画出边长为、、的三角形.(2)该三角形的面积为 .解析:解:(1)如图,△ABC即为所求.(2)△ABC的面积为=.故答案为:.21.已知5a+2的立方根是3,b+1是9的平方根,c是的整数部分,求a+b+c的值.解析:解:由已知得:5a+2=27,b+1=±3,c=4,解得:a=5,b=2或b=﹣4,c=4,当b=2时,a+b+c=5+2+4=11;当b=﹣4时,a+b+c=5+(﹣4)+4=5;综上所述,a+b+c等于5或11.22.我们学校有一块四边形空地,如图所示,现计划在这块空地上种植草皮,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.若每平方米草皮需要200元,则共需要投入多少钱?解析:解:连接AC,在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,∴AC==25(米).在△ADC中,∵CD=7,AD=24,AC=25,∴AD2+CD2=242+72=625=AC2.∴△ADC是直角三角形,且∠ADC=90°.∴S四边形ABCD=S△ABC+S△ADC=×15×20+×7×24=234(平方米).∴四边形空地ABCD的面积为234平方米.∴200×234=46800(元).答:学校共需投入46800元.23.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?解析:解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.24.在解决问题“已知a=,求3a2﹣6a﹣1的值”时,小明是这样分析与解答的:∵a=+1,∴a﹣1=,∴(a﹣1)2=2,a2﹣2a+1=2,∴a2﹣2a=1,∴3a2﹣6a=3,3a2﹣6a﹣1=2.请你根据小明的分析过程,解决如下问题:(1)化简:.(2)若a=,求3a2﹣18a+1的值.解析:解:(1)===3+;(2)∵a====3﹣2,∴a﹣3=﹣2,∴(a﹣3)2=8,即a2﹣6a+9=8,∴a2﹣6a=﹣1,∴3a2﹣18a=﹣3,则3a2﹣18a+1=﹣3+1=﹣2.25.如图,长方形纸片ABCD,AB=6,BC=8,点E、F分别是边AB、BC上的点,将△BEF沿着EF翻折得到△B′EF.(1)如图1,点B'落在边AD上,若AE=2,则AB'= 2 ,FB'= 4 ;(2)如图2,若BE=2,点F是BC边中点,连接B'D、FD,求△B'DF的面积;(3)如图3,点F是边BC上一动点,过点F作EF⊥DF交AB于点E,将△BEF沿着EF翻折得到△B'EF,连接DB',当△DB'F是以DF为腰的等腰三角形时,请直接写出CF的长.解析:解:(1)∵AE=2,AB=6,∴BE=4,∵将△BEF沿着EF翻折得到△B′EF,∴BE=B'E=4,BF=B'F,∴AB'===2,如图1,过点B'作BH⊥BC于H,∴四边形ABHB'是矩形,∴BA=B'H=6,AB'=BH=2,∴HF=BF﹣2,∵B'F2=B'H2+HF2=36+(B'F﹣2)2,∴B'F=4,故答案为:2,4;(2)如图2,连接BB',交EF于N,连接B'C,过点B'作B'M⊥于M,∵点F是BC边中点,∴BF=CF=4,∵将△BEF沿着EF翻折得到△B′EF,∴BF=B'F=BC,BN=B'N,BB'⊥EF,∵BE=2,BF=4,∴EF===2,∵S△BEF=×BE•BF=×EF•BN,∴2×4=2BN,∴BN=,∴FN==,BB'=,∴B'M==,∴MF==,∴△B'DF的面积=×(+6)×(4+)﹣×4×6﹣××=13.6;(3)若DF=B'F时,则BF=DF=B'F,∵DF2=DC2+CF2,∴(8﹣CF)2=36+CF2,∴CF=,若DF=B'D时,如图3,过点D作DQ⊥B'F于Q,∴B'Q=QF,∵EF⊥DF,∴∠EFB'+∠DFB'=90°=∠BFE+∠DFC,∴∠DFC=∠DFB',又∵∠DQF=∠C=90°,DF=DF,∴△DFC≌△DFQ(AAS),∴CF=QF=BF,∵BC=BF+CF,∴8=2CF+CF,∴CF=,综上所述:CF的长为或.。
2022-2023学年第一学期第一次月考八年级数学一、选择题(共16小题,每题3分,共48分)1.给出以下方程:,,,,其中分式方程的个数是()A.1B.2C.3D.42.下列命题的逆命题成立的是().A.全等三角形的对应角相等B.如两个实数相等,则它们的绝对值相等C.正方形的四个角都是直角D.平行四边形的两组对角相等3.若关于x的方程有增根,则m的值是()A.B.C.D.﹣34.关于分式方程的解,说法正确的是()A.解为x=-4B.解为x=2C.解为x=0或x=2D.该分式方程无解5.如图,用三角板作的边上的高线,下列三角板的摆放位置正确的是()A.B.C.D.6.解分式方程,去分母得()A.B.C.D.7.若关于x的方程的解为正数,则m的取值范围为()A.B.且C.D.且8.下列选项可用证明的是()A.,,B.,,C.,,D.,,9.已知关于x的方程无解,则实数m的取值是()A.B.C.D.10.如图,,要使.则添加的一个条件不能是()A.B.C.D.11.定义运算,如:.则方程的解为()A.B.C.D.12.小明解分式方程的过程下.解:去分母,得.①去括号,得.②移项、合并同类项,得.③化系数为1,得.④以上步骤中,开始出错的一步是()A.①B.②C.③D.④13.如图,由作图痕迹做出如下判断,其中正确的是()A.B.C.D.14.如图的正方形网格中,的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则在此网格中与全等的格点三角形(不含)共有 A.5个B.6个C.7个D.8个15.若a使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合题意的所有整数α的个数为()A.1个B.2个C.3个D.4个16.