泸县2015年春九年级数学二诊试题答案
- 格式:doc
- 大小:443.50 KB
- 文档页数:6
第5题图第2题图 第8题图九年级数学试题一、选择题 (本题共12小题,共36分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.下列计算中,正确的是( ).A .2a +3b =5abB .a ·a 3=a 3C .a 6÷a 2=a 3D .(-ab )2=a 2b 22.已知实数a b 、在数轴上对应的点如图所示,则下列式子正确的是( ).A .0ab >B .a b >C .0a b ->D .0a b +>3.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大, 多么大的经济总量,除以13亿,都会变得很小.”如果每人每天浪费0.01 千克粮食,我国13亿人每天就浪费粮食( ).A .1.3×105 千克 B. 1.3×106千克 C. 1.3×107千克 D. 1.3×108千克4.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子 长为1.1m ,那么小刚举起的手臂超出头顶( ). A .0.5m B .0.55m C .0.6m D .2.2m5.如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角 形ABC 的边长为( ).ABC.D.6.某种品牌的同一种洗衣粉有A B C 、、三种袋装包装,每袋分别装有400克、300克、200克洗衣粉,售价分别为3.5元、2.8元、1.9元.A B C 、、三种包装的洗衣粉每袋包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A B C 、、三种包装的洗衣粉各1200千克,获得利润最大的是( ).A .A 种包装的洗衣粉B .B 种包装的洗衣粉C .C 种包装的洗衣粉D .三种包装的都相同7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( ). A .15 B .29 C .14 D .5188.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形ABCD 的面积为( )cm 2. A..6第12题图第10题图第9题图C..129.小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相 应的两个一次函数的图象l 1、l 2,如图所示,他解的这个方程组是( ).A .22112y x y x =-+⎧⎪⎨=-⎪⎩ B . 22y x y x =-+⎧⎨=-⎩ C .38132y x y x =-⎧⎪⎨=-⎪⎩ D . 22112y x y x =-+⎧⎪⎨=--⎪⎩ 10.古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳 节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人, 每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8 人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长) 相等.设每人向后挪动的距离为x ,根据题意,可列方程( ).A .2π(6010)2π(6010)68x +++= B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯ 11.下列命题:① 若0a b c ++=,则240b ac -≥;② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不等实数根;④ 若240b ac ->,则二次函数的图象与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④. 12.能分别是( ).A .y = k x ,y =kx 2-xB .y = kx,y =kx 2+x C .y = - k x ,y=kx 2+x D .y = - kx,y =-kx 2-x 二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.函数y =x 的取值范围是 .14.如图,∠1的正切值等于__________.15.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在第14题图第15题图第16题图x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A′ 的 位置.若OBtan ∠BOC =12,则点A′ 的坐标为_________. 16.如图,从P 点引⊙O 的两切线PA 、PB ,A 、B 为切点,已知⊙O 的半径 为2,∠P =60°,则图中阴影部分的面积为 .17.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).三、解答题(本大题共7题,共69分.解答应写出文说明、证明过程或推演步骤.) 18.(8分)网瘾低龄化问题已引起社 会各界的高度关注,有关部门在 全国范围内对12~35岁的网瘾人 群进行了抽样调查.下图是用来 表示在调查的样本中不同年龄段 的网瘾人数的,其中30~35岁的 网瘾人数占样本总人数的20%. (1)被抽样调查的样本总人数为_________人;(2)请把统计图中缺失的数据、图形补充完整;(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~ 17岁的网瘾人数约为多少人?19.(8分)如图,梯形ABCD 内接于⊙O ,BC ∥AD ,AC 与BD 相交 于点E ,在不添加任何辅助线的情况下:(1)图中共有几对全等三角形,请把它们一一写出来,并选择其中一 对全等三角形进行证明.(2)若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形.第1个图第2个图第3个图… 第17题图20.(10分)在数学学习中,及时对知识进行归纳和整理是改善学习的重要 方法.善于学习的小明在学习了一次方程(组)、 一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:① ;②;③ ;④ ;(2)如果点C的坐标为(13),,那么不等式11kx b k x b ++≥的解集是 . 21.(10分)在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m 2和乙种板材12000 m 2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30 m 2或乙种板材20 m 2.问:应分别安排多少人生产甲种板材和乙 种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间 问:这400间板房最多能安置多少灾民?一次函数与方程的关系 一次函数与不等式的关系1 第20题图第22题图22.(10分)如图,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =.对 角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交 BC AD ,于点E F ,. (1)证明:当旋转角为90时,四边形ABEF 是平行四边形; (2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.23.(11分)随着风筝城潍坊近几年城市建设的快速发展,对花木的需求量 逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预 测,种植树木的利润1y 与投资量x 成正比例关系,如图①所示;种植花 卉的利润2y 与投资量x 成二次函数关系,如图②所示(注:利润与投资 量的单位:万元)(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?24.(12分)如图,在Rt △ABC 中,∠A =90º,AB =6,AC =8,D ,E 分 别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 图① 图②九年级数学试题答案一、选择题1.D 2. C 3. C 4. A 5. C 6. B 7. B 8. A 9. D 10. A 11. B 12. B 二、填空题 13.2x ≥ 14. 13 15. 34(,)55- 16.-43π 17 . 3n +1 三、解答题19.解:(1)图中共有三对全等三角形:①△ADB ≌△DAC ②△ABE ≌△DCE ③△ABC ≌△DCB ······················ 3分选择①△ADB ≌△DAC 证明在⊙O 中,∠ABD =∠DCA ,∠BCA =∠BDA∵BC ∥AD ∴∠BCA =∠CAD ∴∠CAD =∠BDA 又∵AD AD =∴△ADB ≌△DAC ······ 5分 (2)图中与△ABE 相似的三角形有: △DCE ,△DBA , △ACD . · 8分20.解:(1)①0kx b +=;②11y kx by k x b =+⎧⎨=+⎩;③0kx b +>;④0kx b +<.(2)1x ≤.21.解:(1)设安排x 人生产甲种板材,则生产乙种板材的人数为(140)x -人.由题意,得24000120003020(140)x x =-, ····························································· (2分) 解得:80x =.经检验,80x =是方程的根,且符合题意. ····························· (3分)答:应安排80人生产甲种板材,60人生产乙种板材. ····································· (4分) (2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.···················································· (6分)解得300m ≥. ······················································································· (7分) 又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ························ (8分)∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名. ················································ (10分) 22.