苏教版数学九年级上册 期末试卷复习练习(Word版 含答案)
- 格式:doc
- 大小:919.00 KB
- 文档页数:25
苏教版九年级数学上册 期末试卷复习练习(Word 版 含答案)一、选择题1.sin 30°的值为( ) A .3B .32C .12D .222.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y <<B .123y y <<C .213y y <<D .213y y <<3.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①② B .②③ C .①③ D .①②③ 4.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1B .k≥-1C .k <-1D .k≤-15.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴 D .圆的对称中心是它的圆心6.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 7.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .8.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断9.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70° 10.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1B .2C .3D .411.cos60︒的值等于( ) A .12B .22C .3 D .3 12.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2二、填空题13.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.14.数据2,3,5,5,4的众数是____.15.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.16.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.17.如图,利用标杆BE测量建筑物的高度,已知标杆BE高1.2m,测得==,则建筑物CD的高是__________m.1.6,12.4AB m BC m18.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm,则较小的三角形的周长为__________cm.19.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.20.如图,边长为2的正方形ABCD,以AB为直径作O,CF与O相切于点E,∆的面积为__________.与AD交于点F,则CDF21.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y…-3-3-139…关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.22.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.23.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.24.如图,一次函数y=x与反比例函数y=kx(k>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题25.如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC= 43,BC=4.(1)求证:DE为圆O的切线;(2)求阴影部分面积.26.在矩形ABCD中,AB=3,AD=5,E是射线..DC上的点,连接AE,将△ADE沿直线AE 翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.27.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;28.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.29.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)30.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于10cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.31.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同. (1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率. 32.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日 12月19日 12月20日 12月21日最高气温(℃) 10 67 8 9最低气温(℃)1 0 ﹣1 0 3【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】 【分析】直接利用特殊角的三角函数值求出答案. 【详解】 解:sin 30°=12故选C 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.2.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.3.C解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断,故②不正确;由图像可知,y==ax2+bx+c≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax2+bx+c=-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.C解析:C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.5.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大6.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.7.A解析:A 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:A.是轴对称图形,不是中心对称图形,符合题意; B.不是轴对称图形,是中心对称图形,不符合题意; C. 是轴对称图形,是中心对称图形,不符合题意; D. 是轴对称图形,是中心对称图形,不符合题意; 故选:A . 【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.8.A解析:A 【解析】 【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似. 【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒, ∵A ACD ACD DCH 90∠∠∠∠+=+=︒, ∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒, ∴ADG CDH ∠∠=, 继而可得出AGD CHD ∠∠=, ∴ADG ~CDH . 故选:A . 【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.9.A解析:A【解析】【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A.【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.10.B解析:B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.11.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值.12.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF , ∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC =. 故选D .二、填空题13.【解析】【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC、BD 相交所成的锐角为∴根据四边形的面积公式得出,设AC=x ,则BD=8-解析:【解析】【分析】设AC=x,根据四边形的面积公式,1S sin 602AC BD =⨯⨯︒,再根据sin 60︒=()1 S 822x x =-⨯,再利用二次函数最值求出答案. 【详解】解:∵AC 、BD 相交所成的锐角为60︒ ∴根据四边形的面积公式得出,1S sin 602AC BD =⨯⨯︒ 设AC=x ,则BD=8-x所以,())21S 842x x x =-=-+∴当x=4时,四边形ABCD 的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.14.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.15.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.16.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.17.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 18.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.19.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键. 解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键. 20.【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C解析:3 2【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵CF与O相切于点E,与AD交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.21.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k .【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x 1,再利用夹逼法可确定x 1 的取值范围,可得k .【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y =ax 2+bx +c 得313c a b c a b c -=⎧⎪-=++⎨⎪-=-+⎩,解得113a b c =⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b 2-4ac=12-4×1×(-3)=13,∴x=122b a -±-±==−1±2, ∵1x <0,∴1x =−1-2<0, ∵-4≤-3,∴3222 -≤-≤-,∴-≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.22.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.23.2+【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=AB,BC=AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点解析:【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=352AB,BC=352AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点,∴较小线段AD=BC x,则CD=AB﹣AD﹣BC=x﹣x=1,解得:x=故答案为:【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的35倍.24.或【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.三、解答题25.(1)证明见解析;(2)S阴影=43-2π【解析】【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S阴影=2S△ECO-S扇形COD即可求解.【详解】(1)连接DC、DO.因为AC 为圆O 直径,所以∠ADC=90°,则∠BDC=90°,因为E 为Rt △BDC 斜边BC 中点,所以DE=CE=BE=12BC , 所以∠DCE=∠EDC,因为OD=OC ,所以∠DCO=∠CDO.因为BC 为圆O 切线,所以BC ⊥AC ,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED ⊥OD ,所以DE 为圆O 的切线.(2)S 阴影=2S △ECO -S扇形COD =-2π 【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.26.(1)证明见解析;(2)513;(3)53、5、15 【解析】【分析】(1)利用同角的余角相等,证明∠CEF =∠AFB ,即可解决问题;(2)过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H,由△FGE ∽△AHF 得出AH=5GF ,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD 中,∠B =∠C =∠D =90°由折叠可得:∠D =∠EFA =90°∵∠EFA =∠C =90°∴∠CEF +∠CFE =∠CFE +∠AFB =90°∴∠CEF =∠AFB在△ABF 和△FCE 中∵∠AFB =∠CEF ,∠B =∠C =90°△ABF ∽△FCE(2)解:过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H ,则∠EGF =∠AHF =90°在矩形ABCD 中,∠D =90°由折叠可得:∠D =∠EFA =90°,DE =EF =1,AD =AF =5∵∠EGF =∠EFA =90°∴∠GEF +∠GFE =∠AFH +∠GFE =90°∴∠GEF =∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴EFAF=GFAH∴15=GFAH∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5 GF)2+(5-GF)2=52∴GF=5 13∴△EFC的面积为12×513×2=513;(3)解:①当∠EFC=90°时,A、F、C共线,如图所示:设DE=EF=x,则CE=3-x,∵22223534AD CD+=+=∴34∵∠CFE=∠D=90°, ∠DCA=∠DCA,∴△CEF∽△CAD, ∴CE EFCA AD=,534x=,解得5(345)-②当∠ECF=90°时,如图所示:∵AD=1AF =5,AB=3, ∴1BF =221AF AB -=4, 设1DE =x,则1E C =3-x,∵∠DCB=∠ABC=90°, 111CF E F AB ∠=∠∴11CE F ∽1BF A ,∴11111E C E F F B F A =,即345x x -=,解得:x=1E D =53; 由折叠可得 :222E F E D = ,设2E C x =,则2223E F DE x ==+,2549CF =+=, 在RT △22E F C 中,∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;③当∠CEF=90°时,AD=AF,此时四边形AFED 是正方形,∴AF=AD=DE=5,综上所述,DE 的长为:53、5、155(345)-. 【点睛】 本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.27.(1)y =(x -1)2-4或y =x 2-2x -3;(2)y =-(x -1)2+4【解析】【分析】(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;(2)由(1)得顶点坐标和顶点式,再根据关于x 轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同,开口方向向下写出解析式即可.【详解】(1)根据题意,二次函数图像的顶点坐标为(1,-4),设二次函数的表达式为y=a(x-1)2-4把(0,-3)代入y=a(x-1)2-4得,a=1∴y=(x-1)2-4或y=x2-2x-3(2)解:∵y= y=(x-1)2-4,∴原函数图象的顶点坐标为(1,-4),∵描出的抛物线与抛物线y=x2-2x-3关于x轴对称,∴新抛物线顶点坐标为(1,4),∴这条抛物线的解析式为y=-(x-1)2+4,故答案为:y=-(x-1)2+4.【点睛】本题考查了本题考查了待定系数法求二次函数解析式、二次函数的图象、二次函数的性质以及二次函数图象与几何变换,根据顶点的变化确定函数的变化,根据关于x轴对称的点的坐标特征求出描出的抛物线的顶点坐标是解题的关键.28.(1)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为1;(3)点Q坐标为:(﹣2,2)或(﹣1或(﹣1)或(2,﹣2).【解析】【分析】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.【详解】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得4202a b cca b c-+=⎧⎪=-⎨⎪++=⎩,解得:112 abc=⎧⎪=⎨⎪=-⎩,∴此函数解析式为:y=x2+x﹣2.(2)如图,过点M作y轴的平行线交AB于点D,∵M点的横坐标为m,且点M在第三象限的抛物线上,∴设M点的坐标为(m,m2+m﹣2),﹣2<m<0,设直线AB的解析式为y=kx﹣2,把A(﹣2,0)代入得,-2k-2=0,解得:k=﹣1,∴直线AB的解析式为y=﹣x﹣2,∵MD∥y轴,∴点D的坐标为(m,﹣m﹣2),∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,∴S△MAB=S△MDA+S△MDB=12 MD•OA=12×2(m2﹣2m)=﹣m2﹣2m=﹣(m+1)2+1,∵﹣2<m<0,∴当m=﹣1时,S△MAB有最大值1,综上所述,S关于m的函数关系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值为1.(3)设P(x,x2+x﹣2),①如图,当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,∵直线的解析式为y=﹣x,则Q(x,﹣x),由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,即|﹣x2﹣2x+2|=2,当﹣x2﹣2x+2=2时,x1=0(不合题意,舍去),x2=﹣2,∴Q(﹣2,2),当﹣x2﹣2x+2=﹣2时,x1=﹣1+5,x2=﹣1﹣5,∴Q(﹣1+5,1﹣5)或(﹣1﹣5,1+5),②如图,当BO为对角线时,OQ∥BP,∵直线AB的解析式为y=-x-2,直线OQ的解析式为y=-x,∴A与P重合,OP=2,四边形PBQO为平行四边形,∴BQ=OP=2,点Q的横坐标为2,把x=2代入y=﹣x得y=-2,∴Q(2,﹣2),综上所述,点Q的坐标为(﹣2,2)或(﹣515155(2,﹣2).【点睛】本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,熟练掌握二次函数的性质把运用分类讨论的思想是解题关键.29.301)米【解析】【分析】设AD =xm ,在Rt △ACD 中,根据正切的概念用x 表示出CD ,在Rt △ABD 中,根据正切的概念列出方程求出x 的值即可.【详解】由题意得,∠ABD =30°,∠ACD =45°,BC =60m ,设AD =xm ,在Rt △ACD 中,∵tan ∠ACD =AD CD , ∴CD =AD =x ,∴BD =BC +CD =x +60,在Rt △ABD 中,∵tan ∠ABD =AD BD,∴(60)3x x =+,∴1)x =米,答:山高AD 为301)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.30.(1)3秒后,PQ 的长度等于(2)PQB ∆的面积不能等于27cm .【解析】【分析】(1)由题意根据PQ=BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可;【详解】解:(1)设x 秒后,PQ =5BP x =-,2BQ x =,∵222BP BQ PQ +=∴()()(22252x x -+=解得:13x =,21x =-(舍去) ∴3秒后,PQ 的长度等于210;(2)设t 秒后,5PB t =-,2QB t =,又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm .【点睛】本题主要考查一元二次方程的应用,找到关键描述语“△PBQ 的面积等于27cm ”,得出等量关系是解决问题的关键.31.(1)13;(2)13,见解析 【解析】【分析】(1)袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,摸到红球的概率即可求出;(2)分别使用树状图法或列表法将抽取球的结果表示出来,第一次共有3种不同的抽取情况,第二次有2种不同的抽取情况,所有等可能出现的结果有6种,找出两次都是白球的的抽取结果,即可算出概率.【详解】解:(1)∵袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种, ∴1P =3(摸到红球); (2)画树状图,根据题意,画树状图结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴21P ==63(两次白球); 用列表法,根据题意,列表结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次, ∴21P ==63(两次白球). 【点睛】 本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.32.见解析【解析】【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.【详解】∵x 高=()110+6+7+8+9=85⨯(℃),x 低 =()11+01+0+3=0.65⨯-(℃), 2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2)2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2) ∴2S 高>2S 低∴这5天的日最高气温波动大.【点睛】本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=()()()()22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦.。