如图,在锐角三角形ABC中,,BE,CD为的角平分线.BE,CD交于点F,FG平分,有下列四个结论:①;②;③≌;④.其中结论正确的序号有().A.①②③B.①②④C.②③④D.①③④二、填空题(共4小题,每小题3分,共12分)17.化简分式:(1-)÷=.18.如图,小张同学拿着老师的等腰直角三角尺,摆放在两摞长方体教具之间,∠ACB=90°,AC=BC,若每个长方体教具高度均为6cm,则两摞长方体教具之间的距离DE的长为cm.19.某学校计划将80名学生平均分成若干个读书小组,若每个小组比原计划多1人,则要比原计划少分出4个小组,那么原计划平均每个读书小组是人.20.如图,于点A,,射线于点B,一动点D从点A出发以2个单位/秒的速度沿射线运动,E为射线上一动点,随着点D的运动而运动,且始终保持,若点D运动t秒,与全等,则t的值为.三、解答题(共6小题,60分)21.解方程:(1);(2).22.如图,点E、F在BD上,且,,,试说明:点O是AC的中点.请你在横线上补充其推理过程或理由.解:因为所以,即因为,所以(理由:SSS)所以(理由:)因为(理由:)所以(理由:)所以(理由:全等三角形对应边相等)所以点O是AC的中点.23.为坚决打好打赢长春疫情防控保卫战,长春市新冠肺炎疫情防控指挥部发布开展全市全员新冠病毒核酸检测的通告,某小区有3000人需要进行核酸检测,由于组织有序,居民也积极配合,实际上每小时检测人数是原计划的1.2倍,结果提前2小时完成检测任务,求原计划每小时检测多少人?24.如图,四边形ABCD中,点E,F在对角线BD上,,,.(1)求证:;(2)猜想四边形ABCD的形状,并说明理由.25.一个进行数值转换的运行程序如图所示,从“输入有理数x”到“结果是否大于0”称为“一次操作”(1)下面命题是真命题有______________.①当输入后,程序操作仅进行一次就停止.②当输入后,程序操作仅进行一次就停止.③当输入x为负数时,无论x取何负数,输出的结果总比输入数大.④当输入,程序操作仅进行一次就停止.(2)探究:是否存在正整数x,使程序只能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x的值;若不存在,请说明理由.26.如图,AE与BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A出发,沿A→B→A 方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)AB与DE有什么关系?请说明理由.(2)线段AP的长为________(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,t的值为_______.答案1.B解析:解:中分母不含未知数,不是分式方程;中分母含有未知数,是分式方程;中分母含有未知数,是分式方程;中分母不含未知数,不是分式方程,共有两个是分式方程,故B正确.故选:B.2.D解析:A、全等三角形的对应角相等的逆命题是:对应角相等的三角形是全等三角形,逆命题不成立,故A不符合题意.B、如两个实数相等,则它们的绝对值相等的逆命题是:如两个数的绝对值相等,那么它们相等,逆命题不成立,故B不符合题意.C、正方形的四个角都是直角的逆命题是:四个角都是直角的四边形是正方形,逆命题不成立,故C不符合题意.D、平行四边形的两组对角相等的逆命题是:两组对角相等的四边形是平行四边形,逆命题成立,故D符合题意.故选:D.3.B解析:解:去分母,得:x﹣6﹣2m=0,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程,可得:m=﹣.故选:B.4.D解析:解:分式方程两边同时乘以得,,解得:x=2,检验,将x=2代入得,,∴x=2是方程的增根,该分式方程无解,故选:D.5.B解析:选项A作的是BC边上的高,不符合题意;选项B作的是AB边上的高,符合题意;选项C中三角板未过点C,故作的不是高,不符合题意;选项D作的是AC边上的高,不符合题意.故选:B.6.A解析:解:把原方程变形:,方程两边同时乘以各分母的最简公分母,得:.故选:A.7.B解析:解:解方程得,x=m-2,∵该方程的解是正数,且x-1≠0,∴m-2>0,且m-2-1≠0,∴m>2且m≠3.故选:B.8.C解析:解:A、角不是夹角,不满足,不能证明,选项不符合题意;B、角不是夹角,不满足,不能证明,选项不符合题意;C、满足,能证明,选项符合题意;D、角不是夹角,不满足,不能证明,选项不符合题意,故选:C.9.D解析:解:原方程两边同乘以,得:,整理得:,当时,,当时,这个整式方程无解,即当时,原分式方程无解,当时,2是原分式方程的增根,原方程无解,此时无解,当时,是原分式方程的增根,原方程无解,此时的解为:,∴当或时,原分式方程无解,故选:D.10.A解析:解:在和中,∴无法证明,选项A说法错误,符合题意;在和中,∴(AAS),选项B说法正确,不符合题意;在和中,∴(ASA),选项C说法正确,不符合题意;在和中,∴(AAS),选项D说法正确,不符合题意;故选A.11.D解析:解:由题意,得1+=,∴,解得:x=,经检验,x=是方程的根,故选:D.12.B解析:解:,去分母,得,去括号,得,移项,得,合并同类项,得,∴以上步骤中,开始出错的一步是②.故选:B13.A解析:解:由图可知:PC是∠APB的平分线,ED是线段PQ的垂直平分线,A.过点H作HI⊥PF,垂足为I,如图,∵PC平分∠APB,∴HI=HG,在Rt△FIH中,HI为直角边,FH为斜边,∴FH>HI,∴FH>GH,∴A结论正确;B.由A可知,B结论不正确;C.EF与FH没有必然的大小关系,无法判断,故C结论不正确;D.EF与FH没有必然的大小关系,无法判断,故D结论不正确.