(本题满分10分)(1)证明:当90AOF ∠=时,AB EF ∥,又AF BE ∥,∴四边形ABEF 为平行四边形. ······································································· 3分 (2)证明:四边形ABCD 为平行四边形,AO CO FAO ECO AOF COE ∴=∠=∠∠=∠,,. AOF COE ∴△≌△.AF EC ∴= ·································································································· 5分 (3)四边形BEDF 可以是菱形. ······································································ 6分 理由:如图,连接BF DE ,,由(2)知AOF COE △≌△,得OE OF =, EF ∴与BD 互相平分.∴当EF BD ⊥时,四边形BEDF 为菱形. ·················· 7分 在Rt ABC △中,2AC ==,1OA AB ∴==,又AB AC ⊥,45AOB ∴∠=,-------8分,45AOF ∴∠=,AC ∴绕点O 顺时针旋转45时,四边形BEDF 为菱形. ···································· 10分 23.(1)设1y =kx ,由图12-①所示,函数1y =kx 的图像过(1,2),所以2=1⋅k ,2=k 故利润1y 关于投资量x 的函数关系式是1y =x 2;因为该抛物线的顶点是原点,所以设2y =2ax ,由图12-②所示,函数2y =2ax 的图像过 (2,2),所以222⋅=a ,21=a ABCD OF E故利润2y 关于投资量x 的函数关系式是221x y =…………………………4分 (2)设这位专业户投入种植花卉x 万元(80≤≤x ),则投入种植树木(x -8)万元,他获得的利润是z 万元,根据题意,得z =)8(2x -+221x =162212+-x x =14)2(212+-x …………………6分当2=x 时,z 的最小值是14 ……………………………………………8分 因为80≤≤x ,所以622≤-≤-x所以36)2(2≤-x ,所以18)2(212≤-x所以32141814)2(212=+≤+-x ,即32≤z ,此时8=x当8=x 时,z 的最大值是32; ………………………………………11分 24. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.…………………3分(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+.…………………………6分(3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=, 1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA==,AB CD ER PM 2 1 A HQA BCD E R PHQ366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.…………………12分。
2015年中考数学模拟考试卷(二)(满分:130分考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.-15的倒数是( )A.5 B.-5 C.15D.-152.下列运算正确的是( )A.3a-2a=1 B.x8-x4=x2C.()222-=-=-2 D.-(2x2y)3=-8x6y33.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.4.如图,直线l1∥l2,则∠a为( )A.150°B.140°C.130°D.120°5.一个多边形的每个内角均为140°,则这个多边形是( )A.七边形B.八边形C.九边形D.十边形6.如图,在△ABC中,AE交BC于点D,∠C=∠E,AD=3,BD=5,DC=2,则DE的长等于( )A.152B.103C.65D.567.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分8.下列图中阴影部分的面积与算式2131242-⎛⎫-++⎪⎝⎭的结果相同的是( )9.在平面直角坐标系中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有( )A.1个B.2个C.3个D.4个10.对于正数x,规定f(x)=1xx+,例如f(3)=33134=+=,f(13)=1131413=+,计算f12014⎛⎫⎪⎝⎭+f12013⎛⎫⎪⎝⎭+f12012⎛⎫⎪⎝⎭+…+f13⎛⎫⎪⎝⎭+ f12⎛⎫⎪⎝⎭+f(1)+f(2)+f(3)+…+f(2012)+f(2013)+f(2014)的结果是( )A.2013 B.2013.5 C.2014 D.2014.5二、填空题(本大题共8小题,每小题3分,共24分)11.人的眼睛可以看见的红光的波长是0.000077 cm,请把这个数用科学记数法表示,其结果是_______cm.12.函数y=23xyx+=-中自变量x的取值范围是_______.13.分解因式:a3-2a2b+ab2=_______.14.圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥的母线长为_______m.15.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的对应点B'的横坐标是2,则点B的横坐标是_______.16.如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,则这个梯形中位线的长等于_______.17.已知M、N两点关于y轴对称,且点M在双曲线y=12x上,点N在直线y=x+3上,设点M的坐标为(a,b),则y=-abx2+(a+b)x的顶点坐标为_______.18.如图,图①为一个长方体,AD=AB=10,AE=6,M为所在棱的中点,图②为图①的表面展开图,则图②中△BCM的面积为_______.三、解答题(本大题共11小题,共76分) 19.(本题满分5分)计算:()()32cos60332π-︒--+---20.(本题满分5分)先化简()222211121a a a a a a +-÷++--+,然后a 在-1、1、2三个数中任选一个合适的数代入求值.21.(本题满分5分)求不等式组()3112323x x x ⎧+>-⎪⎨-+≥⎪⎩的整数解.22.(本题满分6分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2 km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5 min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度.(结果精确到0.1km/h ,参考数据:3≈1.73, sin76°≈0.97,cos76°0.24,tan76°≈4.01)23.(本题满分6分)如图,锐角三角形ABC 的两条高BE 、CD 相交于点O ,且OB =OC . (1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的角平分线上,并说明理由.24.(本题满分6分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.(本题满分7分)我市农业结构调整取得了巨大成功,今年水果又喜获丰收,某果园组织30辆汽车装运A、B、C三种水果共84 t到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的汽车辆数不超过装运的A、C两种水果的汽车辆数之和.(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并直接写出自变量x的取值范围;(2)设此次外销活动的利润为Q(百元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.26.(本题满分8分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于点P,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=2,NP=23,求NQ的长.27.(本题满分8分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A.B两点,与双曲线y=kx(x>0)交于点D,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB∽△ACD,相似比为12.(1)如果b=-2,求k的值;(2)试探究k与b的数量关系,并直接写出直线OD的解析式.28.(本题满分10分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA =2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,求OG的长;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与线段AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.29.(本题满分10分)企业的工业废料处理有两种方式:一种是运送到垃圾厂进行集中处理,另一种是通过企业的自身设备进行处理,某企业去年每月的工业废料均为120 t,由于垃圾厂处于调试阶段,处理能力有限,该企业采取两种处理方式同时进行.1至6月,该企业向垃圾厂运送的工业废料y1(t)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的工业废料y2(t)与月份x(7≤x≤12,且x取整数)之间满足y2=ax2+c(a ≠0),其图像如图所示.1至6月,垃圾厂处理每吨工业废料的费用z1(元)与月份x之间满足函数关系式:z1=60x,该企业自身处理每吨工业废料的费用z2(元)与月份x之间满足函数关系式:z2=45x-5x2;7至12月,垃圾厂处理每吨工业废料的费用均为120元,该企业自身处理每吨工业废料的费用均为90元.