苏科版九年级数学上册全册期末复习试卷练习(Word版含答案)一、选择题1.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.2.sin 30°的值为()A.3B.32C.12D.223.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.44.已知⊙O的半径是4,圆心O到直线l的距离d=6.则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.无法判断5.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.34B.14C.13D.126.如图,以AB为直径的⊙O上有一点C,且∠BOC=50°,则∠A的度数为()A.65°B.50°C.30°D.25°7.△ABC的外接圆圆心是该三角形()的交点.A.三条边垂直平分线B.三条中线C.三条角平分线D.三条高8.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为()A.8,10 B.10,9 C.8,9 D.9,109.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16 B .15,15 C .15,15.5 D .16,15 10.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .211.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤12.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 13.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 214.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似15.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或二、填空题16.若a b b -=23,则ab的值为________. 17.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm . 18.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.19.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.20.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__. 21.抛物线2(-1)3y x =+的顶点坐标是______.22.关于x 的方程220kx x --=的一个根为2,则k =______.23.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.24.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .25.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 26.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________. 27.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C的纵坐标为﹣1,点D在反比例函数y=kx的图象上,CD平行于y轴,S△OCD=52,则k的值为________.28.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.29.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.30.如图,⊙O的内接四边形ABCD中,∠A=110°,则∠BOD等于________°.三、解答题31.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cm B.6cm×4.5cm C.7cm×4cm D.7cm×4.5cm32.某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?(1)设提价了x 元,则这种衬衫的售价为___________元,销售量为____________件. (2)列方程完成本题的解答.33.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒).①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.34.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP = 时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)35.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值. 四、压轴题36.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).37.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.38.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).39.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)40.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF =1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P(3,2),Q(3+1,1),直线y=ax+b(a>0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为2m为负数,最大值为2n为正数.将最大值为2n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,2m=-(n-1)2+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣2+52=12.2.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.3.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF=,∵AB=1.5,BC=2,DE=1.8,∴1.5 1.82EF= , ∴EF=2.4故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.4.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..5.B解析:B【解析】试题解析:可能出现的结果的结果有1种,则所求概率1.4 P=故选B.点睛:求概率可以用列表法或者画树状图的方法. 6.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】解:由圆周角定理得,1252A BOC∠=∠=︒,故选:D.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.A解析:A【解析】【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.8.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.9.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,+÷=15.5岁,∴中位数为(1516)2故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.10.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 11.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.12.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误;B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.13.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=12时,由题意可知:(x−a)(x−b)−12=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.14.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.15.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点为(−3,0),∴当−3<x<1时,y>0.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.二、填空题16.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.17.2-2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则=)21cm,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的51,难度一般.18.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.19.20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm ,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m .解析:20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm ,根据相同时刻的物高与影长成比例,得到160:80x =:10,解得x 20=.故答案是:20m .【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.20.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率).21.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.22.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.23.24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在kyx=的图象上,∴k=6;即12yx=,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数12yx=的函数值相等,又x=3时,1243y==,∴点Q的坐标为(2025,4),即n=4,∴mn=6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.24.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.25.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.26.8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.27.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.28.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB=2268=10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.29.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是3193=, 故答案为13. 【点睛】 此题主要考查概率的求解,解题的关键是熟知几何概率的公式.30.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题31.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3180n π⨯ 解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm ,故选:B .【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.32.(1)(60x)+,(80020)x -;(2)(60+x−50)(800−20x )=12000,70,见解析【解析】【分析】(1)根据销售价等于原售价加上提价,销售量等于原销售量减去减少量即可;(2)根据销售利润等于单件的利润乘以销售量即可解答.【详解】(1)设这种衬衫应提价x 元,则这种衬衫的销售价为(60+x )元,销售量为(800−1005x )=(800−20x )件. 故答案为(60+x );(800−20x ).(2)根据(1)得:(60+x−50)(800−20x )=12000整理,得x 2−30x +200=0解得:x 1=10,x 2=20.为使顾客获得更多的优惠,所以x =10,60+x =70. 答:这种衬衫应提价10元,则这种衬衫的销售价为70元.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握销售问题的关系式.33.(1)233384y x x =-++;(2)① 32t =;②123453172417145,3,,,2617t t t t t -===== 【解析】【分析】(1)根据点B 的坐标可得出点A ,C 的坐标,代入抛物线解析式即可求出b ,c 的值,求得抛物线的解析式;(2)①过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,推出△QFA ∽△CBA ,△CGP ∽△CBA ,用含t 的式子表示OF ,PG ,将三角形的面积用含t 的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A (0,3),C (4,0),∵抛物线经过A 、B 两点, ∴3316408c b c =⎧⎪⎨-⨯++=⎪⎩,解得,343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:233384y x x =-++. (2)① ∵四边形ABCD 是矩形,∴∠B =90O , ∴AC 2=AB 2+BC 2=5; 由2333384x x -++=,可得120,2x x ==,∴D (2,3). 过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,∵∠FAQ =∠BAC , ∠QFA =∠CBA ,∴△QFA ∽△CBA . ∴AQ QF AC BC=, ∴5335AQ QF BC t t AC =⋅=⋅=. 同理:△CGP ∽△CBA , ∴PG CP AB AB =∴CP PG AB AB =⋅,∴45PG t =, 1154162(5)2(3)22352DPQ ABC QAD PQC PBD S S S S S t t t t ∆∆∆∆∆=---=-⨯⨯-⨯-⨯-⨯⨯-222229323323(3)3()3342322t t t t t =-+=-+-+=-+ 当32t =时,△DPQ 的面积最小.最小值为32. ② 由图像可知点D 的坐标为(2,3),AC=5,直线AC 的解析式为:3y 34x =-+. 三角形直角的位置不确定,需分情况讨论:当DPG 90∠=︒时,根据勾股定理可得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理,解方程即可得解;当DGP 90∠=︒时,可知点G 运动到点B 的位置,点P 运动到C 的位置,所需时间为t=3;当PDG 90∠=︒时,同理用勾股定理得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-=-++-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 整理求解可得t 的值.由此可得出t 的值为:132t =,23t =,3176t =,42417t =,5171456t -=.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.34.(1)2m n;(2)见解析. 【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB ∽△ABC 成立,∠A 是公共角,则AB AC AC AP =,即m n n AP =,∴AP=2m n. (2)解:作∠DEQ =∠F,如图点Q 就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.35.(1)详见解析;(2)4;(3)252 【解析】【分析】(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得。
苏教版九年级数学上册期末试卷练习(Word版含答案)一、选择题1.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm2.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=()A.60°B.65°C.70°D.80°3.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,43BMCN,当∠CAN与△CMB中的一个角相等时,则BM的值为()A.3或4 B.83或4 C.83或6 D.4或64.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是( )A.15,16 B.15,15 C.15,15.5 D.16,155.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是( )A .1月,2月B .1月,2月,3月C .3月,12月D .1月,2月,3月,12月6.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130° 7.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=8.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°9.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134 …y … 2 4 2 ﹣2…则下列判断中正确的是( ) A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间10.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°11.下列方程中,是一元二次方程的是( ) A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x ﹣212.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题13.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.14.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.15.如图,AB 、CD 、EF 所在的圆的半径分别为r 1、r 2、r 3,则r 1、r 2、r 3的大小关系是____.(用“<”连接)16.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.17.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.18.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.19.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.20.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.21.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .22.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 23.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.24.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.三、解答题25.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?26.(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)27.如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为35︒,吊灯底端B的仰角为30,从C点沿水平方向前进6米到达点D,测得吊灯底端B 的仰角为60︒.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41,3≈1.73)28.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF 的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.29.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率.30.市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x =45时,y =10;x =55时,y =90.在销售过程中,每天还要支付其他费用500元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式; (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元? 31.解方程:(1)2620x x ++= (2)2(3)3(3)x x x -=-32.如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°, 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.2.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.3.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CANCBA ∆∆∽,设3CN k =,4BM k =,可得CN ACAC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可. 【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8, ∴CMB CAB CAN ∠>∠>∠,AB=10, CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽, ∴CN ACAC CB =, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BHBA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒, ACN CHM ∴∆∆∽,∴CN MHAC CH=, ∴123516685kk k=-,∴=,k1∴=.BM4BM=或6.综上所述,4故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.4.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,+÷=15.5岁,∴中位数为(1516)2故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.5.D解析:D【解析】【分析】【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D6.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°. 故选:C . 【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.D解析:D 【解析】 【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可. 【详解】2890x x ++=, 289x x +=-,2228494x x ++=-+,所以()247x +=, 故选D. 【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.8.A解析:A 【解析】 【详解】解:∵四边形ABCO 是平行四边形,且OA=OC , ∴四边形ABCO 是菱形, ∴AB=OA=OB , ∴△OAB 是等边三角形, ∴∠AOB=60°, ∵BD 是⊙O 的直径, ∴点B 、D 、O 在同一直线上, ∴∠ADB=12∠AOB=30° 故选A .9.D解析:D 【解析】 【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】 解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:1317x +=,2317x -= ∵317102--<<,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.10.A解析:A【解析】【分析】连接OC ,根据等边三角形的性质得到∠BOC =60°,得到∠AOC =100°,根据圆周角定理解答.【详解】连接OC ,由题意得,OB =OC =BC ,∴△OBC 是等边三角形,∴∠BOC =60°,∵∠AOB =40°,∴∠AOC =100°,由圆周角定理得,∠ADC =∠AOC =50°,故选:A .【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.11.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A 、原方程为二元一次方程,不符合题意;B 、原式方程为二元二次方程,不符合题意;C 、原式为分式方程,不符合题意;D 、原式为一元二次方程,符合题意,故选:D .【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.12.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题13.【解析】试题分析:连接BC ,∴∠D=∠A,∵AB 是⊙O 的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.14.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.15.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r3<r2<r1故答案为:r3<r2<r1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.16.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算. 17.4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD 中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5,∴在Rt △OBD 中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.18.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG,先求出AB 的长,延长BE 交AC 于H 点,作HM⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC ,∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.19.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.20.60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.21.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.22.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.23.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 24.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.三、解答题 25.