故选A.14.C解析:解:如图所示:与全等的三角形有、、、、、、,共7个,故选:C.15.C解析:解:不等式组整理得:,由不等式组有且只有四个整数解,得到,解得:,即整数,0,1,2,分式方程去分母得:,解得:,,,,由分式方程的解为非负数以及分式有意义的条件,得到为,0,2共3个.故选:C.16.B解析:解:∵∠A=60°,BE、CD为三角形ABC的角平分线,∴∠EBC+∠DCB=∠ABC+∠ACB=×(180°-∠A)=60°,∴∠BFC=180°-(∠EBC+∠DCB)=120°,故①符合题意;由①得,∠DFB=60°,∠BFC=120°,∵FG平分∠BFC,∴∠BFG=∠BFC=60°,在△BDF和△BGF中,,∴△BDF≌△BGF(ASA),∴BD=BG,故②符合题意;在△BDF和△CEF中,∠BFD=∠CFE=60°,没有其它相等的边与角,∴△BDF和△CEF不一定全等,故③不符合题意;由②可得BD=BG,同理可得△CEF≌△CGF,∴CE=CG,∴BC=BG+CG=BD+CE,故④符合题意.故选:B.17.解析:解:原式====,故答案为:.18.42解析:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,AD=CE,∵DE=CD+CE,∴DE=BE+AD,∵一块长方体教具的厚度为6cm,∴AD=24cm,BE=18cm,∴两摞长方体教具之间的距离DE的长=24+18=42(cm).故答案为:42.19.4解析:解:设原计划每小组每小组x人,则实际每小组(x+1),根据题意得:解得x=4或x=-5(舍)经检验x=4是分式方程的解.故答案为4.20.1或3或4解析:解:①当D在线段AB上,AC=BD时,而,,则△ACB≌△BDE,∵AC=2,AB=4,∴BD=2,∴AD=4-2=2,∴点D的运动时间为2÷2=1(秒);②当D在BN上,AC=BD时,∵AC=2,∴BD=2,∴AD=4+2=6,∴点D的运动时间为6÷2=3(秒);当D在BN上,AB=DB时,△ACB≌△BED,AD=4+4=8,点D的运动时间为8÷2=4(秒),故答案为:1或3或4.21.(1)x=3(2)原方程无解解析:(1)因为,去分母,两边同乘以x(x-1),得3(x﹣1)=2x,解得:x=3,检验:当x=3时,x(x﹣1)≠0,∴x=3是原方程的根.(2)因为,所以,去分母,两边同乘以(y-2),得1=y﹣1﹣3(y﹣2),解得:y=2,检验:当y=2时,y﹣2=0,∴y=2是原方程的增根,∴原方程无解.22.;;全等三角形对应角相等;对顶角相等;;解析:因为所以,即因为,所以(SSS)所以(全等三角形对应角相等)因为(对顶角相等)所以()所以(全等三角形对应边相等)所以点O是AC的中点.23.250人解析:解:设原计划每小时检测x人,则实际上每小时检测1.2x人,依题意得:,解得:x=250,经检验,x=250是原方程的解,且符合题意.答:原计划每小时检测250人.24.(1)证明过程见解析(2)四边形ABCD为平行四边形;理由见解析解析:(1)证明:∵,∴,∴,又∵,∴,又∵,∴,∴.(2)解:四边形ABCD为平行四边形.理由如下:由(1)得,,∴,∴,由(1)得,,∴四边形ABCD为平行四边形.25.(1)②③;(2)存在,x=2.解析:(1)解:根据题意,得代数式为,当时,,所以程序操作仅进行一次就停止不可能,故①不符合题意;当时,,所以程序操作仅进行一次就停止,故②符合题意;当时,所以,所以,所以程序操作仅进行一次就停止,故③符合题意;当时,也可能,所以程序操作仅进行一次就停止不可能,故④不符合题意;故答案为:②③.(2)存在,且,理由如下:∵程序只能进行两次操作,第一次计算的代数式是,第二次输出的代数式是,根据题意,得,解得,∵x为整数,所以.26.(1)AB DE且AB=DE,理由见解析;(2)3t cm或(8−3t)cm(3)1或2.解析:(1)AB DE且AB=DE,理由如下:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴AB=DE,∠A=∠E,∴AB DE.(2)当0≤t≤时,AP=3t cm;当<t≤时,BP=(3t−4)cm,则AP=4−(3t−4)=(8−3t)cm;综上所述,线段AP的长为3t cm或(8−3t)cm,故答案为:3t cm或(8−3t)cm;(3)由(1)得:∠A=∠E,ED=AB=4cm,在△ACP和△ECQ中,,∴△ACP≌△ECQ(ASA),∴AP=EQ,当0≤t≤时,3t=4−t,解得:t=1;当<t≤时,8−3t=4−t,解得:t=2;综上所述,当线段PQ经过点C时,t的值为1或2.。
第一学期八年级数学1月月考期末复习试卷(含解析)一、选择题1.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m 2.7的平方根是( )A .±7B .7C .-7D .±7 3.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.如图,动点P 从点A 出发,按顺时针方向绕半圆O 匀速运动到点B ,再以相同的速度沿直径BA 回到点A 停止,线段OP 的长度d 与运动时间t 的函数图象大致是( )A .B .C .D .5.下列四个图标中,是轴对称图形的是( )A .B .C .D .6.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A .1B .5C .7D .497.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m ≥-C .3n x m -≤≤D .以上都不对8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,09.