(1)请观察题中的表格和图像,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1、y2与x之间的函数关系式;(2)求该企业去年哪个月用于工业废料处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于企业的自身设备的全面运行,该企业决定扩大产能并将所有工业废料全部自身处理,估计扩大产能后今年每月的工业废料量都将在去年每月的基础上增加m%,同时每吨工业废料处理的费用将在去年12月份的基础上增加m%.为鼓励节能降耗,减轻企业负担,国家财政对该企业处理工业废料的费用进行了50%的补助,若该企业每月的工业废料处理费用为12150元,求m的值.参考答案1—10 BDCDC BCBDB11.7.7×10-512.x>313.a(a-b)214.615.-2.516.6.517.(3,92)18.50或8019.1 2720.31aa+-原式=5.21.-2<x≤32-1,0,1.22.(1)3km (2)40.6 km/h23.(1)略(2)点O在∠BAC的角平分线上24.(1)200(人).(2)60(人).(3)1 625.(1)92≤x≤10,且x为整数.(2)Q=-14x+636,此时应这样安排:A种水果用5辆车,B种水果用14辆车,C种水果用11辆车.26.(1)略(2)NQ=3.27.(1)k=12.(2)y=4 3 x28.(1)y=-56x2+136x+1.(2)1.(3)存在三个满足条件的点Q,即Q(2,2)或Q(1,73)或Q(125,75).29.y1=120x(1≤x≤6,且x取整数).y2=x2-30(7≤x≤12,且x取整数).(2)去年5月份用于污水处理的费用最多,最多费用是16800元.(3)50.。
2014—2015学年度第二学期教学质量阶段性检测九年级数学试题(满分:120分时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题、认真答题,你就会有出色的表现!第Ⅰ卷一、选择题:(本题满分24分,共有8道小题,每小题3分)请把唯一正确答案的字母标号涂在答题卡的相应位置1.12-的倒数是().A.2 B.12C.-2 D.12-2.下列图形中,中心对称图形有()个A .1 B. 2 C. 3 D.43.一种病毒的长度约为0.0000046mm,用科学记数法表示为().A.0.46×105-B.4.6 × 106-C. 46 ×106-D. 4.6×106 4.如图,AB是⊙O的直径,C、D是⊙O上的点,若∠ABC=64°,则∠BDC等于().A.26° B.64° C. 52° D. 128°D FECBA5.如图,在四边形ABCD中,∠A=90°,对角线BD平分∠ABC,若BC=5,AD=4,则△BCD 的面积为().A.6 B.10 C.12 D.20第4题OBDCAAB CD第5题图6.如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的。
如果用(2,1)表示方格纸上A 点的位置,(1,2)表示B 点的位置,那么点P 的位置为( )。
A .(5, 2) B .(2, 5) C .(2, 1) D .(1, 2)7.若反比例函数()0ky k x =≠的图象经过点A (-2, 1),则当x <-1时,函数值y 的取值范围是( ) .A .y >2 B. -2<y <0 C .y >-2 D .0<y <2 8.已知函数ax ax y +=2与函数y =xa,则它们在同一坐标系中的大致图象是( )第Ⅱ卷二、填空题:(本题满分18分,共有6道小题,每小题3分) 请把正确答案填写在答题卡的相应位置9.化简:01127(3.14)3π---+=() .10.某工厂生产某种产品,今年产量为200件,计划通过技术革新,使今后两年的产量都比前一年增长相同的百分数,这样三年的产量达到1400件,设这个百分数为x ,根据题意,可列方程为 __________________.11.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12 3 4 5 6 7 8 9 10 黑棋数 132342113根据以上数据,估算袋中的白棋子数量为 枚.12.如图,将边长为3cm 的正方形ABCD 沿 其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A 1B 1C 1,若两个三角形 重叠部分的面积是49cm 2,则△ABC 移动 的距离A A 1是 cm . 第12题图第8题1 3.如图所示的图案(阴影部分)是这样设计的:在△ABC 中,AB =AC =2cm ,∠ABC =30°,以A 为圆心,以AB 为半径作弧BEC ,以BC 为直径作半圆BFC ,则图案(阴影部分)的面积是 .(结果保留π)14.在直角坐标系中,正方形A 1B 1C 1O 1、A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n -1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n 均在一次函数y kx b =+的图象上,点C 1、C 2、C 3、…、C n 均在x 轴上。
2015年中考数学二模名校考试数学试题(卷)时间120分钟满分120分2015、2、28一、选择题(1-6小题,每小题2分7-16小题每小题3分,共42分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0D.|﹣1| 2.计算(﹣9)2﹣2×(﹣9)×1+12的值为()A.﹣98 B.﹣72 C.64 D.1003.下列式子正确的是()A.﹣(x﹣3)=﹣x﹣3 B. 5a﹣a=5C. 2﹣1=﹣2 D. 2<<34.如图,将一个正六边形分割成六个全等的等边三角形,其中有两个已涂灰,如果再随意涂灰一个空白三角形,则所有涂灰部分恰好成为一个轴对称图形的概率是()A.B.C.D.14题图 5题图 7题图5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.100°B.90°C.80°D.70°6.下列一元二次方程中,无解的是()A. x2+4x+2=0 B.x2+4x+3=0 C.x2﹣4x+4=0 D.x2﹣4x+5=07.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A. 2m B.a﹣m C.a D.a+m8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF9.计算(﹣)÷的结果为()A.B.C.D.10.如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A.(1,3)B.(4,3)C.(1,4)D.(2,4)8题图 10题图11.张昆早晨去学校共用时15分钟.他跑了一段,走了一段,他跑步的平均速度是250m/分钟,步行的平均速度是80m/分钟;他家离学校的距离是2900m,如果他跑步的时间为x分钟,则列出的方程是()A. 250x+80(﹣x)=2900 B.80x+250(15﹣x)=2900C. 80x+250(﹣x)=2900 D.250x+80(15﹣x)=290012.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对13.如图,直线l 经过点P (1,2),与坐标轴交于A (a ,0),B (0,b )两点(其中a <b ,如果a+b=6,那么tan∠ABO 的值为( )A .B . 1C .D . 213题图 14题图 16题图 14.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A . 80°B . 70°C . 60°D . 50° 15.对于实数m ,n ,定义一种运算“※”:m※n=m 2﹣mn ﹣3.下列说法错误的是( ) A . 0※1=﹣3 B . 方程x※2=0的根为x 1=﹣1,x 2=3 C .不等式组无解D . 函数y=x※(﹣2)的顶点坐标是(1,﹣4)16.如图1,S 是矩形ABCD 的AD 边上的一点,点E 以每秒kcm 的速度沿折线BS ﹣SD ﹣DC 匀速运动,同时点F 从点C 出发,以每秒1cm 的速度沿边CB 匀速运动,并且点F 运动到点B 时点E 也运动到点C .动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF的面积为ycm 2.已知y 与t 的函数图象如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC=6cm ,CD=4cm ; ③sin∠ABS=;④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D . ②③④二、填空题(每小题3分,共12分.)17.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数为_________ °.18.如图,已知点A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,则∠B=_________ °.18题图 19题图 20题图19.如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为_________ m2.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第60个点的横坐标为_________ .三、解答题(共66分)21.(9分)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y的取值范围.22.(10分)某中学对校园卫生进行清理,某班有13名同学参加这次卫生大扫除,按要求他们需要完成总面积为80m2的三项清扫工作,三项工作的面积比例如图1,每人每分钟完成各项的工作量如图2.(1)从统计图中可知:擦玻璃、擦课桌椅、扫地拖地的面积分别是_________ m2,_________ m2,_________ m2;(2)如果x人每分钟擦玻璃面积ym2,那么y关于x的函数关系式是_________ ;(3)完成扫地拖地的任务后,把13人分成两组,一组去擦玻璃,一组去擦课桌椅,怎样分配才能同时完成任务?23.