物理层
- 格式:docx
- 大小:701.62 KB
- 文档页数:176
物理层详解物理层是计算机网络领域中的一个重要概念,它是网络协议中的第一层,主要功能是将数据转换成物理信号进行传输。
本文将详细介绍物理层的定义、功能和组成部分。
一、物理层的定义:物理层是网络协议的第一层,主要负责透明地传输原始数据。
在物理层中,数据被转换成特定的电信号,在网络媒介上传输。
它定义了数据传输的物理规范,包括传输介质、数据编码、数据传输速率等。
二、物理层的功能:1.数据的编码和解码:物理层负责将数字数据转换为模拟信号进行传输,并将接收到的模拟信号转换为数字数据进行解码。
为此,物理层需要定义数据的编码方式,例如常见的8B/10B编码、曼彻斯特编码等。
2.数据的传输:物理层负责将编码过的数据按照预定的方式传输。
它需要定义传输介质的类型和特性,例如有线传输、无线传输和光纤传输等。
传输速率是物理层的另一个重要特性,它决定了数据传输的速度。
3.传输媒介的管理:物理层需要定义传输媒介的类型、长度、宽度等,以便正确地传输数据。
它还负责检测传输媒介上的错误和干扰,并进行纠正或重传。
三、物理层的组成部分:物理层包括以下组成部分:1.传输介质:物理层使用不同类型的传输介质,例如双绞线、同轴电缆、光纤等。
每种介质都有其特定的传输特性和使用限制。
2.传输速率:物理层定义了数据传输的速率,通常以bps(比特每秒)为单位,例如10M bps、100M bps和1G bps等。
3.信号编码:物理层使用不同类型的编码方式将数字数据转换为模拟信号进行传输。
编码方式取决于传输介质的特性和信号需求。
4.传输媒介的处理:物理层需要对传输介质进行预处理,例如放大、整形、调整等,以保证数据在传输过程中的稳定性和正确性。
综上所述,物理层是网络协议中最基本的层次之一。
它负责将原始数据转换为物理信号进行传输,为更高层次的网络协议提供底层的传输支持。
一个高效、可靠的物理层是实现网络快速、稳定传输的关键。
OSI七层模型的定义和各层功能随着网络技术的不断发展,我们的生活已经离不开网络了。
而OSI七层模型是计算机网络体系结构的实质标准,它将计算机网络协议的通信功能分为七层,每一层都有着独特的功能和作用。
下面,我将以此为主题,深入探讨OSI七层模型的定义和各层功能。
1. 第一层:物理层在OSI七层模型中,物理层是最底层的一层,它主要负责传输比特流(Bit Flow)。
物理层的功能包括数据传输方式、电压标准、传输介质等。
如果物理层存在问题,整个网络都无法正常工作。
2. 第二层:数据链路层数据链路层负责对物理层传输的数据进行拆分,然后以帧的形式传输。
它的功能包括数据帧的封装、透明传输、差错检测和纠正等。
数据链路层是网络通信的基础,能够确保数据的可靠传输。
3. 第三层:网络层网络层的主要功能是为数据包选择合适的路由和进行转发。
它负责处理数据包的分组、寻址、路由选择和逻辑传输等。
网络层的存在让不同的网络之间能够互联互通,实现数据的全球传输。
4. 第四层:传输层传输层的功能是在网络中为两个端系统之间的数据传输提供可靠的连接。
它通过TCP、UDP等协议实现数据的可靠传输、分节与重组、流量控制、差错检测和纠正等。
5. 第五层:会话层会话层负责建立、管理和结束会话。
它的功能包括让在网络中的不同应用之间建立会话、同步数据传输和管理数据交换等。
6. 第六层:表示层表示层的作用是把数据转换成能被接收方识别的格式,然后进行数据的加密、压缩和解压缩等。
7. 第七层:应用层应用层是OSI模型中的最顶层,它为用户提供网络服务,包括文件传输、电流信箱、文件共享等。
应用层是用户与网络的接口,用户的各种应用软件通过应用层与网络进行通信。
OSI七层模型是计算机网络体系结构的基本标准,它将通信协议的功能划分为七层以便管理和开发。
每一层都有独特的功能和作用,共同构成了完整的网络通信体系。
只有了解并理解这些层次的功能,我们才能更好地利用网络资源,提高网络效率。
OSI物理层制作人:邓荣嘉目录物理层 (1)主要功能 (2)物理层要解决的主要问题: (2)组成部分 (2)重要内容 (3)重要标准 (4)通信硬件 (5)编程方法 (6)常见的物理层设备 (6)物理层在无线传感器中的应用 (6)物理层物理层(或称物理层,Physical Layer)是计算机网络OSI模型中最低的一层。
物理层规定:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。
简单的说,物理层确保原始的数据可在各种物理媒体上传输。
局域网与广域网皆属第1、2层。
物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。
物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
如果您想要用尽量少的词来记住这个第一层,那就是“信号和介质”。
OSI采纳了各种现成的协议,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理层协议。
物理层关注在一条通道上传输原始比特。
设计问题必须确保当一方发送了比特1时,另一方收到的也是比特1,而不是比特0。
这里的典型问题包括用什么电子信号来表示1和0、一个比特持续多少秒、传输是否可以在两个方向上同时进行、初始连接如何建立、当双方结束后如何撤销连接、网络连接器有多少针对以及每一针的用途是什么等。
这些设计问题主要涉及机械、电子和时序接口,以及物理层之下的物理传输介质等。
该层定义了了比特作为信号在通道上发送时相关的电气、时序和其他接口。
物理层是构建网路的基础。
物理信道的不同特征决定了其传输性能的不同(比如,吞吐量、延迟和误码率),所以物理层是我们展开网络旅行的始发地。