每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.26.(1)2m n;(2)见解析. 【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB ∽△ABC 成立,∠A 是公共角,则AB AC AC AP =,即m n n AP =,∴AP=2m n. (2)解:作∠DEQ =∠F,如图点Q 就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.27.吊灯AB 的长度约为1.1米.【解析】【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC 中利用正弦和正切函数求出AE长和BE长,即可求解.【详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=BE BD,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=12BD=3(米),在Rt△AEC中,tan∠ACE=AE CE,∴AE=CE•t an∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.28.(1)见解析;(2)2-2【解析】【分析】(1)若要证明CD是⊙O的切线,只需证明CD与半径垂直,故连接OE,证明OE∥AD即可;(2)根据等腰直角三角形的性质和扇形的面积公式即可得到结论.【详解】解:(1)连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线;(2)∵∠C=45°,∴△OCE是等腰直角三角形,∴CE=OE=2,∠COE=45°,∴阴影部分面积=S△OCE﹣S扇形OBE=12⨯2×2﹣2452360π⨯=2﹣2π.【点睛】本题综合考查了圆与三角形,涉及了切线的判定、等腰三角形的性质、扇形的面积,灵活的将图形与已知条件相结合是解题的关键.29.(1)12;(2)23.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a、b异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是12,故答案为:1 2(2)画树状图为:共有12种等可能的结果数,其中a、b异号有8种结果,∴这个二次函数的图象的对称轴在y轴右侧的概率为812=23.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,熟练掌握a、b异号时,对称轴在y轴右侧是解题关键.30.(1)y=﹣2x+200(30≤x≤60);(2)W=﹣2x2+260x﹣6500;(3)当销售单价为60元时,该公司日获利最大为1900元.【解析】【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单个利润×销售量-500列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【详解】(1)设y=kx+b,∵x=45时,y=10;x=55时,y=90,∴45110 5590k bk b+=⎧⎨+=⎩,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)∵售价为x元/千克,进价为30元/千克,日销量y=﹣2x+200,每天支付其他费用500元,∴W=(x﹣30)(﹣2x+200)﹣500=﹣2x2+260x﹣6500,(3)∵W=﹣2x2+260x﹣6500=﹣2(x﹣65)2+1950,∴抛物线的对称轴为x=65,∵-2<0,∴抛物线开口向下,x<65时,y随x的增大而增大,∵30≤x≤60,∴x=60时,w有最大值为-2(60-65)2+1950=1900(元),∴当销售单价为60元时,该公司日获利最大为1900元.【点睛】 本题考查二次函数和一次函数的综合应用,考查了待定系数法求一次函数解析式及二次函数的性质,熟练掌握二次函数的性质是解题关键. 31.(1)1237,37x x =-+=--;(2)122,33x x == 【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)2620x x ++= 2697x x ++=2(3)7x +=3?7x +=1237,37x x =-+=--.(2)2(3)3(3)x x x -=-2(3)3(3)0x x x ---=(23x)(x 3)0--=,2-3x=0或x-3=0∴122,33x x == 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知方程的解法.32.(203+17)cm .【解析】【分析】过点B 作BM ⊥CE 于点M ,BF ⊥DA 于点F ,在Rt △BCM 和Rt △ABF 中,通过解直角三角形可求出CM 、BF 的长,再由CE=CM+BF+ED 即可求出CE 的长.【详解】过点B 作BM ⊥CE 于点M ,BF ⊥DA 于点F ,如图所示.在Rt △BCM 中,BC=30cm ,∠CBM=30°,∴CM=BC•sin ∠CBM=15cm .在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB•sin∠.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴(cm).答:此时灯罩顶端C到桌面的高度CE是()cm.【点睛】本题考查了解直角三角形的应用以及矩形的判定与性质,通过解直角三角形求出CM、BF 的长是解题的关键.。
苏教版九年级上册数学 期末试卷复习练习(Word 版 含答案)一、选择题1.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③2.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.3.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=04.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .45.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( )A .12B .13C .23D .166.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )A .180°﹣2αB .2αC .90°+αD .90°﹣α7.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( )A .2020B .﹣2020C .2021D .﹣20218.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23B .1.15C .11.5D .12.5 9.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1 B .0C .1D .2 10.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=14411.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( )A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 12.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( ) A .1 B .3 C .4 D .6二、填空题 13.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.14.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.15.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.16.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.17.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.18.数据2,3,5,5,4的众数是____.19.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.20.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________21.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.22.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.23.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.24.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 .三、解答题25.某校九年级(2)班A 、B 、C 、D 四位同学参加了校篮球队选拔.(1)若从这四人中随杋选取一人,恰好选中B 参加校篮球队的概率是______;(2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B 、C 两位同学参加校篮球队的概率.26.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y 2x 80=-+. 设这种产品每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?27.化简并求值: 22+24411m m m m m ++÷+-,其中m 满足m 2-m -2=0. 28.某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y (件)与单价x (元/件)之间存在一次函数关系y =﹣2x +800(200<x <400).(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?29.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x 元,每天售出y 件.(1)请写出y 与x 之间的函数表达式;(2)当x 为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w 元,当x 为多少时w 最大,最大值是多少?30.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A 类(12≤m ≤15),B 类(9≤m ≤11),C 类(6≤m ≤8),D 类(m ≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为 ,扇形统计图中A 类所对的圆心角是 度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C 类的有多少名?31.已知,如图,在平面直角坐标系中,直线122y x =-- 与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =++经过A 、B 两点,与x 轴的另一个交点为C . (1)直接写出点A 和点B 的坐标;(2)求抛物线的函数解析式;(3)D 为直线AB 下方抛物线上一动点;①连接DO 交AB 于点E ,若DE :OE=3:4,求点D 的坐标;②是否存在点D ,使得∠DBA 的度数恰好是∠BAC 度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.32.一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.(1)用树状图列出所有可能出现的结果;(2)求3次摸到的球颜色相同的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2b a ->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大;故①正确;根据二次函数的系数,可得图像大致如下,由于对称轴x=2b a-的值未知, ∴当x=1时,y=a+b+c 的值无法判断,故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax 2+bx +c =-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.2.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 3.C解析:C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.4.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.5.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:21 63 ,故选:B.【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.6.D解析:D【解析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.7.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键8.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.解:由题意得:(10×14+15×6)÷20=11.5,故选:C .【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..9.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 10.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.11.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k ≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k ≥0且k ≠0, 解得:116k ≤且k ≠0.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k ≠0.12.C解析:C【解析】【分析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,解得:n =4,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.二、填空题13.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD :AB )2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE ∥BC ,可得△ADE ∽△ABC ,根据相似三角形的面积之比等于相似比的平方可得S △ADE :S △ABC =(AD :AB )2=1:9.考点:相似三角形的性质.14.115°【解析】【分析】根据∠EDC =180°﹣∠E ﹣∠DCE ,想办法求出∠E ,∠DCE 即可.【详解】由题意可知:CA =CE ,∠ACE =90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.15.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.16.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形, ∴它的内切圆半径5121322r +-==, 18.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.19.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x ,只需求出BC 即可求出图中阴影部分的面积.如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.20.【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E 2【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m , Rt △GMC 中,勾股可得222GC GM CM =+,即:222(32)(13)m m m ++=+,解得:22m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.21.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数k<解析:3【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.=方程有两个不相等的实数根,a,b=-,c k1241240∴∆=-=->,b ac kk∴<.3k<.故答案为:3【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.23.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 24.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1.【分析】 【详解】 本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1. 三、解答题25.(1)14;(2)P (BC 两位同学参加篮球队)16= 【解析】【分析】(1)根据概率公式P m n=(n 次试验中,事件A 出现m 次)计算即可 (2)用列表法求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)()1P B 4= 恰好选中B 参加校篮球队的概率是14. (2)列表格如下:∴P (BC 两位同学参加篮球队)21126== 【点睛】 本题考查的是用列表法或树状图法求事件的概率问题,通过题目找出全部情况的总数与符合条件的情况数目与熟记概率公式是解题的关键.26.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值. 27.12m m -+,原式=14 【解析】【分析】 根据分式的运算进行化简,再求出一元二次方程m 2-m -2=0的解,并代入使分式有意义的值求解.【详解】22+24411m m m m m ++÷+-=2+2(1)(1)1(2)m m m m m +-⋅++=12m m -+, 由m 2-m -2=0解得,m 1=2,m 2=-1,因为m =-1分式无意义,所以m =2时,代入原式=2122-+=14. 【点睛】此题主要考查分式的运算及一元二次方程的求解,解题的关键熟知分式额分母不为零.28.(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元.【解析】【分析】(1)根据“总利润=每件的利润×销量”列出一元二次方程即可求出结论;(2)设公司日销售获得的利润为w 元,根据“总利润=每件的利润×销量”即可求出w 与x 的函数关系式,然后利用二次函数求最值即可.【详解】(1)根据题意得,(﹣2x +800)(x ﹣200)=15000,解得:x 1=250,x 2=350,答要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元; (2)设公司日销售获得的利润为w 元,根据题意得,w =y (x ﹣200)=(﹣2x +800)(x ﹣200)=﹣2x 2+1200x ﹣160000=﹣2(x ﹣300)2+20000,∵﹣2<0,∴当x =300时,获得最大利润为20000元,答:为使公司日销售获得最大利润,该产品的单价应定为300元.【点睛】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数求最值是解决此题的关键.29.(1)1502y x =-+(2)当x 为10时,超市每天销售这种玩具可获利润2250元(3)当x 为20时w 最大,最大值是2400元 【解析】【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到()213024502w x =--+,根据二次函数的性质得到当30x <时,w 随x 的增大而增大,于是得到结论.【详解】(1)根据题意得,1502y x =-+; (2)根据题意得,()1405022502x x ⎛⎫+-+= ⎪⎝⎭, 解得:150x =,210x =,∵每件利润不能超过60元,∴10x =,答:当x 为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,()211405030200022w x x x x ⎛⎫=+-+=-++ ⎪⎝⎭()213024502x =--+, ∵102a =-<, ∴当30x <时,w 随x 的增大而增大, ∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元. 【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.30.(1)50,72;(2)作图见解析;(3)90.【解析】【分析】(1)用A 类学生的人数除以A 类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C 类学生数和C 类与D 类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C 类的的学生所占得百分比即可得答案.【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A 类所对的圆心角是:360°×20%=72°, (2)C 类学生数为:50﹣10﹣22﹣3=15,C 类占抽取样本的百分比为:15÷50×100%=30%,D 类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C 类的有90名.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.31.(1)A(-4,0)、B (0,-2);(2)213y x-222x =+;(3)①(-1,3)或(-3,-2);②(-2,-3).【解析】【分析】(1)在122y x =--中由0y =求出对应的x 的值,由x=0求出对应的y 的值即可求得点A 、B 的坐标;(2)把(1)中所求点A 、B 的坐标代入212y x bx c =++中列出方程组,解方程组即可求得b 、c 的值,从而可得二次函数的解析式; (3)①如图,过点D 作x 轴的垂线交AB 于点F ,连接OD 交AB 于点E ,由此易得△DFE ∽OBE ,这样设点D 的坐标为213(m,2)22m m +-,点F 的坐标为1(m,2)2m --,结合相似三角形的性质和DE :OE=3:4,即可列出关于m 的方程,解方程求得m 的值即可得到点D 的坐标;②在y 轴的正半轴上截取OH=OB ,可得△ABH 是等腰三角形,由此可得∠HAB=2∠BAC ,若此时∠DAB =2∠BAC=∠HAB ,则BD ∥AH ,再求出AH 的解析式可得BD 的解析式,由BD 的解析式和抛物线的解析式联立构成方程组,解方程组即可求得点D 的坐标.【详解】解:(1)在122y x =--中,由0y =可得:1202x --=,解得:4x =-; 由0x =可得:2y =-, ∴点A 的坐标为(-4,0),点B 的坐标为(0,-2);(2)把点A 的坐标为(-4,0),点B 的坐标为(0,-2)代入212y x bx c =++得: 8402b c c -+=⎧⎨=-⎩ ,解得:322b c ⎧=⎪⎨⎪=-⎩ , ∴抛物线的解析式为:213222y x x =+-; (3)①过点D 作x 轴的垂线交AB 于点F ,设点D 213(m,2)22m m +-,F 1(m,2)2m --, 连接DO 交AB 于点E ,△DFE ∽OBE ,因为DE :OE=3:4,所以FD :BO=3:4, 即:FD=34BO=32 , 所以21133m 222222FD m m ⎛⎫⎛⎫=---+-= ⎪ ⎪⎝⎭⎝⎭, 解之得: m 1=-1,m 2=-3 ,∴D 的坐标为(-1,3)或(-3,-2);②在y 轴的正半轴上截取OH=OB ,可得△ABH 是等腰三角形,∴∠BAH=2∠BAC ,若∠DBA=2∠BAC ,则∠DBA=∠BAH ,∴AH//DB ,由点A 的坐标(-4,0)和点H 的坐标(0,2)求得直线AH 的解析式为:1y 22x =+, ∴直线DB 的解析式是:1y 22x =-,将:2113y 2,y 2,222x x x =-=+-联立可得方程组:21y 2213y 222x x x ⎧=-⎪⎪⎨⎪=+-⎪⎩, 解得:23x y =-⎧⎨=-⎩, ∴点D 的坐标(-2,-3).【点睛】本题考查二次函数的综合应用,解第2小题的关键是过点D 作x 轴的垂线交AB 于点F ,连接OD 交AB 于点E ,从而构造出△DFE ∽OBE ,这样利用相似三角形的性质和已知条件即可求得D 的坐标;解第3小题的关键是在x 轴的上方作OH=OB ,连接AH ,从而构造出∠BAH=2∠BAC ,这样由∠DBA=∠BAH 可得AH ∥BD ,求出AH 的解析式即可得到BD 的解析式,从而将问题转化成求BD 和抛物线的交点坐标即可使问题得到解决.32.(1)见解析;(2)14【解析】【分析】(1)根据题意画树状图,求得所有等可能的结果;(2)由(1)可求得3次摸到的球颜色相同的结果数,再根据概率公式即可解答.【详解】(1)画树状图为:共有8种等可能的结果数;(2)3次摸到的球颜色相同的结果数为2,3次摸到的球颜色相同的概率=28=14.【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.。