(10分)河北省赵县A、B两村盛产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨,设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA 元,yB元.C D 总计A x吨_________ 300吨B _________ _________ 400吨总计240吨260吨500吨(1)请填写下表,并求出yA ,yB与x之间的函数关系式:(2)当x为何值时,A村的运输费用比B村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(11分)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.25.(12分)已知,抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),它与x轴交于点B,C(点B在点C左侧).(1)求点B、点C的坐标;(2)将这个抛物线的图象沿x轴翻折,得到一个新抛物线,这个新抛物线与直线l:y=﹣4x+6交于点N.①求证:点N是这个新抛物线与直线l的唯一交点;②将新抛物线位于x轴上方的部分记为G,将图象G以每秒1个单位的速度向右平移,同时也将直线l以每秒1个单位的速度向上平移,记运动时间为t,请直接写出图象G 与直线l有公共点时运动时间t的范围.26.(3分)1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明.(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于_________ ,所以,当点A和B在直角∠XOY 的两边上运动时,点O一定在以点_________ 为圆心,以线段_________ 为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY分别经过点A和点B (点O与点A、点B都不重合),连接OC,求OC的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB 等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于_________ .参考答案三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.解:(1)将代入方程x﹣y=3a得:5+1=3a,∴a=2.(2)当a=1时,两方程为:由①得:x=3+y,代入②得:3+y+3y=3,∴y=0,∴x=3.所以方程组的公共解为:.(3)因为是已知方程的公共解,∴解得:,∵x≤1,∴2a+1≤1,∴a≤0,所以1﹣a≥1,≥1.∴y22.解:(1)擦玻璃的面积:80×20%=16(m2);擦课桌椅的面积:80×25%=20(m2);扫地拖地的面积:80×55%=44(m2);故答案为:16,22,44;(2)由题意可得,每人每分钟擦玻璃的面积为=,得y=x;故答案为:y=x;(3)设擦玻璃的人数为x人,则擦课桌的人数为(13﹣x)人,根据题意得:16÷x=20÷[0.5×(13﹣x)],即=,解得x=8,经检验x=8是原方程的解,则擦课桌椅的有:13﹣8=5(人),答:擦玻璃的8人,擦课桌椅的有5人.23.解:(1)填表如图所示,y=40x+45(200﹣x)=﹣5x+9000,Ay=25(240﹣x)+32(60+x)=7x+7920;B(2)∵A村的运输费用比B村少,∴﹣5x+9000<7x+7920,解得x>90,∵A村有雪花梨200吨,故200≥x>90吨时,A村的运输费用比B村少;(3)A、B两村的运输费用之和为:﹣5x+9000+7x+7920=2x+16920,∵2>0,∴运输费用随x的增大而增大,∵,∴x≤200,∴当x=0时,运输费用最小,为16920元.24.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.25.解:(1)∵抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),∴该抛物线的解析式为y=a(x+1)2﹣2.即:y=ax2+2ax+a﹣2.∴2a=1.解得 a=.故该抛物线的解析式是:y=x2+x﹣.当y=0时,x2+x﹣=0.解之得 x1=﹣3,x2=1.∴B(﹣3,0),C(1,0);(2)①证明:将抛物线y=x2+x﹣沿x轴翻折后的图象,即新图象,仍过点B、C,其顶点M′与点M关于x轴对称,则M′(﹣1,2).设新抛物线的解析式为:y=a′(x+1)2+2.∵y=a′(x+1)2+2过点C(1,0),∴a′(1+1)2+2=0,解得,a′=﹣.∴翻折后得到的新抛物线的解析式为:y=﹣x2﹣x+.当﹣4x+6=x2+x﹣时,有:x2﹣6x+9=0,解得,x1=x2=3,此时,y=﹣6.∴新抛物线y=﹣x2﹣x+与直线l有唯一的交点N(3,﹣6);②≤t≤6.附解答过程:∵点N是新抛物线y=﹣x2﹣x+与直线l有唯一的交点,∴直线l与新抛物线y=﹣x2﹣x+在x轴上方部分(即G)无交点,∴当直线l经过点C时产生第一个公共点,经过点B时是最后一个公共点,运动t秒时,点B的坐标为(﹣3+t,0),点C的坐标为(1+t,0),直线与x轴交点为(,0).∵当=﹣3+t时,t=6∴图象G与直线l有公共点时,≤t≤6.26.解:(1)①如图1,根据两点之间线段最短可得:PO≤PR+OR.∴PM+MO≤PR+OR.∵MO=RO,∴PM≤PR.∴点M是点P到⊙O的最近点.②如图2,根据两点之间线段最短可得:PS≤PO+OS.∵OS=ON,∴PS≤PO+ON,即PS≤PN.∴点N是点P到⊙O的最远点.(2)如图3,∵∠XOY=90°,点T是线段AB的中点,∴TO=AB=2.∴点O在以点T为圆心,以线段AB为直径的圆上.故答案为:2、T、AB.(3)取AB的中点T,连接TO、CT、OC,如图4.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵△ABC的等边三角形,点T是线段AB的中点,∴CT⊥AB,AT=BT=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.(4)取AB的中点T,连接TO、CO、CT,如图5.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵四边形ABCD是正方形,∴BC=AB=4,∠ABC=90°.∵点T是线段AB的中点,∴BT=AB=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.∵(2+2)(2﹣2)=20﹣4=16.∴OC的最大值与最小值的乘积等于16.故答案为:16.。
2015 年九年级调研考试数学试卷参照答案说明:本答案仅供参照,若考生答案与本答案不一致,只需正确,相同得分。
一、选择题(此题有12小题,每题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B D C C A B D A A C C 二、填空题(此题有4小题,每题3分,共12分)题号13 14 15 16答案b(a b)( a b) 162225681三、解答题(此题共7题,此中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)10 117.计算: 3 ( 2013 ) ( ) 3 cos303解:原式=3+1-3- 32-------4 分= 12-------5 分≤2 ① 3x2 ( x 3)18.2x 1 x>②3 2解:由①得:x≤4,-------------- 2 分由②得:x>2,-------------- 4 分不等式组的解集为:2<x≤4.-------------- 5 分则不等式组的整数解为3,4.-------------- 6 分19.(1)40,0.3,--------------- 2 分(2)对应的小长方形高为40-------4 分(3)80~90(80≤x<90 也可)----6 分(4)60﹪-----------------------7 分20.(1)证明:由题意可得:△ABD ≌△ABE,△ACD≌△ACF∴∠DAB=∠EAB ,∠DAC=∠FAC ,又∠BAC=45°,∴∠EAF=90°·····························································································1 分又∵AD ⊥BC∴∠E=∠ADB=90°∠F=∠ADC=90°····························································2 分又∵AE=AD,AF=AD∴AE=AF ····································································································3 分∴四边形AEGF 是正方形·················································································4 分(2)解:设AD=x,则AE=EG=GF=x∵BD=2,DC=3∴BE=2 ,CF=3∴BG=x-2,CG=x-3···················································································5 分在Rt△BGC 中,BG2+CG2=BC2∴( x-2)2+(x-3)2=52 ····················································································7 分化简得,x2-5x-6=0解得x1=6,x2=-1(舍)因此AD=x=6·······························································································8 分21.解:(1)设购置甲栽花木x 株,乙栽花木y 株.-------------- 1 分依据题意得x y 60000.5x 0.8y 3600-------------- 3 分解得xy 4000 2000∴购置甲栽花木4000 株,乙栽花木2000 株.-------------- 4 分(2)设购置甲栽花木x 株,则乙栽花木﹙6000-x﹚株,总花费为s 元.由题意得90% x 95%(6000- x)≥93% 6000 -------------- 5 分解得x≤2400-------------- 6 分s 0.5 x0.8(6000 x) 0.3x 4800-------------- 7 分∵-0.3<0 ∴x 最大时,s有最小值,∴x=2400 时,s 最小.∴购置甲栽花木2400 株,乙栽花木3600 株总花费最低.-------------- 8 分y 22.解:(1)AB 10 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分C (2)证明:连结O1A.