若关于x 的分式方程211x a x -=+的解为负数,则字母a 的取值范围为( ) A .a ≥﹣1 B .a ≤﹣1且a ≠﹣2C .a >﹣1D .a <﹣1且a ≠﹣2 10.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P 1,第二次碰到正方形的边时的点为P 2…,第n 次碰到正方形的边时的点为P n ,则P 2020的坐标是( )A .(5,3)B .(3,5)C .(0,2)D .(2,0)二、填空题11.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.12.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为________.13.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.14.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.15.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________. 16.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.17.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是__________。
18.当x =_____时,分式22x x x-+值为0. 19.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y 20.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题21.如图,在77⨯网格中,每个小正方形的边长都为1,画图请加粗加黑.(1)图中格点ABC ∆的面积为______.(2)在图中建立适当的平面直角坐标系,使点(1,3)A ,(2,1)C .(3)画出ABC ∆关于y 轴对称的图形A B C ∆'''.22.如图,∠AOB =90°,OA =12cm ,OB =8cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿BC 方向匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,并且它们的运动时间也相等.(1)请用直尺和圆规作出C 处的位置,不必叙述作图过程,保留作图痕迹;(2)求线段OC 的长.23.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.24.证明:最长边上的中线等于最长边的一半的三角形是直角三角形.25.2|3|0a b -+-=,(164a b+的值; (2)设x b a ,y +b a 11x y +的值. 四、压轴题26.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b d y +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点. (1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.27.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.28.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点(3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.29.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)30.如图,四边形ABCD 是直角梯形,AD ∥BC ,AB ⊥AD ,且AB =AD +BC ,E 是DC 的中点,连结BE 并延长交AD 的延长线于G .(1)求证:DG =BC ;(2)F 是AB 边上的动点,当F 点在什么位置时,FD ∥BG ;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】作BD⊥OC于点D,首先由题意得:AO=BD=3m,AB=OD=2m,然后根据OC=6米,得到DC=4 m,最后利用勾股定理得BC的长度即可.【详解】解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=5-3=2m,∵OC=6m,∴DC=6-2=4m,∴由勾股定理得:22,34∴旗杆的高度为5+5=10m,故选:D.【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.2.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】7)2=7,∴77.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.解析:B【解析】【分析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.4.B解析:B【解析】【分析】根据P点半圆O、线段OB、线段OA这三段运动的情况分析即可.【详解】解:①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选B.【点睛】本题主要考查动点问题的函数图象,熟练掌握是解题的关键.5.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.B解析:B【解析】根据等腰三角形的性质可知BC 上的中线AD 同时是BC 上的高线,根据勾股定理求出AB 的长即可.