苏教版九年级数学上册 期末试卷复习练习(Word 版 含答案)一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.下列是一元二次方程的是( )A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 3.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°4.sin30°的值是( )A .12B .22C .32D .15.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+6.如果两个相似三角形的周长比是1:2,那么它们的面积比是( )A .1:2B .1:4C .12D 2:1 7.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位 8.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A.2332π-B.233π-C.32π-D.3π-9.如图,△ABC中,∠C=90°,∠B=30°,AC=7,D、E分别在边AC、BC上,CD=1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.23B.33C.27D.3710.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A.②④B.①③④C.①④D.②③11.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a>﹣212.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是A.相离B.相切C.相交D.无法判断二、填空题13.已知矩形ABCD,AB=3,AD=5,以点A为圆心,4为半径作圆,则点C与圆A的位置关系为 __________.14.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.15.如图,AB 、CD 、EF 所在的圆的半径分别为r 1、r 2、r 3,则r 1、r 2、r 3的大小关系是____.(用“<”连接)16.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.17.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EF BF的值为_____.18.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.19.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.20.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)21.如图,在△ABC中,AD是BC上的高,tan B=cos∠DAC,若sin C=1213,BC=12,则AD的长_____.22.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.23.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.24.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题25.某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y 元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?26.国庆期间,某风景区推出两种旅游观光活动付费方式:若人数不超过20人,人均缴费500元;若人数超过20人,则每增加一位旅客,人均收费降低10元,但是人均收费不低于350元.现在某单位在国庆期间组织一批贡献突出的职工到该景区旅游观光,支付了12000元观光费,请问:该单位一共组织了多少位职工参加旅游观光活动?27.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.28.计算:(12 8233-(2()1 031 27+3.14+2π-⎛⎫- ⎪⎝⎭29.化简并求值:22+24411m m mm m++÷+-,其中m满足m2-m-2=0.30.一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.(1)从袋中任意摸出一个球,摸到标号为偶数的概率是 ;(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.31.某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y (件)与单价x (元/件)之间存在一次函数关系y =﹣2x +800(200<x <400).(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?32.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由函数是二次函数得到a-1≠0即可解题.【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0,解得:a≠1,故选你D.【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.3.C解析:C【解析】【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠C+∠A=180°,∵∠A=80°,∴∠C=100°,故选:C.【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键. 4.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.5.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.6.B解析:B【解析】【分析】直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:4.故选:B .【点睛】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.7.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.8.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34AAB BD∠=∠=∠=∠,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF-S△ABD=26021233602π⨯-⨯=233π故选B.9.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=7,∠ABC=30°,∴AB=2AC=27,BC=3AC=21,∵DE∥AB,∴CDCA=CECB,∴7=21,∴CE=3,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=3∴E′H=12CE′=3,CH=3HE′=32,∴BH=22BC CH-=9214-=53∴BE′=HE′+BH=33,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.10.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x 轴没有交点.11.B解析:B【解析】【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.【详解】∵1a =,2b =-,1c a =-,由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2,故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.12.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l 和⊙O 相交,则d <r ;②直线l 和⊙O 相切,则d=r ;③直线l 和⊙O 相离,则d >r (d 为直线与圆的距离,r 为圆的半径).因此,∵⊙O 的半径为6,圆心O 到直线l 的距离为5,∴6>5,即:d <r .∴直线l 与⊙O 的位置关系是相交.故选C .二、填空题13.点C 在圆外【解析】【分析】由r 和CA ,AB 、DA 的大小关系即可判断各点与⊙A 的位置关系.【详解】解:∵AB =3厘米,AD =5厘米,∴AC =厘米,∵半径为4厘米,∴点C 在圆A 外【点解析:点C 在圆外【解析】【分析】由r 和CA ,AB 、DA 的大小关系即可判断各点与⊙A 的位置关系.【详解】解:∵AB =3厘米,AD =5厘米,∴AC∵半径为4厘米,∴点C 在圆A 外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.14.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.15.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r3<r2<r1故答案为:r3<r2<r1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.16.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.17..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.18.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5180n ⨯=6π, 解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.19.【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB 是 解析:34【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC ,即可由tan ∠ADC=tan ∠ABC=AC BC 求得所求的值了. 详解:∵AB 是O 的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴4=,∴tan ∠ABC=34AC BC =, 又∵∠ADC=∠ABC , ∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.20.>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上,所以有a >0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 21.8【解析】【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8【解析】【分析】在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos ∠DAC =sin C 得到tan B =1213,接着在Rt △ABD 中利用正切的定义得到BD =13x ,所以13x +5x =12,解得x =23,然后利用AD =12x 进行计算. 【详解】在Rt △ADC 中,sin C =AD AC =1213, 设AD =12x ,则AC =13x ,∴DC =5x ,∵cos ∠DAC =sin C =1213, ∴tan B =1213,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.22.【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛解析:【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛】此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.23.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】 【分析】 根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm ,则:1:2000=12:x ,解得x =24000,24000cm =240m .故答案为240m .【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.24.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.三、解答题25.(1)y=100x (010x ≤≤的整数) y=2-3130x +x(1030x <≤的整数);(2)购买22件时,该网站获利最多,最多为1408元.【解析】【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当010x ≤≤的整数时,y 与x 的关系式为y=100x ;当1030x <≤的整数时, 1030062002x y x , y=2-3130x x + (1030x <≤的整数),∴y 与x 的关系式为:y=100x (010x ≤≤的整数), y=2-3130x +x(1030x <≤的整数)(2)当(010x ≤≤的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=23130x x -+, ∵a=-3<0,抛物线开口向下,∴y 有最大值,当x=22123b a -=时,y 取最大值, 因为x 为整数,根据对称性得:当x=22时,y 有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x 的取值范围及取值要求是解答此题的关键之处.26.30【解析】【分析】设该单位一共组织了x 位职工参加旅游观光活动,求出当人数为20时的总费用及人均收费350元时的人数,即可得出20<x <35,再利用总费用=人数×人均收费,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:设该单位一共组织了x 位职工参加旅游观光活动,∵500×20=10000(元),10000<12000,(500﹣350)=15(人),12000÷350=3427(人),3427不为整数,∴20<x <20+15,即20<x <35.依题意,得:x[500﹣10(x ﹣20)]=12000,整理,得:x 2﹣70x+1200=0,解得:x 1=30,x 2=40(不合题意,舍去).答:该单位一共组织了30位职工参加旅游观光活动.【点睛】 本题考查了一元二次方程的应用,正确理解题意,找准题中等量关系列出方程是解题的关键.27.4m【解析】【分析】由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312AB =; 【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴CD DF AB BF =,EF FG AB BG=, 又∵CD=EF , ∴DF FG BF BG=, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3437BD BD =++ ∴BD=9,BF=9+3=12 ∴ 1.6312AB = 解得,AB=6.4m因此,路灯杆AB 的高度6.4m .【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.28.(1;(2)6【解析】【分析】(1)将原式三项化简,合并同类二次根式后即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项利用零指数公式化简,第三项利用负指数公式化简,合并后即可得到结果;【详解】解:(1)原式=,(2)原式=3+1+2=6【点睛】此题考查了实数的混合运算,涉及的知识有:算术平方根和立方根,绝对值的性质,0指数和负整指数幂,熟练掌握公式及法则是解本题的关键.29.12m m -+,原式=14 【解析】【分析】 根据分式的运算进行化简,再求出一元二次方程m 2-m -2=0的解,并代入使分式有意义的值求解.【详解】22+24411m m m m m ++÷+-=2+2(1)(1)1(2)m m m m m +-⋅++=12m m -+, 由m 2-m -2=0解得,m 1=2,m 2=-1,因为m =-1分式无意义,所以m =2时,代入原式=2122-+=14. 【点睛】此题主要考查分式的运算及一元二次方程的求解,解题的关键熟知分式额分母不为零.30.(1)25;(2)组成的两位数是奇数的概率为35. 【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有20种等可能的结果数,找出组成的两位数是奇数的结果数,然后根据概率公式计算.【详解】解:(1)从袋中任意摸出一个球,摸到标号为偶数的概率25=; 故答案为:25; (2)画树状图为:共有20种等可能的结果数,其中组成的两位数是奇数的结果数为12,所以组成的两位数是奇数的概率123 205 ==.【点睛】本题主要考查了列表法与树状图法求概率,利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B 的概率.31.(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元.【解析】【分析】(1)根据“总利润=每件的利润×销量”列出一元二次方程即可求出结论;(2)设公司日销售获得的利润为w元,根据“总利润=每件的利润×销量”即可求出w与x的函数关系式,然后利用二次函数求最值即可.【详解】(1)根据题意得,(﹣2x+800)(x﹣200)=15000,解得:x1=250,x2=350,答要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)设公司日销售获得的利润为w元,根据题意得,w=y(x﹣200)=(﹣2x+800)(x﹣200)=﹣2x2+1200x﹣160000=﹣2(x ﹣300)2+20000,∵﹣2<0,∴当x=300时,获得最大利润为20000元,答:为使公司日销售获得最大利润,该产品的单价应定为300元.【点睛】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数求最值是解决此题的关键.32.(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)2019年该贫困户的家庭年人均纯收入能达到4200元.【解析】【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入=2018年该贫困户的家庭年人均纯收入×(1+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【详解】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,依题意,得:2250013600x +()=,解得120.220% 2.2x x :==,=﹣(舍去). 答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20% .(2)3600120%4320⨯+()=(元), 43204200>.答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
苏教版九年级数学上册 期末试卷复习练习(Word 版 含答案)一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒3.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个4.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③5.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120°6.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2 B .a < x 1< x 2 < b C .x 1< a < x 2 < b D .x 1< a < b < x 2 8.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .19.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm10.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变11.下列方程中,是一元二次方程的是( ) A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x ﹣212.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+-D .23(1)3y x =-++二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 14.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.15.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .16.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.17.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 18.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .19.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________. 20.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 21.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.22.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.23.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8.(1)请补充完整下面的成绩统计分析表:平均分方差众数中位数甲组89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.24.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题25.解方程(1)x2-6x-7=0;(2) (2x-1)2=9.26.如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为35︒,吊灯底端B的仰角为30,从C点沿水平方向前进6米到达点D,测得吊灯底端B 的仰角为60︒.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41,3≈1.73)27.解方程:(1)x2+4x﹣21=0(2)x2﹣7x﹣2=028.在平面直角坐标系中,点O(0,0),点A(﹣3,0).已知抛物线y=﹣x2+2mx+3(m为常数),顶点为P.(1)当抛物线经过点A时,顶点P的坐标为;(2)在(1)的条件下,此抛物线与x轴的另一个交点为点B,与y轴交于点C.点Q为直线AC上方抛物线上一动点.①如图1,连接QA、QC,求△QAC的面积最大值;②如图2,若∠CBQ=45°,请求出此时点Q坐标.29.如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.30.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.(1)试判断BC与⊙O的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).31.如图,AB为O的直径,PD切O于点C,交AB的延长线于点D,且∠=∠.2D A(1)求D ∠的度数. (2)若O 的半径为2,求BD 的长.32.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.C解析:C 【解析】 【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD 的度数,再根据直径所对的圆周角是90°,利用内角和求解. 【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.3.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.4.C解析:C【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.5.C解析:C 【解析】 【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A 、∠B 的度数,根据三角形内角和定理计算即可. 【详解】 由题意得,sinA-12=0,22-cosB=0,即sinA=12,2=cosB , 解得,∠A=30°,∠B=45°, ∴∠C=180°-∠A-∠B=105°, 故选C . 【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.6.B解析:B 【解析】 【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解. 【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B . 【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.7.D解析:D 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】如图,设函数y =(x−a )(x−b ), 当y =0时, x =a 或x =b , 当y =12时, 由题意可知:(x−a )(x−b )−12=0(a <b )的两个根为x 1、x 2, 由于抛物线开口向上,由抛物线的图象可知:x 1<a <b <x 2 故选:D .【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.8.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.9.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.10.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.11.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题13.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案. 