∵⊙O1 与x 轴相切于点 AO1∴O1A⊥AO⋯⋯⋯⋯⋯⋯⋯ 4 分∵OB⊥AO∴O1A∥OB ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴∠O1AB=∠OBA,∵O1A=O1B,BOxA∴∠O1BA=∠O1AB,∴∠ABO1=∠ABO;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分yO1(3)BM BN 的值不变.B 原因为:在MB 上取一点G,使MG= B N,连结AN、AG,Ax∵∠ABO1=∠ABO,∠ABO1=∠AMN,OGNO2M∴∠ABO =∠AMN ,又∵∠ABO=∠ANM,∴∠AMN =∠ANM,∴AM =AN,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分∵∠AMG、∠ANB 都为AB 弧所对的圆周角,∴∠AMG =∠ANB∵在△AMG 和△ANB 中,AM ANAMG ANBMG BN∴△AMG ≌△ANB (SAS),∴AG =AB ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分∵AO⊥BG,∴BG =2 BO =2 ,∴BM BN =BM MG =BG =2 ∴BM BN 值不变.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分23.解:(1)∵抛物线y =mx2-3 m x-4 m(m<0)与x 轴交于A、B 两点∴当y=0 时,mx2-3 m x-4 m= 02-3x -4= 0,解得x1=-1,x2=4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∴ x∴OA =1∵tan∠ACO = AOOC=14∴OC =4 ∴C(0 ,4) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分将C(0 ,4) 代入y= m x2-3mx-4m 得m=-12+3x+4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴y= -x(2)∵C(0 ,4) ,B(4 ,0) ,可求得BC 的分析式为y=- x +42+3t+4) ,H (t,- t+4) 如图,过 D 作DH ⊥x 轴交线段BC 于H,设D( t,-t2+3t+4-( - t +4)= -t2+4 t⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∴DH =-ty∵y kx 1(k>0)当x=0 时,y=1 ,∴OP =1 ∴PC =3C PE CP∵△C EP ∽△H ED ,∴DED DHE∴P E 32ED t 4t⋯⋯⋯⋯⋯⋯ 5 分P Hx AO B当-t 2+4t 最大时,P E 32ED t 4t最小,2+4t 最大值为4,∴t =2 时,-t P EED最小值为34⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(3)P EED取最小值时,D(2,6 )∵DF ⊥y 轴于F 点, ∴△CDF 为等腰直角三角形①如图1,当0<t≤2 时,设C C ' =F F ' =t,△CM C '为等腰直角三角形∴12s t ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分4②如图2,当2<t≤4 时,设C C '=F F '=t,C F ' =t-2,△CM C ',△CN F '都为等腰直角三角形∴1 1 12 2 2s S△S△t (t 2) t 2t 2 CMC ’CNF’4 2 4yyDDFFF'D'CCF' NMD'C'MC'xxBBOO图1 图2。
2015年九年级第二次质量检测数学试题提示:二次函数 的顶点坐标为 一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 5的绝对值是 A .5B .-5C .51D .51-2. 实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是A .a > bB .a < bC .a = bD . 不能判断3.一组数据4,5,6,7,7,8的中位数和众数分别是 A .7,7 B .7,6.5 C .5.5,7 D .6.5,74.如图所示是由几个小正方体组成的一个几何体,这个几何体的左视图是5227,0.101001中,无理数的个数是 A .0个 B .1个 C .2个 D .3个6.如图,△ABC 是等边三角形,AC=6,以点A 为圆心,AB 长为半径画弧DE ,若∠1=∠2, 则弧DE 的长为A . 1πB . 1.5πC .2πD .3π7.若关于x 的一元二次方程2210nx x --=无实数根,则一次函数(1)y n x n =+-的图象 不经过A .第一象限B .第二象限C .第三象限D .第四象限8.如图,直线y=x+1分别与x 轴、y 轴相交于点A 、B ,以点A 为圆心,AB 长为半径画弧交x 轴于点A 1,再过点A 1作x 轴的垂线交直线于点 B 1,以点A 为圆心,AB 1长为半径画弧交x 轴于点A 2,……,按此做法进行下去,则点A 8的坐标是A .(15,0)B .(16,0)C .(82,0)D .(128-,0) 二、填空题(每小题3分,共24分)o )0(y 2≠++=a c bx ax )44,2(2a bac a b --(第8题)18题图AB CDE12(第6题)ABCO(第13题)9.若式子y =. 10.我省因环境污染造成的巨大经济损失每年高达5680000000元,5680000000用科学记数法表示为 ▲ . 11.分解因式:33ab b a -12.不等式组1184 1.x x x x --⎧⎨+>-⎩≥,13.如图,在O ⊙中,40ACB =∠°,则AOB =∠ ▲ 度. 14.如图,已知a ∥b,C B ⊥AB ,∠2=54°,则∠1= ▲ 度15.如图,一块直角边分别为6cm 和8cm 的三角木板,绕6cm 的边旋转一周,则斜边扫过2(结果用含π的式子表示).16.如图,点A 在反比例函数)0(4>=x x y 的图像上,点B 在反比例函数)0(9<-=x xy 的图像上,且∠AOB =90°,则tan ∠OAB 的值为 ▲ .三、解答题:(本大题共有11小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算: 18.(本题满分6分)先化简,再求值:21111m m m ⎛⎫÷+ ⎪--⎝⎭,其中2m =-. 19.(本题满分6分)解方程12111xx x-=--20.(本题满分8分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2. (1)第四个月销量占总销量的百分比是______▲_____; (2)B 品牌电视机第三个月销量是_______▲____台;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,补全表示B 品牌电视机月销量电视机月销量扇形统计图电视机月销量折线统计1231212702-—)—(—+⎪⎭⎫ ⎝⎛21A Cab (第14题) (第15题) (第16题)的折线,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.21.(本题满分8分)某中学准备随机选出七、八、九三个年级各1名学生担任学校国旗升旗手.现已知这三个年级每个年级分别选送一男、一女共6名学生作为备选人. (1)请你利用树状图或表格列出所有可能的选法; (2)求选出“一男两女”三名国旗升旗手的概率.22.(本题满分10分)如图,AB =AC ,AD =AE ,DE =BC ,且∠BAD =∠CAE . 求证:(1)求证:△ABE ≌△ACD ; (2)求证:四边形BCDE 是矩形.23.(本题满分10分)2015“两相和”杯群星演唱会在我市体育馆进行,市文化局、广电局 在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x (张),总费 用为y (元).方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)方案二:直接购买门票方式如图所示. 解答下列问题:(1)方案一中,y 与x 的函数关系式为 ▲ ;方案二中,当0≤x ≤100时,y 与x 的函数关系式为 ▲ ,当x >100时,y 与x 的函数关系式为 ▲ ;(2)甲、乙两单位分别采用方案一、方案二购买本场演唱会门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张?8000y(元)(第22题)24.(本题满分10分)2015年4月25日14时11分尼泊尔发生了8.1级大地震.山坡上有一棵与水平面垂直的大树,大地震过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF =23°,量得树干的倾斜角为∠BAC =38°,大树被折断部分和坡面所成的角∠ADC =60°,AD =4米. (1)求∠DAC 的度数;(2)求这棵大树原来的高度是多少米?(结果精确到个位,参考数据:4.12≈,7.13≈,4.26≈)25.(本题满分12分)图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为4cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2). 思考:(1) 求直角三角尺边框的宽;(2) 求∠BB′C ′+∠CC′B′的度数;(3) 求边B′C ′的长.(第24题)C60°38° BD E23°AFC'图1(第25题)26.(本题满分12分)如图1,抛物线223y ax ax a =--(0a <),与x 轴的交于A 、B 两点(点A 在点B 的右侧),与y 轴的正半轴交于点C ,顶点为D .(1)求顶点D 的坐标(用含a 的代数式表示); (2)若以AD 为直径的圆经过点C . ① 求抛物线的解析式;② 如图2,点E 是y 轴负半轴上的一点,连结BE ,将△OBE 绕平面内某一点旋转180°,得到△PMN (点P 、M 、N 分别和点O 、B 、E 对应),并且点M 、N 都在抛物线上,作MF ⊥x 轴于点F ,若线段MF :BF =1:2,求点M 、N 的坐标;③ 点Q 在抛物线的对称轴上,以Q 为圆心的圆过A 、B 两点,并且和直线CD 相 切,如图3,求点Q 的坐标.27.(本题满分14分)如图,∠C =90°,点A 、B 在∠C 的两边上,CA =30,CB =20,连结AB .