物理层一般有三种传输介质:有线(铜线和光纤)、无线(陆地无线电)和卫星。
这里要说的是信号在物理层存在的两种方式,数字信号(电脑可以识别的0和1即比特),模拟信号是铜线和光纤等可以传输的电信号或者无线信号,在悠闲中模拟信号的存在方式诸如连续变化的电压,而在无线传输中类似光照强度或者声音强度。
什么是物理层物理层定义物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。
物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
如果您想要用尽量少的词来记住这个第一层,那就是“信号和介质”。
OSI采纳了各种现成的协议,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理层协议。
物理层主要功能物理层要解决的主要问题:(1)物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。
(2)给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。
(3)在两个相邻系统之间唯一地标识数据电路。
物理层主要功能:为数据端设备提供传送数据通路、传输数据。
1.为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成。
一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接。
所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路。
2.传输数据,物理层要形成适合数据传输需要的实体,为数据传送服务。
一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。
传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。
3.完成物理层的一些管理工作。
物理层接口协议电话网络modems-V。
92IRDA物理层USB物理层EIARS-232,EIA-422,EIA-423,RS-449,RS-485EthernetphysicallayerIncluding10BASE-T,10BASE2,10BASE5,100BASE-TX,100BASE-FX。
物理层的定义物理层是计算机网络体系结构中的第一层,主要负责传输原始的比特流。
它位于整个网络体系结构的最底层,为上层提供了可靠的传输媒介。
物理层的主要任务是将比特流从发送方传输到接收方。
在这个过程中,物理层负责将比特流转换为电信号,并通过传输介质传输到接收方。
为了确保传输的可靠性,物理层还负责处理传输介质中的噪声和干扰,并提供错误检测和纠正机制。
物理层的工作原理可以分为两个方面:信号的表示和传输介质的选择。
信号可以是模拟信号或数字信号,它们分别使用不同的编码方式进行表示。
传输介质有许多种类,包括双绞线、同轴电缆、光纤等,每种传输介质都有其特定的优缺点,需要根据实际需求进行选择。
在进行信号表示时,物理层通过将比特流转换为电信号来实现。
对于模拟信号,物理层通过调制技术将比特流转换为连续的模拟信号。
而对于数字信号,物理层通过编码技术将比特流转换为离散的数字信号。
在选择传输介质时,物理层需要考虑传输速率、传输距离、抗干扰能力等因素。
传输速率是指单位时间内传输的比特数,它决定了网络的传输能力。
传输距离是指信号能够传输的最远距离,它决定了网络的覆盖范围。
抗干扰能力是指传输介质对外界干扰的敏感程度,它决定了网络的稳定性和可靠性。
除了信号表示和传输介质选择,物理层还包括了数据的同步和时钟的同步。
数据的同步是指发送方和接收方之间的时钟同步,确保数据能够按照正确的速率传输。
时钟的同步是指网络中各个节点之间的时钟同步,确保数据能够按照正确的顺序传输。
在物理层的实现中,常用的设备有中继器、集线器和调制解调器等。
中继器是物理层设备中最简单的一种,它的主要功能是将信号从一个传输介质转发到另一个传输介质上。
集线器是中继器的一种扩展,它可以将多个设备连接在一起形成一个局域网。
调制解调器是用于模拟信号和数字信号之间的转换,它在网络中起到了桥接的作用。
物理层是计算机网络体系结构中的基础层,负责将比特流从发送方传输到接收方。
它通过信号表示和传输介质选择来实现数据的可靠传输,并通过同步机制来确保数据的正确传输顺序。
1.设信道带宽为3000HZ,信噪比为30dB,则信道可达到的最大数据速率为()b/s。
∙ A.100000
∙ B.200000
∙ C.300000
∙ D.400000
2.正交幅度调制16-QAM 的数据速率是码元速率的( )倍。
∙ A.2
∙ B.4
∙ C.8
∙ D.16
3.电话线路使用的带通虑波器的宽带为3KHz (300^'3300Hz),根据奈奎斯特采样定理,最小采样频率应为()。
∙ A.300Hz
∙ B.6000Hz
∙ C.3300Hz
∙ D.6600Hz
4.设信号的波特率为500Baud,采用复合调制技术,由4种幅度和8种相伴组成16种码元,则食道的数据率为()bps
∙ A.500
∙ B.1000
∙ C.2000
∙ D.4800
5.ADSL采用()技术把PSDN线路板划分为话音、上行和下行三个的信道,同时提供电话和上网服务区
∙ A.频分复用
∙ B.时分复用
∙ C.空分复用
∙ D.码分复用
6.双绞线电缆中,交叉线用于支持()之间的连接
∙ A.pc 到路中器
∙ B.PC到交换机
∙ C.服务器到交换机
∙ D.交换机到路由器
7.在EIA232标准中,-10V的电压表示数据()。