由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.15.100【解析】【分析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△E解析:100【解析】【分析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD , ∴AB BD EC CD=, 即BD EC AB CD ⨯=, 解得:AB=1205060⨯ =100(米). 故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.16.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.17.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.18..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB解析:10 3.【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=83∴103AD=考点: 1.相似三角形的判定与性质;2.勾股定理.19.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 20.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:625-.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.21.2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM+∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离23.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差: ()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键. 24.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.三、解答题25.(1)x 1=7,x 2=-1;(2)x 1=2,x 2=-1【解析】【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+9-9-7=0(x-3) 2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解. 26.吊灯AB的长度约为1.1米.【解析】【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC 中利用正弦和正切函数求出AE长和BE长,即可求解.【详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=BE BD,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=12BD=3(米),在Rt△AEC中,tan∠ACE=AE CE,∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB 的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.27.(1)x 1=3,x 2=﹣7;(2)x 1=72+x 2=72- 【解析】【分析】(1)根据因式分解法解方程即可;(2)根据公式法解方程即可.【详解】解:(1)x 2+4x ﹣21=0(x ﹣3)(x+7)=0解得x 1=3,x 2=﹣7;(2)x 2﹣7x ﹣2=0∵△=49+8=57∴x解得x 1x 2 【点睛】本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键.28.(1)(﹣1,4);(2)①278;②Q(﹣52,74). 【解析】【分析】(1)将点A 坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q 作y 轴的平行线交AC 于点N ,先求出直线AC 的解析式,点Q(x ,﹣x 2﹣2x+3),则点N(x ,x+3),则△QAC 的面积S=12×QN×OA=﹣32x 2﹣92x ,然后根据二次函数的性质即可求解;②tan ∠OCB=OB CO =13,设HM=BM=x ,则CM=3x ,x=4,52,则点H(0,12),同理可得:直线BH(Q)的表达式为:y=-12x+12,即可求解. 【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3∴m =﹣1,故抛物线的表达式为:y =﹣x 2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q 作y 轴的平行线交AC 于点N ,如图1,设直线AC 的解析式为y=kx+b ,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得,303k b b -+=⎧⎨=⎩, 解得13k b =⎧⎨=⎩, ∴直线AC 的表达式为:y =x+3,设点Q(x ,﹣x 2﹣2x+3),则点N (x ,x+3),△QAC 的面积S =12⨯QN×OA =12⨯(﹣x 2﹣2x+3﹣x ﹣3)×3=﹣32x 2﹣92x , ∵﹣32<0,故S 有最大值为:278; ②如图2,设直线BQ 交y 轴于点H ,过点H 作HM ⊥BC 于点M ,tan ∠OCB =OB CO =13,设HM =BM =x ,则CM =3x ,BC=BM+CM=4x=10,解得:x=10,CH=10x=52,则点H(0,12),同直线AC的表达式的求法可得直线BH(Q)的表达式为:y=﹣12x+12…②,联立①②并解得:﹣x2﹣2x+3=﹣12x+12,解得x=1(舍去)或﹣52,故点Q(﹣52,74).【点睛】本题考查了待定系数法求二次函数和一次函数解析式,二次函数的图像与性质,锐角三角函数的定义,以及数形结合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.29.35°【解析】【分析】连接OD,根据切线的性质得∠ODC=90°,根据圆周角定理即可求得答案.【详解】连接OD,∵CD为⊙O的切线,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圆周角定理得,∠A=12∠DOC=35°.【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.30.(1)BC与⊙O相切,理由见解析;(2)23 .【解析】试题分析:(1)连接OD ,推出OD BC ⊥,根据切线的判定推出即可;(2)连接,DE OE ,求出阴影部分的面积=扇形EOD 的面积,求出扇形的面积即可. 试题解析:(1)BC 与O 相切,理由:连接OD ,∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵AO =DO ,∴∠BAD =∠ADO ,∴∠CAD =∠ADO ,//AC OD ∴,90ACD ∠=,∴OD ⊥BC ,∴BC 与O 相切; (2)连接OE ,ED ,60BAC OE OA ∠==,,∴△OAE 为等边三角形,60AOE ∴∠=,30ADE ,∴∠= 又1302OAD BAC ∠=∠=, ADE OAD ∴∠=∠,//ED AO ∴,AED AOD S S ∴=,∴阴影部分的面积=S 扇形ODE 60π42π.3603⨯⨯==31.(1)45D ∠=︒;(2)222BD =-.【解析】【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A ,求出∠D=∠COD ,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意O 的半径为2,求出OC=CD=2,根据勾股定理求出BD 即可. 【详解】解:(1)∵OA=OC ,∴∠A=∠ACO ,∴∠COD=∠A+∠ACO=2∠A ,∵∠D=2∠A ,∴∠D=∠COD ,∵PD 切⊙O 于C ,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD ,O 的半径为2,∴OC=OB=CD=2,在Rt △OCD 中,由勾股定理得:22+22=(2+BD )2,解得:222BD =-.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.32.(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%. (2)2019年该贫困户的家庭年人均纯收入能达到4200元.【解析】【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入=2018年该贫困户的家庭年人均纯收入×(1+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【详解】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,依题意,得:2250013600x +()=, 解得120.220% 2.2x x :==,=﹣(舍去). 答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20% .(2)3600120%4320⨯+()=(元), 43204200>.答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
苏教版数学九年级上册期末试卷练习(Word版含答案)一、选择题1.下列是一元二次方程的是()A.2x+1=0 B.x2+2x+3=0 C.y2+x=1 D.1x=12.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=1,BD=2,则DE BC的值为()A.12B.13C.14D.193.抛物线y=2(x﹣2)2﹣1的顶点坐标是()A.(0,﹣1) B.(﹣2,﹣1) C.(2,﹣1) D.(0,1)4.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0 5.下列图形,是轴对称图形,但不是中心对称图形的是()A.B.C.D.6.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A.12B.13C.14D.157.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是( )A.1月,2月B.1月,2月,3月C.3月,12月D.1月,2月,3月,12月8.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A .73B .234+C .1433D .22339.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=- C .()2425x += D .()247x += 10.一元二次方程x 2=-3x 的解是( ) A .x =0 B .x =3 C .x 1=0,x 2=3 D .x 1=0,x 2=-3 11.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .112.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm二、填空题13.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.14.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm . 15.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).16.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 17.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.18.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.19.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.20.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒21.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.22.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,;④=3m -.其中,正确的有___________________.23.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .24.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.三、解答题25.某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x 棵橙子树,果园橙子的总产量为y 个.(1)求y 与x 之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60 420个以上?26.如图,抛物线y=-x 2+bx+3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0).过点A 作直线y=x+c 与抛物线交于点D ,动点P 在直线y=x+c 上,从点A 出发,以每秒2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ).(1)直接写出b ,c 的值及点D 的坐标;(2)点 E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标.27.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++≠ 的顶点为()2,0A -,且经过点()5,9B -与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线对应的函数表达式;(2)点P 为该抛物线上点C 与点B 之间的一动点.①若15PAB ABC S S ∆∆=,求点P 的坐标. ②如图②,过点B 作x 轴的垂线,垂足为D ,连接AP 并延长,交BD 于点M ,连接BP延长交AD 于点N .试说明()DN DM DB +为定值.28.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,交AB 于点E ,过点D 作DF ⊥AB ,垂足为F ,连接DE . (1)求证:直线DF 与⊙O 相切; (2)求证:BF =EF ;29.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形; (2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.30.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠. (1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.31.如图①,抛物线y =x 2﹣(a +1)x +a 与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C .已知△ABC 的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P ,使得∠POB =∠CBO ,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图②,M 是抛物线上一点,N 是射线CA 上的一点,且M 、N 两点均在第二象限内,A 、N 是位于直线BM 同侧的不同两点.若点M 到x 轴的距离为d ,△MNB 的面积为2d ,且∠MAN =∠ANB ,求点N 的坐标.32.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.2.B解析:B【解析】试题分析:∵DE∥BC,∴AD DEAB BC=,∵13ADAB=,∴31DEBC=.故选B.考点:平行线分线段成比例.3.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.4.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.5.A解析:A 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:A.是轴对称图形,不是中心对称图形,符合题意; B.不是轴对称图形,是中心对称图形,不符合题意; C. 是轴对称图形,是中心对称图形,不符合题意; D. 是轴对称图形,是中心对称图形,不符合题意; 故选:A . 【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.6.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.7.D【解析】 【分析】 【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产. 故选D8.C解析:C 【解析】 【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6, ∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a = ∵BC ∥AD , ∴AD PDBE PB= =2,∵BD =∴PD =23⨯=∴点H 的横坐标b ,∴a +b =33=; 故选C .本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289+=-,x x222++=-+,8494x xx+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.10.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.11.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.12.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.二、填空题13.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=223534+=厘米,∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.14.2-2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为解析:52【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=512AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则51-=)251cm,故答案为:(52)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=,难度一般. 15.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC=AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分解析:12 【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC AB .故答案为:12. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则AC BC =正确理解黄金分割的定义是解题的关键.16.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.17.50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.18.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A的两解析:63+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O作两边的垂线,垂足分别为D,E,连接AO,则Rt △ADO 中,∠OAD =30°,OD =1,AD =3, ∴S △ADO =12OD •AD =32, ∴S 四边形ADOE =2S △ADO =3,∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:3(3﹣3π)=33﹣π ∵S △ABC =12×6×33=93 ∴纸片能接触到的最大面积为:93﹣33+π=63+π.故答案为63+π.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式.19.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=25510BD AB ==.20.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.如图,连接OA ,∵OA ,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】 【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.21.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C解析:32【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.22.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.23.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.24.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量三、解答题25.(1)y=600-5x (0≤x <120);(2)7到13棵【解析】【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x 2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:y=600-5x (0≤x <120);(2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则w=(600-5x )(100+x )=-5x 2+100x+60000当y=-5x 2+100x+60000=60420时,整理得出:x 2-20x+84=0,解得:x 1=14,x 2=6,∵抛物线对称轴为直线x=1002(5)-⨯-=10, ∴增种7到13棵橙子树时,可以使果园橙子的总产量在60420个以上.【点睛】此题主要考查了二次函数的应用,准确分析题意,列出y 与x 之间的二次函数关系式是解题关键.26.(1)b=2,c=1,D (2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【解析】【分析】(1)将点A 分别代入y=-x 2+bx+3,y=x+c 中求出b 、c 的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D 的坐标;(2))过点E作EF ⊥y 轴,设E (x ,-x 2+2x+3),先求出点B 、C 的坐标,再利用面积加减关系表示出△CBE 的面积,即可求出点E 的坐标.(3)分别以点D 、M 、N 为直角顶点讨论△MND 是等腰直角三角形时点N 的坐标.【详解】(1)将A (-1,0)代入y=-x 2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x 2+2x+3,将点A 代入y=x+c 中,得-1+c=0,解得c=1,∴y=x+1,解2123y x y x x =+⎧⎨=-++⎩,解得1123x y =⎧⎨=⎩,2210x y =-⎧⎨=⎩(舍去), ∴D (2,3).∴b= 2 ,c= 1 ,D (2,3).(2)过点E 作EF⊥y 轴,设E (x ,-x 2+2x+3),当y=-x 2+2x+3中y=0时,得-x 2+2x+3=0,解得x 1=3,x 2=-1(舍去),∴B(3,0).∵C(0,3),∴CBE CBO CFE S S S梯形OFEB -S , ∴22111633(3)(23)(2)222x x x x x x , 解得x 1=4,x 2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD 的解析式为y=x+1,设P (m ,m+1),则Q (m ,-m 2+2m+3),∴线段PQ 的长度h=-m 2+2m+3-(m+1)=219()24m, ∴当12m ==0.5,线段PQ 有最大值. 当∠D 是直角时,不存在△MND 是等腰直角三角形的情形;当∠M 是直角时,如图1,点M 在线段DN 的垂直平分线上,此时N 1(2,0);当∠M是直角时,如图2,作DE⊥x轴,M2E⊥HE,N2H⊥HE,∴∠H=∠E=90︒,∵△M2N2D是等腰直角三角形,∴N2M2=M2D,∠N2M2D=90︒,∵∠N2M2H=∠M2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);当∠N是直角时,如图3,作DE⊥x轴,∴∠N3HM3=∠DEN3=90︒,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90︒,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);当∠N是直角时,如图4,作DE⊥x轴,∴∠N4HM4=∠DEN4=90︒,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90︒,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N 的坐标.27.(1)244y x x =++;(2)①点P 的坐标为()13,1P -,()24,4P -;②()27DN DM DB +=,是定值.