点P 从点B 出发,以每秒4个单位长度的速度沿BC 方向运动,到点C 停止.当点P 与B 、C 两点不重合时,作PD ⊥BC 交AB 于D ,作DE ⊥AC 于E .F 为射线CB 上一点, 且∠CEF =∠ABC .设点P 的运动时间为x (秒). (1)用含有x 的代数式表示CE 的长; (2)求点F 与点B 重合时x 的值;(3)当点F 在线段CB 上时,设四边形DECP 与四边形DEFB 重叠部分图形的面积为y(平方单位).求y 与x 之间的函数关系式;(4)当x 为某个值时,沿PD 将以D 、E 、F 、B 为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述 条件的x 值.(第27题)(第26题)九年级数学二模试题参考答案一、ABDC BCCA二、9. -2x ≠ 10.5.68×109 11. b)-b)(a ab(a + 12.1,2 13. 80 14.36 15. 80π16.三、解答题17. ………………………4分(每化简对一个得1分)………………6分 18.……………2分…………………………………4分……………………………………… 6分 19.解:原方程可化为12111xx x -=---…………………………2分两边同乘以(1x -),得112x x --=-…………………………4分 解之得23x =…………………………5分经检验:23x =是原方程的解. ……6分 21124x x x -=--方程两边同乘(2)(2)x x -+,得 (2)(2)(2)1x x x x +--+= …………………2分解之得 32x =- ………………… 4分 将32x =-代入(2)(2)x x -+≠0,所以32x =-是原方程的解……6分20.(1)30% …………………2分(2)50 …………………4分(3)32…………………6分(4)选择B 品牌, B 品牌 呈上升的的趋势(在平均水平相同的基础上)。
九年级第二次质量预测数学试题卷注意事项:本试卷分试题卷和答题卡两部分.考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡.参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(24,24b ac ba a--).一、选择题(每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.2015的倒数是()A.2015-B.12015-C.12015D.20152.PM2.5是指大气中直径小于等于2.5微米,即0.000 002 5米的颗粒物,将0.000002 5用科学记数法表示为()A.72.510-⨯B.62.510-⨯C.72510-⨯D.50.2510-⨯3.如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.4.如图,直线l m∥,等边三角形ABC的顶点B在直线m上,∠1=25°,则∠2的度数为()A.35°B.25°C.30°D.45°21mlCBA第4题图第5题图5.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况,则这些车的车速的众数、中位数分别是()A.8,6B.8,5C.32,32D.32,336.如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AE⊥BC,垂足为点E,则AE的长是()A.B.C.485D.245O ED CBAlB'DCBA第6题图第7题图7.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,使点B旋转到B′点,则点B在两次旋转过程中经过的路径的长是()A.25πB.254πC.252πD.132π8.如图1,四边形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向向点D移动.已知△P AD的面积S(单位:cm2)与点P移动的时间t(单位:s)的函数如图2所示,则点P从开始移动到停止共用时()A.8秒B.(4+秒C.(4+秒D.(4)秒图2图1PD C BA二、填空题(每小题3分,共21分)9.2=-___________.10.如图,四边形ABCD内接于圆O,若∠B=77°,则∠D=___________°.C11. 若关于x 的一元二次方程220x x m ++=有实数解,则m 的取值范围是___________.12. 如图,Rt △ABC 中,∠ACB =90°,AC =3cm ,BC =6cm ,以斜边AB 上的一点O 为圆心所作的半圆分别与AC ,BC 相切于点D ,E ,则圆O 的半径为__________cm .13. 在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是___________.14. 如图,四边形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD =5,BC =9,则EF =___________.FED CB A第14题图 第15题图15. 如图,在一张长为6cm ,宽为5cm 的矩形纸片上,现要剪下一个腰长为4cm等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为___________cm 2. 三、解答题(本题共8道小题,共75分)16. (8分)先化简221111x x x ⎛⎫÷+ ⎪--⎝⎭,再从23x -<<中选一个合适的整数代入求值.17. (9分)2014年郑州市城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2014年月平均收入随机抽样调查,将抽样的数据按“2 000元以内”、“2 000元~4 000元”、“4 000元~6 000元”和“6 000元以上”分为四组,进行整理,分别用A ,B ,C ,D 表示,得到下列两幅不完整的统计图.D x % C 20%B 60%A 月平均收入(元)由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有_____人,在扇形统计图中x 的值为____,表示 “月平均收入在2 000元以内”的部分所对应扇形的圆心角的度数是_____; (2)将不完整的条形图补充完整,并估计我市2014年城镇民营企业20万员 工中,每月的收入在“2 000元~4 000元”的约多少人?(3)统计局根据抽样数据计算得到,2014年我市城镇民营企业员工月平均 收入为4 872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情 况是否合理?18. (9分)如图,分别以Rt △ABC 的直角边AC 和斜边AB 向外分别作等边△ACD ,等边△ABE .已知∠BAC =30°,BC =1,EF ⊥AB ,垂足为F ,连接DF .(1)线段EF 是多少?答:___________,请写出求解过程; (2)请判断四边形ADFE 的形状,并说明理由.F EDCBA19. (9分)大河网报道“郑州东风渠再添4座新桥”.如图,某座桥的两端位于A ,B 两点,小华为了测量A ,B 之间的河宽,在垂直于桥AB 的直线型道路l 上测得如下数据:∠BDA =76.1°,∠BCA =68.2°,CD =24米,求AB 的长.(精确到1米,参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5)lA BC D20. (9分)如图,一次函数y kx b =+的图象l 与坐标轴分别交于点E ,F ,与双曲线2(0)y x x=-<交于点P (-1,n ),且F 是PE 的中点.(1)求直线l 的解析式;(2)若直线x a =与l 交于点A ,与双曲线交于点B (不同于A ),问a 为何值时,P A =PB ?21.(10分)我市正大力倡导“垃圾分类”,2015年第一季度某企业按A类垃圾处理费25元/吨,B类垃圾处理费16元/吨的收费标准,共支付垃圾处理费520元.从2015年4月起,收费标准上调为:A类垃圾处理费100元/吨,B 类垃圾处理费30元/吨.若该企业2015年第二季度需要处理的A类,B类垃圾的数量与第一季度相同,就要多支付垃圾处理费880元.(1)该企业第一季度处理的两类垃圾各多少吨?(2)该企业计划第二季度将上述两种垃圾总量减少到24吨,且B类垃圾处理量不超过A类垃圾处理量的3倍,则该企业第二季度最少需要支付两种垃圾处理费共多少元?22.(10分)在正方形ABCD中,对角线AC,BD相交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1),求证:△BOG≌△POE;(2)结合图2,通过观察、测量,猜想:BFPE=__________,并证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若AC=8,BD=6,直接写出BFPE的值.图3图2图1A DGOFEB P CPA DGOFEB CC(P)GFE ODB A23.(11分)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2-4x-2经过A,B两点.(1)求点A的坐标及线段AB的长.(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿A-O-C-B的方向向点B移动.当其中一个点到达终点时,另一个点也停止移动,设点P的移动时间为t秒.①当PQ⊥AC时,求t的值;②当PQ∥AC时,对于抛物线对称轴上一点H,当点H的纵坐标满足条件________时,存在∠HOQ<∠POQ.(直接写出答案)郑州二检试卷参考答案二、填空题 9. 010.103° 11.1m ≤ 12.213.5814.15.8或三、解答题 16.原式1x x =+,当2x =时,原式=23. 17.(1)500,14,21.6;(2)统计图略,每月的收入在“2 000元~4 000元”的约12万人;(3)不合理,理由略.18.(1(2)平行四边形,理由略. 19.160米. 20.(1)1y x =-+;(2)2a =- 21.(1)该企业第一季度处理的A 类垃圾为8吨,B 类垃圾20吨; (2)该企业第二季度最少需要支付两种垃圾处理费共1 140元.22.(1)证明略;(2)12,证明略;(3)38.23.(1)A (0,-2);AB =4(2)①43②14223H y -<<。