【详解】∵等腰三角形ABC 中,AB=AC ,AD 是BC 上的中线,∴BD=CD=12BC=3,AD 同时是BC 上的高线, ∴2222345BD AD +=+=.故它的腰长为5.故选:B .【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD 同时是BC 上的高线.7.C解析:C【解析】【分析】首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <> ∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.8.B解析:B【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.9.D解析:D【解析】【分析】先求出分式方程的解,由分式方程有意义的条件可知1x ≠-,即方程的解1≠-,由解为负数可知分式方程的解小于0,可得字母a 的取值范围.【详解】解:方程两边同时乘以(x +1),得2x ﹣a =x +1,解得:x =a +1,∵解为负数,∴a +1<0,∴a <﹣1,因为分式有意义,则10x +≠,1x ≠-,即11a +≠-,解得2a ≠-∴a <﹣1且a ≠﹣2,故选:D .【点睛】本题考查了分式方程,根据分式方程解的情况确定参数的取值范围,解题过程中易忽视分式有意义的条件,熟练掌握分式方程的解法是解题的关键.10.D解析:D【解析】【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【详解】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.【点睛】本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.二、填空题11.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.12.y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数解析:y=15+2x【解析】【分析】根据年产值y (万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y 与年数x 之间的函数关系为:y=15+2x ,故答案为:y=15+2x .【点睛】此题主要考查一次函数在实际问题的应用,找到所求量的等量关系是解决问题的关键. 13.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.14.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.15.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100∴这个等腰三角形的底角为12(180°-100°)=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.16.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.17.a<b【解析】【分析】先把点M (-1,a )和点N (-2,b )代入一次函数y=-2x+1,求出a ,b 的值,再比较出其大小即可.【详解】∵点M (-1,a )和点N (-2,b )是一次函数y=-2x解析:a<b【解析】【分析】先把点M (-1,a )和点N (-2,b )代入一次函数y=-2x+1,求出a ,b 的值,再比较出其大小即可.【详解】∵点M (-1,a )和点N (-2,b )是一次函数y=-2x+1图象上的两点,∴a=(-2)×(-1)+1=3,b=(-2)×(-2)+1=5,3<5,∴a<b .故答案为:a<b .【点睛】本题考查的一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.18.2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x解析:2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x(x+1)≠0,所以x≠0或x≠﹣1;而分式值为0,即分子2﹣x=0,解得:x=2,符合题意故答案为:2.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.19.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.20.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题21.(1)5;(2)见解析;(3)见解析.【解析】【分析】(1)图中格点△ABC的面积=矩形的面积减去3个直角三角形的面积,即可得出结果;(2)由已知点的坐标即可得出点B为坐标原点,即可得出结果;(3)根据关于y轴成轴对称的特点,即对应点到对称轴的距离相等,确定对应点,然后依次连线即可解决.【详解】图中格点△ABC的面积=4×4-11143-21-42=5 222⨯⨯⨯⨯⨯⨯根据点(1,3)A的坐标,向左平移一个单位,向下平移3个单位确定原点坐标,建立坐标系,如图所示根据成轴对称的图形的特点,到对称轴的距离相等,找到对应点并连线如图所示:【点睛】本题考查了割补法求三角形面积,通过坐标找坐标原点确定坐标系,作轴对称图形,解决本题的关键是熟练掌握割补法,将非规则图形转化为规则易解的图形,熟练掌握坐标平移的规律.22.(1)详见解析;(2)103cm.【解析】【分析】(1)作AB的垂直平分线,交OA于点C,则点C即为所求;(2)设BC=xcm,根据题意用x表示出AC和OC,根据勾股定理列出方程,解方程即可.