【解析】【分析】(1)设函数为()()220y a x a =+≠,把()5,9B -代入即可求解;(2)①先求出直线AB 解析式,求出C’点,得到ABC S ∆,再求出PAB S ∆,设点()2,44P x x x ++,过P 作y 轴的平行线交AB 于点P',得到()',36P x x --,根据三角形面积公式得()()213644332x x x ⎡⎤⨯---++⨯=⎣⎦,解出x 即可求解; ②过P 作x 轴的垂线,垂足为点E ,设AE t =,表示出()22,P t t --,故2PE t =,根据//PE BD ,得APE AMD ∆∆,故PE DM AE DA =,即23t DM t =,得到3DM t =.再过P 作BD 的垂线,垂足为点F ,根据 相似三角形的性质得到93DN t =+,可得()DN DM DB +的值即为定值.【详解】(1)解:设()()220y a x a =+≠,把点()5,9B -代入,得()2952a =-+,解得1a =, ∴该抛物线对应的函数表达式为()22244y x x x =+=++.(2)①设直线AB 的函数表达式为y kx b =+,把()2,0A -,()5,9B -代入,得0295k b k b =-+⎧⎨=-+⎩,解得36k b =-⎧⎨=-⎩. ∴直线AB 的函数表达式为36AB y x =--.设直线AB 与y 轴交于点'C ,则点()'0,6C -,∴'10CC =.()15210152ABC S ∆=⨯-⨯=,1115355PAB ABC S S ∆∆==⨯=. 设点()2,44P x x x ++,过P 作y 轴的平行线交AB 于点P',则()',36P x x --, ∴()()213644332x x x ⎡⎤⨯---++⨯=⎣⎦,13x =-,24x =-,所以点P 的坐标为()13,1P -,()24,4P -.②过P 作x 轴的垂线,垂足为点E ,设AE t =,则()22,P t t--,2PE t =, 由//PE BD ,得APE AMD ∆∆,PE DM AE DA =,即23t DM t =,故3DM t =. 过P 作BD 的垂线,垂足为点F , 由//PF ND ,得BPFBND ∆∆,BF DB PF DN =,即2993t t DN -=-,故93DN t =+. 所以()()939273DN DM DB t t+=+=+,是定值.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质,相似三角形的判定与性质.28.见解析【解析】分析:(1)连接OD ,由已知易得∠B=∠C ,∠C=∠ODC ,从而可得∠B=∠ODC ,由此可得AB ∥OD ,结合DF ⊥AB 即可得到OD ⊥DF ,从而可得DF 与⊙O 相切;(2)连接AD ,由已知易得BD=CD ,∠BAD=∠CAD ,由此可得DE=DC ,从而可得DE=BD ,结合DF ⊥AB 即可得到BF=EF.详解:(1)连结OD ,∵AB=AC ,∴∠B=∠C ,∵OC=OD ,∴∠ODC=∠C ,∴∠ODC=∠B ,∴OD∥AB,∵DF⊥AB,∴DF⊥OD,∴直线DF与⊙O相切;(2)连接AD.∵AC是⊙O的直径,∴AD⊥BC,又AB=AC,∴BD=DC,∠BAD=∠CAD,∴DE=DC,∴DE=DB,又DF⊥AB,∴BF=EF.点睛:(1)连接OD,结合已知条件证得OD∥AB是解答第1小题的关键;(2)连接AD 结合已知条件和等腰三角形的性质证得DE=DC=BD是解答第2小题的关键.29.(1)详见解析;(2)①1;51.【解析】【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,DF所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CEPA AE=,∴4221t=,解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CEPA AE=,∴4122t=,解得,t=4,∵点P从点A到B,t的最大值是4÷2=2,∴当t=4时不合题意,舍去;由上可得,当t为1时,点E恰好为AC的一个三等分点;②如右图所示,∵∠DPF=90°,∠DPF=∠OPF,∴∠OPF=90°,∴∠DPA+∠QPB=90°,∵∠DPA+∠PDA=90°,∴∠PDA=∠QPB,∵点Q落在BC上,∴∠DAP=∠B=90°,∴△DAP∽△PBQ,∴DA DP PB PQ=,∵DA=AB=4,AP=2t,∠DAP=90°,∴DP=PB=4﹣2t,设PQ=a,则PE=a,DE=DP﹣a=a,∵△AEP∽△CED,∴AP PECD DE=,即22424t t a=+-, 解得,a =2242t t t++, ∴PQ =2242t t t++, ∴224244224t t t t +=-+,解得,t 1=﹣5﹣1(舍去),t 2=5﹣1,即t 的值是5﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.30.(1)见解析;(2)145【解析】【分析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE =∠C ,根据等角的补角相等可得出∠ADE =∠AFB ,根据AB ∥CD 可得出∠BAF =∠AED ,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB ,AE ,AD ,BF 的比例关系,有了AD ,AB 的长,只需求出AE 的长即可.可在直角三角形ABE 中用勾股定理求出AE 的长,这样就能求出BF 的长了.【详解】(1)证明:在平行四边形ABCD 中,∵∠D +∠C =180°,AB ∥CD ,∴∠BAF =∠AED .∵∠AFB +∠BFE =180°,∠D +∠C =180°,∠BFE =∠C ,∴∠AFB =∠D ,∴△ABF ∽△EAD .(2)解:∵BE ⊥CD ,AB ∥CD ,∴BE ⊥AB .∴∠ABE =90°.∴5AE ===.∵△ABF ∽△EAD ,BF AB AD EA∴=, 4752BF ∴=.145BF ∴=. 【点睛】本题主要考查了相似三角形的判定和性质,平行四边形的性质,等角的补角,熟练掌握相似三角形的判定和性质是解题的关键.31.(1)y =x 2+2x ﹣3;(2)存在,点P坐标为1322⎛+ ⎝⎭或51522⎛⎫-+- ⎪ ⎪⎝⎭;(3)点N 的坐标为(﹣4,1) 【解析】【分析】(1)分别令y =0 ,x =0,可表示出A 、B 、C 的坐标,从而表示△ABC 的面积,求出a 的值继而即可得二次函数解析式;(2)如图①,当点P 在x 轴上方抛物线上时,平移BC 所在的直线过点O 交x 轴上方抛物线于点P ,则有BC ∥OP ,此时∠POB =∠CBO ,联立抛物线得解析式和OP 所在直线的解析式解方程组即可求解;当点P 在x 轴下方时,取BC 的中点D ,易知D 点坐标为(12,32-),连接OD 并延长交x 轴下方的抛物线于点P ,由直角三角形斜边中线定理可知,OD =BD ,∠DOB =∠CBO 即∠POB =∠CBO ,联立抛物线的解析式和OP 所在直线的解析式解方程组即可求解.(3)如图②,通过点M 到x 轴的距离可表示△ABM 的面积,由S △ABM =S △BNM ,可证明点A 、点N 到直线BM 的距离相等,即AN ∥BM ,通过角的转化得到AM =BN ,设点N 的坐标,表示出BN 的距离可求出点N .【详解】(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a ,当x =0,y =a∴点C 坐标为(0,a ),∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0),∴AB =1﹣a ,OC =﹣a ,∵△ABC 的面积为6, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去),∴a =﹣3,∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3,∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,则2323y x y x x =⎧⎨=+-⎩,∴111232x y ⎧+=⎪⎪⎨+⎪=⎪⎩,221232x y ⎧-=⎪⎪⎨-⎪=⎪⎩,∴点P坐标为1322⎛+ ⎝⎭; ②当点P 在x 轴下方时,直线OP 的函数表达式为y =﹣3x ,则2323y xy x x =-⎧⎨=+-⎩∴1152y x ⎧-=⎪⎪⎨⎪=⎪⎩,2252y x ⎧-=⎪⎪⎨⎪=⎪⎩∴点P坐标为515,22⎛⎫-+- ⎪ ⎪⎝⎭, 综上可得,点P坐标为⎝⎭或⎝⎭;(3)如图,过点A 作AE ⊥BM 于点E ,过点N 作NF ⊥BM 于点F ,设AM 与BN 交于点G ,延长MN 与x 轴交于点H ;∵AB =4,点M 到x 轴的距离为d ,∴S △AMB =114222AB d d d ⨯⨯⨯== ∵S △MNB =2d ,∴S △AMB =S △MNB , ∴1122BM AE BM NF ⨯=⨯, ∴AE =NF ,∵AE ⊥BM ,NF ⊥BM ,∴四边形AEFN 是矩形,∴AN ∥BM ,∵∠MAN =∠ANB ,∴GN =GA ,∵AN ∥BM , ∴∠MAN =∠AMB ,∠ANB =∠NBM ,∴∠AMB =∠NBM ,∴GB =GM ,∴GN +GB =GA +GM 即BN =MA ,在△AMB 和△NBM 中AMB NB AM NB MB BM M =⎧=∠∠⎪⎨⎪⎩=∴△AMB ≌△NBM (SAS ),∴∠ABM =∠NMB ,∵OA =OC =3,∠AOC =90°,∴∠OAC =∠OCA =45°,又∵AN ∥BM ,∴∠ABM =∠OAC =45°,∴∠NMB =45°,∴∠ABM +∠NMB =90°,∴∠BHM =90°,∴M 、N 、H 三点的横坐标相同,且BH =MH ,∵M 是抛物线上一点,∴可设点M 的坐标为(t ,t 2+2t ﹣3),∴1﹣t =t 2+2t ﹣3,∴t 1=﹣4,t 2=1(舍去),∴点N 的横坐标为﹣4,可设直线AC :y =kx ﹣3,则0=﹣3k ﹣3,∴k =﹣1,∴y =﹣x ﹣3,当x =﹣4时,y =﹣(﹣4)﹣3=1,∴点N 的坐标为(﹣4,1).【点睛】本题主要考查二次函数的图象与性质,还涉及到全等三角形的判定及其性质、三角形面积公式等知识点,综合性较强,解题的关键是熟练掌握二次函数的图象与性质.32.5%【解析】【分析】根据题意,列出方程即可求出x 的值.【详解】根据题意,得2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+整理,得2200x x -=解这个方程,得15%x =,20x =(不合题意,舍去)所以x 的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.。
苏教版数学九年级上册 期末试卷复习练习(Word 版 含答案)一、选择题1.下列是一元二次方程的是( )A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 2.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )A .甲、乙两队身高一样整齐B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐 3.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=0 4.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26°5.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( )A .8,10B .10,9C .8,9D .9,10 6.下列方程是一元二次方程的是( ) A .2321x x =+ B .3230x x --C .221x y -=D .20x y += 7.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 8.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .4 9.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( )A .2B .3C .4D .5 10.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ),A .19B .14C .16D .1311.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π-B .8433π-C .8233π-D .843π- 二、填空题13.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .14.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.15.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.16.如图,AB 、CD 、EF 所在的圆的半径分别为r 1、r 2、r 3,则r 1、r 2、r 3的大小关系是____.(用“<”连接)17.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .18.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.19.抛物线21(5)33y x =--+的顶点坐标是_______.20.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)21.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .22.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.23.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.24.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.三、解答题25.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像;(2)直接写出不等式221x x x -->+的解集.26.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x 的代数式表示DF = ;(2)x 为何值时,区域③的面积为180平方米;(3)x 为何值时,区域③的面积最大?最大面积是多少?27.如图,BD 是⊙O 的直径.弦AC 垂直平分OD ,垂足为E .(1)求∠DAC 的度数;(2)若AC =6,求BE 的长.28.某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y 元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?29.如图是输水管的切面,阴影部分是有水部分,其中水面AB宽10cm,水最深3cm,求输水管的半径.30.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.31.(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P,求证:DP EP BQ CQ=;(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证MN2=DM·EN.32.如图,AB是⊙O的弦,AB=4,点P在AmB上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.2.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键3.C解析:C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.4.B解析:B【解析】【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE =OB =CO=OD ,∴∠E =∠1,∠2=∠D∴∠D=∠2=∠E +∠1=2∠E .∴∠3=∠E +∠D =∠E +2∠E =3∠E .由∠3=72°,得3∠E =72°.解得∠E =24°.故选:B .【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.5.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D .考点:众数;中位数.6.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.7.D解析:D【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.8.B解析:B【解析】【分析】将x=2代入方程即可求得k 的值,从而得到正确选项.【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B .【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.9.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数. 10.A解析:A【解析】【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故选:A.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.11.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.12.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.二、填空题13.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.14.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm2.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=解析:2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,(7-r)2+(2r)2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.16.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r3<r2<r1故答案为:r3<r2<r1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.17.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,22-=cm,1086∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.18.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围. 【详解】解:如解析:a>13或a<15-.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线422axa-=-= ,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15-. 【点睛】 本题考查抛物线的性质,首先明确a 值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.19.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 20.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积 点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 21..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴22103AD AE DE =+ 考点: 1.相似三角形的判定与性质;2.勾股定理.22.140°.【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.23.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.24.16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴DE DFCH CF= ,2()DEMBMHS DES BH∆∆=∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.三、解答题25.(1)画图见解析;(2)x<-1或x>3【解析】【分析】(1)根据二次函数与一次函数图象的性质即可作图, (2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)221x x x -->+在图象中代表着抛物线在直线上方的图象∴解集是x <-1或x >3【点睛】本题考查了二次函数与不等式:对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.26.(1)48-12x ;(2)x 为1或3;(3)x 为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF 、EC 以外的线段用x 表示出来,再用96减去所有线段的长再除以2可得DF 的长度;(2)将区域③图形的面积用关于x 的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S ,得出x 关于S 的表达式,得到关于S 的二次函数,求出二次函数在x 取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x (48-12x )=180,解得x 1=1,x 2=3答:x 为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-12x)=-60x2+240x=-60(x-2)2+240∵-60<0,∴当x=2时,S有最大值,最大值为240答:x为2时,区域③的面积最大,为240平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.27.(1)30°;(2)33【解析】【分析】(1)由题意证明△CDE≌△COE,从而得到△OCD是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得DE=3,然后根据题意求得OD=2DE=23,直径BD=2OD=43,从而使问题得解.【详解】解:连接OA,OC∵弦AC垂直平分OD∴DE=OE,∠DEC=∠OEC=90°又∵CE=CE∴△CDE≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD是等边三角形∴∠DOC=60°∴∠DAC=30°(2)∵弦AC垂直平分OD∴AE=12AC=3又∵由(1)可知,在Rt△DAE中,∠DAC=30°∴tan 30DE AE =,即33DE =∴∵弦AC 垂直平分OD∴∴直径∴-【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.28.(1)y=100x (010x ≤≤的整数) y=2-3130x +x(1030x <≤的整数);(2)购买22件时,该网站获利最多,最多为1408元.【解析】【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当010x ≤≤的整数时,y 与x 的关系式为y=100x ;当1030x <≤的整数时, 1030062002x y x , y=2-3130x x + (1030x <≤的整数),∴y 与x 的关系式为:y=100x (010x ≤≤的整数), y=2-3130x +x(1030x <≤的整数)(2)当(010x ≤≤的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=23130x x -+, ∵a=-3<0,抛物线开口向下,∴y 有最大值,当x=22123b a -=时,y 取最大值, 因为x 为整数,根据对称性得:当x=22时,y 有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x 的取值范围及取值要求是解答此题的关键之处.29.173cm【解析】【分析】设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,由垂径定理可求出BD 的长,再根据最深地方的高度是3cm得出OD的长,根据勾股定理即可求出OB的长.【详解】解:设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,则AD=BD=12AB=12×10=5cm,∵最深地方的高度是3cm,∴OD=r﹣3,在Rt△OBD中,OB2=BD2+OD2,即2r=52+(r﹣3)2,解得r=173(cm),∴输水管的半径为173cm.【点睛】本题考查了垂径定理,构造圆中的直角三角形,灵活利用垂径定理是解题的关键.30.a<2且a≠1【解析】【分析】根据一元二次方程的定义和判别式的意义得到a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,然后解两个不等式得到它们的公共部分即可.【详解】∵关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,∴a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,解得:a<2且a≠1.【点睛】本题考查了一元二次方程根的情况与判别式的关系,对于一元二次方程ax2+bx+c=0(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;注意a≠0这一隐含条件,避免漏解.31.(1)证明见解析;(2)①9;②证明见解析. 【解析】【分析】 (1)易证明△ADP ∽△ABQ ,△ACQ ∽△ADP ,从而得出DP EP BQ CQ=;(2)①根据等腰直角三角形的性质和勾股定理,求出BC 边上的高2,根据△ADE ∽△ABC ,求出正方形DEFG 的边长3.从而,由△AMN ∽△AGF 和△AMN 的MNAGF 的GF ,,根据 MN :GF 等于高之比即可求出MN ; ②可得出△BGD ∽△EFC ,则DG•EF=CF•BG ;又DG=GF=EF ,得GF 2=CF•BG ,再根据(1)DM MN EN BG GF CF==,从而得出结论. 【详解】解:(1)在△ABQ 和△ADP 中,∵DP ∥BQ ,∴△ADP ∽△ABQ , ∴DP AP BQ AQ=, 同理在△ACQ 和△APE 中,EP AP CQ AQ=, ∴DP PE BQ QC=; (2)①作AQ ⊥BC 于点Q .∵BC 边上的高AQ=2, ∵DE=DG=GF=EF=BG=CF∴DE :BC=1:3又∵DE ∥BC∴AD :AB=1:3,∴AD=13,DE=3,∵DE 边上的高为6,MN :GF=6:2,∴MN :23=26:22, ∴MN=29. 故答案为:2.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF , 又∵∠BGD=∠EFC ,∴△BGD ∽△EFC , ∴DG BG CF EF =, ∴DG•EF=CF•BG ,又∵DG=GF=EF , ∴GF 2=CF•BG ,由(1)得DM MN EN BG GF FC ==, ∴MN MN DM EN GF GF BG CF=, ∴2()MN DM EN GF BG CF =, ∵GF 2=CF•BG ,∴MN 2=DM•EN .【点睛】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.32.(1)4;(2)y=2x +83π-3<34)【解析】【分析】(1)根据圆周角定理得到△AOB 是等边三角形,求出⊙O 的半径;(2)过点O 作OH ⊥AB ,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH 的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB,∴△AOB是等边三角形,∴⊙O的半径是4;(2)解:过点O作OH⊥AB,垂足为H则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°∵OA=OB,OH⊥AB∴AH=BH=12AB=2在Rt△AHO中,∠AHO=90°,AO=4,AH=2∴OH22AO AH3∴y=16×16 π-123+12×4×x=2x+83π-3<34).【点睛】本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.。