2014—2015学年度第二学期初三年级数学试题(考试时间:120分钟 卷面总分:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.-12 的倒数是 ( ▲ )A .12B .-2C .-12D .22.下列运算正确的是 ( ▲ ) A .x 2+ x 3= x 5B .x 4·x 2 = x 6C .x 6÷x 2 = x 3D .( x 2)3 = x 83.下面四个几何体中,俯视图为四边形的是 ( ▲ )4.若菱形ABCD 的两条对角线长分别为6和8,则此菱形的面积为 ( ▲ ) A .5 B .12 C .24 D .48 5.对于反比例函数y =- 1x,下列说法正确的是A .图象经过点(1,1)B .图象位于第一、三象限 ( ▲ )C .图象是中心对称图形D .当x <0时,y 随x 的增大而减小6.某公司10名职工3月份工资统计如下,该公司10名职工3月份工资的中位数是 ( ▲ ) A . 3100元B . 3200元C . 3300元D . 3400元7. 已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2.则旋转的牌是 ( ▲ )8.已知实数m ,n 满足m ﹣n 2=2,则代数式m 2+2n 2+4m ﹣1的最小值等于 ( ▲ ) A .-14 B .-6 C .8 D .11二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.16的平方根是 ▲ . 10.使式子1+有意义的x 的取值范围是 ▲ .工资(元) 3000 3200 3400 3600 人数(人) 3 3 3 1 图1图2 A B C DA B C D11.因式分解:a 2+2ab= ▲.12.一种花瓣的花粉颗粒直径约为 ▲ .13.一元二次方程mx 2﹣2x+1=0有两个不相等的实数根,则m 应满足的条件是 ▲ .14.如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是 ▲ .15. 如图,四边形ABCD 的四个顶点都在⊙O 上,若∠ABC=80°,则∠ADC 的度数为 ▲ °.16.如图,在Rt △ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF=▲ cm .17.如图,将边长为2cm 的正方形ABCD 绕点A 顺时针旋转到AB′C′D′的位置, ∠B′AD=120°,则C 点运动到C′点的路径长为 ▲ cm .18.如下图,第1个图形中一共有1个平行四边形,第2个图形中一共有5个平行四边形,第3个图形中一共有11个平行四边形,……则第n 个图形中平行四边形的个数是 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:(3)0 - ( 12)-2 +sin30° (2)化简:2()(2)a b b a b -++20.(本题满分8分)(1)解不等式组:⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,(2)解方程:x x -1 - 31-x = 221.(本题满分8分)如图,一艘巡逻艇航行至海面B 处时,得知正北方向上的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45°的方向,港口A 位于B 的北偏西30°的方向, A 、 B 之间的距离为20海里,求A 、C 之间的距离.(结果精确到海里,参考数据24)(第17题)A B C DC ′B ′ D ′ D E F A BC (第16题) (第14题) DOC B A (第15题) 45022. (本题满分8分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向2的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.23.(本题满分10分)已知:如图,在□ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.24.(本题满分10分)盐城市初级中学为了了解中考体育科目训练情况,从本校九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;A DCBEFO图1图2(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;(3)该校九年级有学生2500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .25.(本题满分10分)如图,AB 是⊙O 的直径,点E 是上的一点,∠DBC=∠BED .(1)请判断直线BC 与⊙O 的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC 的长.26.(本题满分10分)在购买某场足球赛门票时,设购买门票数为x (张),总费用为y (元).现有两种购买方案: 方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)方案二:购买门票方式如右图所示.解答下列问题:(1)方案一中,y 与x 的函数关系式为 ▲ ; 方案二中,当0≤x ≤100时,y 与x 的函数关系式为 ▲ , 当x >100时,y 与x 的函数关系式为 ▲ ;(2)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共600张,花去总费用计48000元,求甲、乙两单位各购买门票多少张.27.(本题满分12分) 某数学活动小组在一次活动中,对一个数学问题作如下探究:【问题发现】如图1,在等边三角形ABC 中,点M 是边BC 上任意一点,连接AM ,以AM 为边作等边三角形AMN ,连接CN ,证明:BM=CN .【变式探究】如图2,在等腰三角形ABC 中,BA=BC ,∠ABC=∠α,点M 为边BC 上任意一点,以AM 为腰作等腰三角形AMN ,MA=MN ,使∠AMN=∠ABC ,连接CN ,请求出BMCN的值. (用含α的式子表示出来)1000014000100 150 Ox (张y(元)【解决问题】如图3,在正方形ADBC 中,点M 为边BC 上一点,以AM 为边作正方形作AMEF ,N 为正方形AMEF 的中心,连接CN ,若正方形AMEF 的边长为10,CN=2,请你求正方形ADBC 的边长.28.(本题满分12分) 如图,抛物线c bx x y ++-=2161经过△ABC 的三个顶点,点A 坐标为(0,6),点C 坐标为 (4,6),点B 在x 轴正半轴上.(1)求该抛物线的函数表达式和点B 的坐标.(2)将经过点B 、C 的直线平移后与抛物线交于点M ,与x 轴交于点N ,当以B、C 、M 、N 为顶点的四边形是平行四边形时,请求出点M 的坐标.(3)①动点D 从点O 开始沿线段OB 向点B 运动,同时以OD 为边在第一象限作正方形ODEF ,当正方形的顶点E 恰好落在线段AB 上时,则此时正方形的边长为 ▲②将①中的正方形ODEF 沿OB 向右平移,记平移中的正方形ODEF 为正方形O ′D ′E ′F ′,当点D 与点B 重合时停止平移.设平移的距离为x ,在平移过程中,设正方形O ′D ′E ′F ′与△ABC 重叠部分的面积为y ,请你画出相对应的图形并直接写出y 与x 之间的函数关系式.AB CMN图1EFACBDM N图3图2BCM AN备用图数学参考答案一、1-5 BBDCC 6-8 BAD二、9. 4±10. 0x≥11. (2)a a b+12. 66.510-⨯13. 10m m<≠且14.1215. 100︒16. 518. 2-1n n+三、19. ⑴解:原式2111=1=142212-+-+⎛⎫⎪⎝⎭=52-⑵解:原式222-22a ab b ab b=+++=222a b+20. ⑴由①得212313xx x+<+<<由②得5332(1)51222x x x x-≤-≤-≤≥-∴312x-≤<⑵323225511xx x x xx x+=+=--=-=--检验:当5x=时,10x-≠∴5x=为原分式方程的根21. ⑴解:作AD⊥BC ∵∠B=30°∴1sin30AD︒==∵AB=20 ∴AD=10 ∵∠1=45°∴∠ACD=45°∴sin45ADAC︒==∴AC=∴AC≈10×1.414=14.14 ≈14.122. ⑴13⑵共出现9种等可能性的结果54==99P P P P∴≠小明小华小明小华∴不公平答:游戏对双方不公平23. ⑴证明:∵平行四边形ABCD ∴AD∥BC △DOE与△BOF中∴12EDO FBO OD OB EDO FBO ∠=∠⎧⎪∠=∠=⎨⎪∠=∠⎩∵O 为BD 中点 ∴OB=OD ∴DOE BOF ∆≅∆⑵解:当∠DOE=90°时,BFOE 为菱形 ∵DOE BOF ∆≅∆∴OE=OF ∵OB=OD ∴BFDE 为平行四边形 ∵∠DOE=90°∴EF ⊥BD∴BFDE 为菱形 ∴当90DIEBFDE ∠=︒时,为菱形24. ⑴40人⑵54︒⑶500人25. ⑴BC 与O 相切 ∵BD BD =∴∠BAD=∠BED ∵∠DBC=∠BED∴∠BAD=∠DBC ∵AB 为直径 ∴∠ADB=90° ∴∠BAD+∠ABD=90°∴∠DBC+∠ABD=90° ∴∠CBO=90° ∴点B 在O 上∴BC 与O 相切 ⑵∵AB 为直径 ∴∠ADB=90° ∴∠BDC=90° ∵BC 与O 相切∴∠CBO=90° ∴∠BDC=∠CBO∴ABCBDC ∆∆∴BC AC CD BC= ∴2BCCD AC =⋅∵4,5CD AD ==∴AC=9∴24936BC =⨯= ∴BC=6(BC=-6 舍去) 26. ⑴y=10000+50x y=100x y=80x+2000⑵解:设甲购买门票m 张,则乙购买门票(600-m )张。
四川省泸县一中高2015届迎“二诊”模拟测试(二)高三2014-01-14 18:49四川省泸县一中高2015届迎“二诊”模拟测试(二)语文试题本试卷分第I卷(单项选择题)和第Ⅱ卷(非单项选择题)两部分。
满分150分,考试时间150分钟。
第Ⅰ卷(27分)一、(12分,每小题3分)1.下列词语中,加线字的读音全都正确的一组是()A.差生(chà)尽管(jǐn)请帖(tiě)生肖(xiào)万箭攒心(cuán)B.刹那(chà)菲薄(fēi)月晕(yùn)佣金(yōnɡ)量体裁衣(liàng)C.埋怨(mán)殷红(yīn)拮据(jū)蒙骗(mēnɡ)头昏脑涨(zhàng)D.惩艾(yì)供奉(gōng)勾当(gōu)着想(zháo)靡靡之音(mí)2.下列词语中,没有错别字的一组是()A.脉搏凋敝仗义直言昭然若揭突如其来B.雾霭度假唇枪舌剑擢发难数形迹可疑C.提纲辐射照本宣科坐收渔利绿草如荫D.安详诡秘不孚众望融会贯通一愁莫展3.下列句中加线词语,使用正确的一项是()A. .随着居家装饰的不断升级,居室中最常用的家具,也发生了明显的变化,各种五花八门的新潮家具也相继登堂入室。
B. 针对东北最近的严重尘霾天气,一些网友认为:市场经济让许多人只考虑眼前利益,却不顾及长远利益,我们的环境保护工作也应从长计议。