【详解】解:(1)如图所示,作AB 的垂直平分线,交OA 于点C ,则点C 即为所求;(2)由作图可得:BC =AC ,设BC =xcm ,则AC =xcm ,OC =(12﹣x )cm ,由勾股定理得,BC 2=OB 2+OC 2,即x 2=82+(12﹣x )2,解得x =263. ∴OC =12﹣263=103答:线段OC 的长是103cm . 【点睛】本题考查的是勾股定理的应用和基本作图:线段的垂直平分线,掌握直角三角形中,两条直角边的平方和等于斜边的平方是解题的关键.23.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.24.证明见解析.【解析】【分析】如图,在△ABC 中,AB 是最长边,CD 是边AB 的中线,可得BD AD =,再根据最长边上的中线等于最长边的一半可得CD BD AD ==,根据等边对等角以及三角形内角和定理即可得证.【详解】证明:如图,在△ABC 中,AB 是最长边,CD 是边AB 的中线∵CD 是边AB 的中线∴BD AD =∵最长边上的中线等于最长边的一半∴CD BD AD ==∴,A ACD B BCD ==∠∠∠∠∵180A B ACB ∠+∠+∠=︒∴1180902ACB ACD BCD =+=⨯︒=︒∠∠∠ ∴△ABC 是直角三角形∴最长边上的中线等于最长边的一半的三角形是直角三角形.【点睛】本题考查了直角三角形的证明问题,掌握直角三角形的性质、等边对等角、三角形内角和定理、中线的性质是解题的关键.25.(152;(2)23 【解析】【分析】(1)由算术平方根及绝对值的非负性可得a ,b 的值,将a ,b+利用二次根式的除法法则计算即可;(2)将a ,b 的值代入x ,y x ,y 的值,再将x ,y 的值代入11x y+,利用平方差公式使分母有理化,最后合并即可. 【详解】解:(1|3|0b -=,∴a ﹣2=0,b ﹣3=0,∴a =2,b =3,===(2)∵x y ∴11x y +== 【点睛】本题考查了二次根式的化简,熟练的掌握二次根式分母有理化的方法是化简的关键.四、压轴题26.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)【解析】【分析】(1)根据融合点的定义3a c x +=,3b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.【详解】解:(1)x =-17233a c ++==,y =54333b d ++==, 故点C 是点A 、B 的融合点;(2)①由题意得:x =433a c t ++=,y =2533b d t ++=,则3-4t x =,则()23-452-13xy x+==;②令x=0,y=-1;令y=0,x=12,图象如下:③当∠THD=90°时,∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.∴t=13(t+4),∴t=2,∴点E(2,9);当∠TDH=90°时,∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.∴4=13(4+t ) ∴t =8, ∴点E (8,21);当∠HTD =90°时,由于EH 与x 轴不平行,故∠HTD 不可能为90°;故点E 的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.27.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.28.(1)①)3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】 解:(1)①∵32a =<,∴11b b ==-=',∴坐标为:()3,1,故答案为:()3,1; ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,,∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x b x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.29.(1)见解析;(2)CD 2AD +BD ,理由见解析;(3)CD 3+BD【解析】【分析】(1)由“SAS ”可证△ADB ≌△AEC ;(2)由“SAS ”可证△ADB ≌△AEC ,可得BD =CE ,由直角三角形的性质可得DE 2AD ,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=32AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH3,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD=3AD+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.30.(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【解析】【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC;(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG,故答案为:F运动到AF=AD时,FD∥BG;(3)解:结论:FH=HD.理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD,故答案为:FH=HD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.。