苏教版九年级上册数学 期末试卷练习(Word 版 含答案)一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=02.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人3.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1 B .m ≤1 C .m ≥-1 D .m ≤-1 4.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( )A .5B .2C .5或2D .2或7-15.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=6.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( )A .a =±1B .a =1C .a =﹣1D .无法确定 7.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020B .﹣2020C .2021D .﹣20218.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--9.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)10.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( )A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 11.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6 B .7 C .8 D .9 12.一组数据10,9,10,12,9的平均数是( ) A .11 B .12 C .9 D .10 二、填空题13.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.14.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)15.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .16.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.17.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.18.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.19.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.20.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.21.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.22.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.23.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 24.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。
苏教版九年级上册数学 期末试卷复习练习(Word 版 含答案)一、选择题1.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .3 2.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠. 3.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80° 4.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( )A .()2241y x =--B .()2241y x =+- C .()2241y x =-+ D .()2241y x =++ 5.如果两个相似三角形的周长比是1:2,那么它们的面积比是( )A .1:2B .1:4C .12D 2:16.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( )A .1月,2月B .1月,2月,3月C .3月,12月D .1月,2月,3月,12月7.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( )A .a < x 1< b <x 2B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 28.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >> 9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-10.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( )A .点M 在⊙C 上B .点M 在⊙C 内 C .点M 在⊙C 外D .点M 不在⊙C 内11.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( )A .12×108B .1.2×108C .1.2×109D .0.12×10912.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-二、填空题13.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.14.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.15.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.16.若m是方程5x2﹣3x﹣1=0的一个根,则15m﹣3m+2010的值为_____.17.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为__________cm.18.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.19.方程290x的解为________.20.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S甲2=6.5分2,乙同学成绩的方差S乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).21.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接CP,以 CP 为边,在 PC 的右侧作等边△CPQ,连接 AQ 交 BD 延长线于 E,当△CPQ 面积最小时,QE=____________.22.如图,点G为△ABC的重心,GE∥AC,若DE=2,则DC=_____.23.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.24.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.三、解答题25.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像;(2)直接写出不等式221x x x -->+的解集.26.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F 是DC 的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.27.如图1,矩形OABC 的顶点A 的坐标为(4,0),O 为坐标原点,点B 在第一象限,连接AC , tan ∠ACO=2,D 是BC 的中点,(1)求点D 的坐标;(2)如图2,M 是线段OC 上的点,OM=23OC ,点P 是线段OM 上的一个动点,经过P 、D 、B 三点的抛物线交x 轴的正半轴于点E ,连接DE 交AB 于点F. ①将△DBF 沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时点P 的坐标; ②以线段DF 为边,在DF 所在直线的右上方作等边△DFG ,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动的路径的长.28.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.29.如图,已知直线l 切⊙O 于点A ,B 为⊙O 上一点,过点B 作BC ⊥l ,垂足为点C ,连接AB 、OB .(1)求证:∠ABC =∠ABO ;(2)若AB =10,AC =1,求⊙O 的半径.30.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;S ,求出此时点Q的坐标.(3)点Q为抛物线上一点,若8QAB31.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB 的高度.32.如图,转盘A中的6个扇形的面积相等,转盘B中的3个扇形的面积相等.分别任意转动转盘A、B各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y=x2﹣5x+6的图象上的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.2.A解析:A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A ,根据圆周角定理计算即可.【详解】∵BC 是⊙O 的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D .【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.4.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 5.B解析:B【解析】【分析】直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:4.故选:B .本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.6.D解析:D【解析】【分析】【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D7.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=12时,由题意可知:(x−a)(x−b)−12=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.8.A解析:A【分析】根据二次函数的性质得到抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,而A(2,y1)离直线x=﹣1的距离最远,C(﹣2,y3)点离直线x=1最近,∴123y y y>>.故选A.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.9.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34AAB BD∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯ =233π-. 故选B . 10.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268+,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.11.B解析:B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】120 000 000=1.2×108,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 二、填空题13.1:9.【解析】试题分析:由DE ∥BC ,可得△ADE ∽△ABC ,根据相似三角形的面积之比等于相似比的平方可得S △ADE :S △ABC=(AD :AB )2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE ∥BC ,可得△ADE ∽△ABC ,根据相似三角形的面积之比等于相似比的平方可得S △ADE :S △ABC =(AD :AB )2=1:9.考点:相似三角形的性质.14.115°【解析】【分析】根据∠EDC =180°﹣∠E ﹣∠DCE ,想办法求出∠E ,∠DCE 即可.【详解】由题意可知:CA =CE ,∠ACE =90°,∴∠E =∠CAE =45°,∵∠ACD =7解析:115°【解析】【分析】根据∠EDC =180°﹣∠E ﹣∠DCE ,想办法求出∠E ,∠DCE 即可.【详解】由题意可知:CA =CE ,∠ACE =90°,∴∠E =∠CAE =45°,∵∠ACD =70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.15.-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线. 【详解】解:∵ A(3,﹣解析:-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线.【详解】解:∵ A(3,﹣2),B(﹣9,﹣2)两点纵坐标相等,∴A,B两点关于对称轴对称,根据中点坐标公式可得线段AB的中点坐标为(-3,-2),∴抛物线的对称轴是直线x= -3.【点睛】本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.16.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5 m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键. 17.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.18.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.19.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x=±【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为3x=±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.20.乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2 >S 乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【解析:乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.21.【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.如图,过点D 作DF ⊥BC 于F ,∵△ABC ,△PQC 是等边三角形,∴BC =AC ,PC =CQ ,∠BCA =∠PCQ =60°,∴∠BCP =∠ACQ ,且AC =BC ,CQ =PC ,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP ,∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°3=3 ∴BF =4,∴BD 22DF BF +1612+7, ∵△CPQ 是等边三角形,∴S △CPQ 32, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD=, ∴627BP =, ∴BP =77, ∴AQ =BP 127, ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC ,∴AE AD BC BD =, ∴627AE =,∴AE=7,∴QE=AQ−AE..【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.22.【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.23.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.24.2+【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:5【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD =352AB ,BC =352AB ,再根据CD=AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC =32x -,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.三、解答题25.(1)画图见解析;(2)x<-1或x>3【解析】【分析】(1)根据二次函数与一次函数图象的性质即可作图,(2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)221x x x -->+在图象中代表着抛物线在直线上方的图象 ∴解集是x <-1或x >3 【点睛】本题考查了二次函数与不等式:对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解. 26.(1)见解析;(2)见解析;(33【解析】 【分析】(1)易求DF 长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF ,EF=2CE 即可得;(3)先证明△OFG 为等边三角形,△OPG 为等边三角形,即可确定扇形圆心角∠POG 和∠GOF 的大小均为60°,所以两扇形面积相等, 通过割补法得出最后阴影面积只与矩形OPDH 和△OGF 有关,根据面积公式求出两图形面积即可. 【详解】(1)∵AF=AB=6,AD=BC=33∴DF=3, ∴CF=DF=3,∴F是CD的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°,OH=33 OG ,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=313 2323222,即图中阴影部分的面积3 .【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.27.(1)D(2,2);(2)①P(0,0);②1 3【解析】【分析】(1)根据三角函数求出OC的长度,再根据中点的性质求出CD的长度,即可求出D点的坐标;(2)①证明在该种情况下DE为△ABC的中位线,由此可得F为AB的中点,结合三角形全等即可求得E点坐标,结合二次函数的性质可设二次函数表达式(此表达式为交点式的变形,利用了二次函数的平移的特点),将E点代入即可求得二次函数的表达式,根据表达式的特征可知P点坐标;②可得G点的运动轨迹为'GG,证明△DFF'≌△FGG',可得GG'=FF',求得P点运动到M 点时的解析式即可求出F'的坐标,结合①可求得FF'即GG'的长度.【详解】解:(1)∵四边形OABC为矩形,∴BC=OA=4,∠AOC=90°,∵在Rt△ACO中,tan∠ACO=OAOC=2,∴OC=2,又∵D为CB中点,∴CD=2,∴D(2,2);(2)①如下图所示,若点B恰好落在AC上的'B时,根据折叠的性质1'','2BDF B DF BDB BD B D∠=∠=∠=,∵D为BC的中点,∴CD=BD,∴'CD B D=,∴1''2BCA DB C BDB∠=∠=∠,∴BCA BDF∠=∠,∴//DF AC,DF为△ABC的中位线,∴AF=BF,∵四边形ABCD为矩形∴∠ABC=∠BAE=90°在△BDF和△AEF中,∵ABC BAEBF AFBFD AFE∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BDF≌△AEF,∴AE=BD=2,∴E(6,0),设(2)(4)2y a x x ,将E (6,0)带入,8a+2=0∴a=14-,则二次函数解析式为21342y x x =-+,此时P (0,0);②如图,当动点P 从点O 运动到点M 时,点F 运动到点F',点G 也随之运动到G'.连接GG'.当点P 向点M 运动时,抛物线开口变大,F 点向上线性移动,所以G 也是线性移动.∵OM=23OC=43 ∴4(0,)3M ,当P 点运动到M 点时,设此时二次函数表达式为1(2)(4)2y a x x ,将4(0,)3M 代入得14823a ,解得1112a ,所以抛物线解析式为1(2)(4)212y x x ,整理得21141223y x x =-++. 当y=0时,211401223x x -++=,解得x=8(已舍去负值), 所以此时(8,0)E ,设此时直线'DF 的解析式为y=kx+b ,将D (2,2),E (8,0)代入2208k b k b =+⎧⎨=+⎩解得1383k b ⎧=-⎪⎪⎨⎪=⎪⎩,所以1833y x =-+, 当x=4时,43y =,所以4'3AF =,由①得112AF AB ==, 所以1''3FF AF AF =-=,∵△DFG 、△DF'G'为等边三角形,∴∠GDF =∠G'DF'=60°,DG =DF ,DG'=DF', ∴∠GDF ﹣∠GDF'=∠G'DF'﹣∠GDF', 即∠G'DG =∠F'DF , 在△DFF'与△FGG'中,''''DF DG F DF G DG DF DG =⎧⎪∠=∠⎨⎪=⎩, ∴△DFF'≌△FGG'(SAS ), ∴GG'=FF', 即G 运动路径的长为13. 【点睛】本题考查二次函数综合,解直角三角形,全等三角形的性质与判定,三角形中位线定理,一次函数的应用,折叠问题.(1)中能根据正切求得OC 的长度是解决此问的关键;(2)①熟练掌握折叠前后对应边相等,对应角相等是解题关键;②中能通过分析得出G 点的运动轨迹为线段GG',它的长度等于FF',是解题关键.28.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56 【解析】 【分析】(1)直接利用待定系数法求出一次函数解析式即可; (2)利用w=销量乘以每件利润进而得出关系式求出答案; (3)利用w=3640,进而解方程,再利用二次函数增减性得出答案. 【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+ 把(35,350),(55,150)代入得:由题意得:3503515055k bk b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+. (2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700), W =﹣10x 2+1000x ﹣21000 W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元. (3)令W =3640∴﹣10(x﹣50)2+4000=3640∴x1=44,x2=56如图所示,由图象得:当44≤x≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.29.(1)详见解析;(2)⊙O的半径是132.【解析】【分析】(1)连接OA,求出OA∥BC,根据平行线的性质和等腰三角形的性质得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根据矩形的性质求出OD=AC=1,根据勾股定理求出BC,根据垂径定理求出BD,再根据勾股定理求出OB即可.【详解】(1)证明:连接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:过O作OD⊥BC于D,∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC , ∴∠ODC =∠DCA =∠OAC =90°, ∴OD =AC =1,在Rt △ACB 中,AB 10AC =1,由勾股定理得:BC ()22101-=3,∵OD ⊥BC ,OD 过O , ∴BD =DC =12BC =132⨯=1.5, 在Rt △ODB 中,由勾股定理得:OB ()22131 1.52+=, 即⊙O 13. 【点睛】此题主要考查切线的性质及判定,解题的关键熟知等腰三角形的性质、垂径定理及切线的性质.30.(1)223y x x =--;(2)(1,2)P -1032;(3)1(122,4)Q - ,2(122,4)Q + ,3(1,4)Q -【解析】 【分析】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++即可求出b,c 即可求解; (2)根据A,B 关于对称轴对称,连接BC 交对称轴于P 点,即为所求,再求出坐标及PAC 的周长;(3)根据△QAB 的底边为4,故三角形的高为4,令y =4,求出对应的x 即可求解. 【详解】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++得01093b c b c =-+⎧⎨=++⎩解得23b c =-⎧⎨=-⎩∴抛物线的解析式为:223y x x =--; (2)如图,连接BC 交对称轴于P 点,即为所求, ∵223y x x =--∴C(0,-3),对称轴x=1 设直线BC 为y=kx+b,把(30)B ,, C(0,-3)代入y=kx+b 求得k=1,b=-3, ∴直线BC 为y=x-3 令x=1,得y=-2, ∴P (1,-2), ∴PAC 的周长=AC+AP+CP=AC+BC=[]22(10)0(3)--+--+[]22(30)0(3)-+--=1032+;(3)∵△QAB 的底边为AB=4, 182QABS AB H =⨯= ∴三角形的高为4,令y =4,即2234x x --=± 解得x 1=122-, x 2=122+, x 3=1故点Q 的坐标为1(122,4)Q - , 2(122,4)Q + ,3(1,4)Q -. 【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法与一次函数的求解. 31.4m 【解析】 【分析】首先根据DO=OE=1m ,可得∠DEB=45°,然后证明AB=BE ,再证明△ABF ∽△COF ,可得AB COBF OF =,然后代入数值可得方程,解出方程即可得到答案. 【详解】解:延长OD ,∵DO ⊥BF ,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=x m,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴AB COBF OF=,1.51(51)5xx+∴=+-,解得:x=4.经检验:x=4是原方程的解.答:围墙AB的高度是4m.【点睛】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE,根据相似三角形的判定方法证明△ABF∽△COF.32.(1)见解析;(2)1 9【解析】【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y=x2﹣5x+6的图象上的结果数,再根据概率公式计算即可解答.【详解】(1)根据题意列表如下:(2)由上表可知,点(1,2)、(4,2)都在二次函数y=x2﹣5x+6的图象上,所以P(这些点落在二次函数y=x2﹣5x+6的图象上)=218=19.【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.。
苏教版数学九年级上册 期末试卷复习练习(Word 版 含答案)一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=02.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .193.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=4.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;5.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1 B .a =1 C .a =﹣1 D .无法确定 6.下列方程是一元二次方程的是( )A .2321x x =+B .3230x x --C .221x y -=D .20x y +=7.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .4 8.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .49.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>10.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8911.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3412.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.15.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.16.若a b b -=23,则ab的值为________. 17.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.18.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.19.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .20.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 21.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.22.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.23.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.24.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.三、解答题25.对于代数式ax 2+bx +c ,若存在实数n ,当x =n 时,代数式的值也等于n ,则称n 为这个代数式的不变值.例如:对于代数式x 2,当x =0时,代数式等于0;当x =1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A =0. (1)代数式x 2﹣2的不变值是 ,A = . (2)说明代数式3x 2+1没有不变值;(3)已知代数式x 2﹣bx +1,若A =0,求b 的值.26.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少? (3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围. 27.已知关于的方程,若方程的一个根是–4,求另一个根及的值.28.某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?(1)设提价了x 元,则这种衬衫的售价为___________元,销售量为____________件. (2)列方程完成本题的解答.29.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE与BC的位置关系,并说明理由;(2)若3tan4BCD∠=,求EF的长.30.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次第二次第三次第四次甲9887乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.31.某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y=﹣2x+800(200<x<400).(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?32.对于实数a,b,我们可以用{}max,a b表示a,b两数中较大的数,例如{}max3,13-=,{}max2,22=.类似的若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的取小函数.(1)设1y x=,21 =yx ,则函数1max,y xx⎧⎫=⎨⎬⎩⎭的图像应该是___________中的实线部分.(2)请在下图中用粗实线描出函数()(){}22max 2,2y x x =---+的图像,观察图像可知当x 的取值范围是_____________________时,y 随x 的增大而减小.(3)若关于x 的方程()(){}22max 2,20x x t ---+-=有四个不相等的实数根,则t 的取值范围是_____________________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程. 【详解】A 、△=0-4×1×1=-4<0,没有实数根;B 、△=22-4×1×1=0,有两个相等的实数根;C 、△=22-4×1×3=-8<0,没有实数根;D 、△=22-4×1×(-3)=16>0,有两个不相等的实数根, 故选D . 【点睛】本题考查了根的判别式,注意掌握一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.2.D解析:D 【解析】 【分析】由DE ∥BC 知△ADE∽△ABC ,然后根据相似比求解. 【详解】 解:∵DE ∥BC ∴△ADE ∽△ABC.又因为DE =2,BC =6,可得相似比为1:3. 即ADE ABC 的面积的面积=2213:=19.故选D. 【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.3.D解析:D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AEAB AC =, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D.4.C解析:C 【解析】 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】 如图:由勾股定理得:22222133AC BC ++==, 所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.5.C解析:C 【解析】 【分析】将(0,0)代入y =(a ﹣1)x 2﹣x+a 2﹣1 即可得出a 的值. 【详解】解:∵二次函数y =(a ﹣1)x 2﹣x+a 2﹣1 的图象经过原点, ∴a 2﹣1=0, ∴a =±1, ∵a ﹣1≠0, ∴a≠1, ∴a 的值为﹣1. 故选:C . 【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.6.A解析:A 【解析】 【分析】根据一元二次方程的定义逐一判断即可. 【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意; B . 3230x x --是一元三次方程,故本选项不符合题意; C . 221x y -=是二元二次方程,故本选项不符合题意; D . 20x y +=是二元一次方程,故本选项不符合题意; 故选A . 【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.7.B解析:B 【解析】 【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误; ④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;综上:①④两项正确, 故选:B . 【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.8.B解析:B 【解析】 【分析】将x=2代入方程即可求得k 的值,从而得到正确选项. 【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2, ∴22-3×2+k=0, 解得,k=2, 故选:B . 【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.9.D解析:D 【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D . 考点:二次函数图象上点的坐标特征.10.C解析:C 【解析】 【分析】利用加权平均数按照比例进一步计算出个人总分即可. 【详解】 根据题意得:92580390288532⨯+⨯+⨯=++(分),∴小莹的个人总分为88分; 故选:C . 【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.11.B解析:B 【解析】 【分析】先求出球的总个数,根据概率公式解答即可. 【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38. 故选B . 【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12.C解析:C 【解析】 【分析】根据圆内接四边形的性质和圆周角定理即可得到结论. 【详解】在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D =180°﹣∠ACB =50°, ∴∠AOB =2∠D =100°, 故选:C . 【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题13.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.14.【解析】【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM 长,根31【解析】【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=232-,x 2=232(不符合题意,舍去) ∴DM=232+,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM,∴其外接圆的半径长为1312DM .1.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.15.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形, ∴它的内切圆半径5121322r +-==, 16.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 解析:53【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】 ∵a b b -=23, ∴b=35a,∴a b=5335aa=,故答案为:53.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.17.2﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,解析:25﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG+5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.18.1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC=45°∴tan∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB=90°是解此题的关键.19.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=.147考点:概率公式.20.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.21.x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P 、Q 的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y =(x+k )(x ﹣k ﹣2解析:x 1>2或x 1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P 、Q 的坐标代入解析式中,然后y 1>y 2,列出关于x 1的不等式即可求出结论.【详解】解:y =(x +k )(x ﹣k ﹣2)=(x ﹣1)2﹣1﹣2k ﹣k 2,∵点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,∴y 1=(x 1﹣1)2﹣1﹣2k ﹣k 2,y 2=﹣2k ﹣k 2,∵y 1>y 2,∴(x 1﹣1)2﹣1﹣2k ﹣k 2>﹣2k ﹣k 2,∴(x 1﹣1)2>1,∴x 1>2或x 1<0.故答案为:x 1>2或x 1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.22.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.23.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 24.8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x ﹣3,设y =0,∴0=x2﹣2x ﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y =x 2﹣2x ﹣3,设y =0,∴0=x 2﹣2x ﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.三、解答题25.(1)﹣1和2;3;(2)见解析;(3)﹣3或1【解析】【分析】(1)根据不变值的定义可得出关于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;(2)由方程的系数结合根的判别式可得出方程3x2﹣x+1=0没有实数根,进而可得出代数式3x2+1没有不变值;(3)由A=0可得出方程x2﹣(b+1)x+1=0有两个相等的实数根,进而可得出△=0,解之即可得出结论.【详解】解:(1)依题意,得:x2﹣2=x,即x2﹣x﹣2=0,解得:x1=﹣1,x2=2,∴A=2﹣(﹣1)=3.故答案为﹣1和2;3.(2)依题意,得:3x2 +1=x,∴3x2﹣x+1=0,∵△=(﹣1)2﹣4×3×1=﹣11<0,∴该方程无解,即代数式3x2+1没有不变值.(3)依题意,得:方程x2﹣bx+1= x即x2﹣(b+1)x+1=0有两个相等的实数根,∴△=[﹣(b+1)]2﹣4×1×1=0,∴b1=﹣3,b2=1.答:b的值为﹣3或1.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.26.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56【解析】【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+把(35,350),(55,150)代入得:由题意得:3503515055k b k b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+.(2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),W =﹣10x 2+1000x ﹣21000W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W =3640∴﹣10(x ﹣50)2+4000=3640∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.27.1,-2【解析】【分析】把方程的一个根–4,代入方程,求出k ,再解方程可得.【详解】【点睛】考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.28.(1)(60x)+,(80020)x -;(2)(60+x−50)(800−20x )=12000,70,见解析【解析】【分析】(1)根据销售价等于原售价加上提价,销售量等于原销售量减去减少量即可;(2)根据销售利润等于单件的利润乘以销售量即可解答.【详解】(1)设这种衬衫应提价x 元,则这种衬衫的销售价为(60+x )元,销售量为(800−1005x )=(800−20x )件. 故答案为(60+x );(800−20x ).(2)根据(1)得:(60+x−50)(800−20x )=12000整理,得x 2−30x +200=0解得:x 1=10,x 2=20.为使顾客获得更多的优惠,所以x =10,60+x =70. 答:这种衬衫应提价10元,则这种衬衫的销售价为70元.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握销售问题的关系式.29.(1)OE ∥BC .理由见解析;(2)125【解析】【分析】(1)连接OC ,根据已知条件可推出E ACO ∠∠=,进一步得出AFO EFC 90ACB ∠∠∠==︒=结论得以证明;(2)根据(1)的结论可得出∠E =∠BCD ,对应的正切值相等,可得出CE 的值,进一步计算出OE 的值,在Rt △AFO 中,设OF =3x ,则AF =4x ,解出x 的值,继而得出OF 的值,从而可得出答案.【详解】解:(1) OE ∥BC .理由如下:连接OC ,∵CD 是⊙O 的切线,∴OC⊥CD,∴∠OCE=90︒,∴∠OCA+∠ECF=90︒,∵OC=OA,∴∠OCA=∠CAB.又∵∠CAB=∠E,∴∠OCA=∠E,∴∠E+∠ECF=90︒,∴∠EFC=180O-(∠E+∠ECF) =90︒.∴∠EFC=∠ACB=90︒,∴OE∥BC.(2)由(1)知,OE∥BC,∴∠E=∠BCD.在Rt△OCE中,∵AB=12,∴OC=6,∵tan E=tan∠BCD=OC CE,∴468tan3OCCEDCB==⨯=∠.∴OE2=O C2+CE2=62+82,∴OE=10又由(1)知∠EFC =90︒,∴∠AFO=90︒.在Rt△AFO中,∵tan A =tan E=34,∴设OF=3x,则AF=4x.∵OA2=OF2+AF2,即62=(3x)2+(4x)2,解得:65 x=∴185 OF=,∴18321055 EF OE OF=-=-=.【点睛】本题是一道关于圆的综合题目,涉及到的知识点有切线的性质,平行线的判定定理,三角形内角和定理,正切的定义,勾股定理等,熟练掌握以上知识点是解此题的关键.30.(1)甲的平均成绩是8,乙的平均成绩是8,(2)推荐甲参加省比赛更合适.理由见解析.【解析】【分析】(1)根据平均数的计算公式即可得甲、乙两名运动员的平均成绩;(2)根据方差公式即可求出甲、乙两名运动员的方差,进而判断出荐谁参加省比赛更合适.【详解】(1)甲的平均成绩是:(9+8+8+7)÷4=8,乙的平均成绩是:(10+6+7+9)÷4=8,(2)甲的方差是:()()()()22229-8+8-8+8-8+7-148⎡⎤⨯⎣⎦=12, 乙的方差是:()()()()2222-8+6-8+7-8+9-814⎡⎤⨯⎣⎦10=52. 所以推荐甲参加省比赛更合适.理由如下:两人的平均成绩相等,说明实力相当;但是甲的四次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加省比赛更合适.【点睛】本题考查了方差、算术平均数,解决本题的关键是掌握方差、算术平均数的计算公式.31.(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元.【解析】【分析】(1)根据“总利润=每件的利润×销量”列出一元二次方程即可求出结论;(2)设公司日销售获得的利润为w 元,根据“总利润=每件的利润×销量”即可求出w 与x 的函数关系式,然后利用二次函数求最值即可.【详解】(1)根据题意得,(﹣2x +800)(x ﹣200)=15000,解得:x 1=250,x 2=350,答要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元; (2)设公司日销售获得的利润为w 元,根据题意得,w =y (x ﹣200)=(﹣2x +800)(x ﹣200)=﹣2x 2+1200x ﹣160000=﹣2(x ﹣300)2+20000,∵﹣2<0, ∴当x =300时,获得最大利润为20000元,答:为使公司日销售获得最大利润,该产品的单价应定为300元.【点睛】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数求最值是解决此题的关键.32.(1)D ;(2)见解析;20x -<<或2x >;(3)40t -<<.【解析】【分析】(1)根据函数解析式,分别比较1x ≤- ,10x -<<,01x <≤,1x >时,x 与1x 的大小,可得函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像;(2)根据{}max ,a b 的定义,当0x <时,()22x -+图像在()22x --图像之上,当0x =时,()22x --的图像与()22x -+的图像交于y 轴,当0x >时,()22x --的图像在()22x -+之上,由此可画出函数()(){}22max 2,2y x x =---+的图像; (3)由(2)中图像结合解析式()22x --与()22x -+可得t 的取值范围.【详解】(1)当1x ≤-时,1x x ≤, 当10x -<<时,1x x >, 当01x <≤时,1x x <, 当1x >时,1x x> ∴函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像为故选:D .(2)函数()(){}22max 2,2y x x =---+的图像如图中粗实线所示:令()2=02x -+得,2x =-,故A 点坐标为(-2,0),令()2=02x --得,2x =,故B 点坐标为(2,0),观察图像可知当20x -<<或2x >时,y 随x 的增大而减小;故答案为:20x -<<或2x >;(3)将0x =分别代入()()2212, =22y x y x =---+,得12==4y y -,故C(0,-4), 由图可知,当40t -<<时,函数()(){}22max 2,2y x x =---+的图像与y t =有4个不同的交点.故答案为:40t -<<.【点睛】本题通过定义新函数综合考查一次函数、反比例函数与二次函数的图像与性质,关键是理解新函数的定义,结合解析式和图像进行求解.。