C 大力弘扬社会风气固然重要,但过于夸大的道义规范会导致空虚迂腐而又不合常理的行为,不论它看起来有多么美好,也不足为训。
D. 欺生文化,不利于陌生人社会文明和谐秩序的形成。
我们进入陌生人社会,就要用新的文化理念和办法来对抗和消弭这种欺生文化,而不是听任这种欺生文化的滥觞。
4.下列各句中,没有语病的一项是A.世界各地的人们都把当地的主要河流称为母亲河,这是因为这些河流不仅是他们赖以生存的基础,而且是区域文化的摇篮。
2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。
(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。
二次诊断考试数学答案 第 1 页 共 6 页初中2015级教学质量第二次诊断性考试数学试题参考答案二、填空题:13.)3)(2(--x x x ;14.3π;15.9;16.①、②、④. 三、解答题:17.解:原式=4123432-+⨯-…………………………………………………………4分 =413232-+-……………………………………………………………5分 =-3.……………………………………………………………………………6分18.解:原式=)(]))(())(([bba b a b a b a b a b a a --⨯-+---+ (3)分 =)())((b ba b a b a b --⨯-+……………………………………………………4分 =ba +-1 (5)分当3=a ,2=b 时,原式=32231-=+-………………………………………………………………6分19. 证明:(1)∵四边形ABCD 为平行四边形, ∴AB ∥DC ,∴∠ABE=∠ECF ,……………………………………………………………………………1分 又∵E 为BC 的中点,∴BE=CE ,……………………………………………………………………………………2分 在△ABE 和△FCE 中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠FEC AEB CE BE ECF ABE …………………………………………………………………………4分 ∴△ABE ≌△FCE (ASA );…………………………………………………………………5分 ∴CF AB =. ∵CD AB =,∴CF CD =. …………………………………………………………………………………6分二次诊断考试数学答案 第 2 页 共 6 页四、20. 解:(1)总的车票数是:(20+40+10)÷(1﹣30%)=100, 故去C 地的车票数量是100﹣70=30,……………………………………………………… 1分补全的统计图如下图:………………………………… 3分 (2)余老师抽到去B 地的概率是=;………………………………………………4分(3)根据题意列表如下:………………………………………………………………………………………………… 5分 ∵两个数字之和是偶数时的概率是=,∴票给李老师的概率是,……………………………………………………………………6分 故这个规定对双方是公平的.………………………………………………………………7分 解之,得.………………………………………………………………………………5分 ∴50≤≤m ,又∵在一次函数1400001000+=m w 中,01000>=k ,二次诊断考试数学答案 第 3 页 共 6 页∴w 随m 的增大而增大,∴当5=m 时,14500014000051000=+⨯=最大w .…………………………………6分 ∴精加工天数为155=÷,粗加工天数为(9155140=÷-). 答:安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.………7分 五、22.解:如图,过点A 作BF AD ⊥,垂足为D .……………………………………1分∵300=AB ,030=∠ABF ,∴15021==AB AD ,…………………………………3分 ∵200150<,∴城市A 会受到这次台风的影响. …………………………………………4分 (2)在BF 上取两点E 、G ,使200==AF AE ,当台风中心从E 移动到G 时,城市A 都要受到这次台风的影响. 在ADE Rt ∆中,1502002222=-=-=AD AE DE ∴71002==DE EG ∵107107100=,即这次台风影响城市A 的持续时间为h 10.23. 解:(1)∵0)2(4)](2[22=+-+-=∆c ab b a ,化简,得222c b a =+,故ABC ∆是直角三角形,其中︒=∠90C .……………………1分∵A sin 、B sin 是方程08)52()5(2=-+--+m x m x m 的两根,∴A sin +=B sin 552+-m m ,A sin ·=B sin 58+-m m .………………………………………2分 又∵︒=∠+∠90B A ,∴A B cos sin =,…………………………………………………3分∴A sin +=A cos 552+-m m ①A sin ·=A cos 58+-m m ②将①两边平方,得2552(cosA sinA 21+-=⋅+m m ③……………………………………4分 将②代入③,得2552(5)8(21+-=+-+m m m m . 解这个方程,得201=m ,42=m (舍).∴m 的值为20. ……………………………………………………………………………5分(2)∵ππ25)2(2=c ,∴10=c .………………………………………………………6分又∵A sin +=A cos 5710=+=+b a c b c a ∴14=+b a .………………………………………………………………………7分故ABC ∆的周长=241068=++=++c b a .……………………………………………8分二次诊断考试数学答案 第 4 页 共 6 页六、24. (1)答:PD 与O ⊙相切,D 为切点. …………………………………………1分 证明如下:连接DO 并延长交O ⊙于点M ,连接BM 、CM .∵DM 为O ⊙的直径,∴090=∠=∠DCM DBM .……………………………………2分 又∵PCD ABD PDA ∠=∠=∠,ACB ADB ∠=∠,BCM BDM ∠=∠∴090=∠=∠+∠+∠=∠+∠+∠=∠DCM BCM ACM PCD BDM ADB PDA PDM , …………………………………………………………………………………………………3分 故PD 为O ⊙的切线. ………………………………………………………………………4分 (2)解:∵43tan ==∠DH AH ADB ,∴设x AH 3=,则x DH 4=,x PA )334(-=, x PH 34=.…………………………………………………………………………………5分在PHD Rt ∆中,x x x PH DH PD 8)34()4(2222=+=+=,∴030=∠P ,060=∠PDH .∴030=∠BDM .……………………………………………………………………………6分 在BDM Rt ∆中,32530cos 50cos 0=⨯=∠=BDM DM BD .……………………7分 (3)∵DAH ADB ∠-︒=∠90,CMD CDM ∠-︒=∠90,又∵CMD DAH ∠=∠ ∴CDM ADB ∠=∠,∴43tan tan =∠=∠ADB CDM,∴43=CDCM,………………………………………8分 设k CM 3=,则k CD 4=,505==k DM , ∴10=k .∴30=CM .…………………………………………………………………………………9分∵ = ∴30==CM AB .在ABH Rt ∆中,222BH AH AB +=, ∴222)4325()3(30x x -+=,解之,得3341-=x ,3342+=x (舍). ………………………………………10分 ∴)334(3-=AH ,)334(4-=DH ,)433(3+=BH . ∵ADH ∆∽BCH ∆, ∴CH DH BH AH =,∴CH )334(4)433(3)33(43-=+-,ABCMAB CM二次诊断考试数学答案 第 5 页 共 6 页)433(4+=CH .…………………………………………………………………………11分故CH BD AH BD S ABCD ⨯+⨯=2121四边形 =]43343343[32521)()(++-⨯ =32175900+.……………………………………………………………12分 25.解:(1)∵抛物线c bx x y ++=241-过点2(A ,)0, 0(B ,)25,∴⎪⎪⎩⎪⎪⎨⎧==++⨯-25,022412c c b …………………………………………………………………1分解之,得⎪⎪⎩⎪⎪⎨⎧=-=2543c b所求抛物线的解析式为254341-2+-=x x y .………………………………………2分 ∵直线23-=kx y 过点2(A ,)0, ∴0232=-k ,………………………………………………………………………………3分 ∴43=k ,所求直线的解析式为2343-=x y .…………………………………………………………4分(2)假设存在这样的点P ,使得四边形PMEC 是平行四边形,则CE PM =.解方程组⎪⎪⎩⎪⎪⎨⎧-=+-=2343254341-2x y x x y 得点D 的坐标为(-8,)215-.…………………………5分∵⊥DE y 轴于,∴8=DE ,623215=---=CE .二次诊断考试数学答案 第 6 页 共 6 页设点P 的坐标为(x,254341-2+-x x ),则M 的坐标为(x,2343-x ), ∴PM -+-=)254341-(2x x (2343-x )42341-2+-=x x .…………………………6分∴CE PM =642341-2=+-=x x ,解之,得21-=x ,42-=x ,………………………………………………………………7分 ∵2-28<<-,2-48<<-,∴21-=x ,42-=x 均符合题意.当21-=x 时,325)2(43)2(412=+-⨯--⨯-=y , 当42-=x 时,2325)4(43)4(412=+-⨯--⨯-=y ,∴所求点的坐标为2(1-P ,)3,4(2-P ,)23.……………………………………………8分 (3)在DCE Rt ∆中,10682222=+=+=CE DE CD ,………………………9分∵PMN ∆∽DCE ∆,∴DEPNCD PM CE MN ==, ∴104234162+--=x x MN ,即5121092032+--=x x MN ,…………………………10分 104234182+--=x x PN ,即51656512+--=x x PN ,……………………………11分 ∴MN PN PM l ++=++-=)42341-(2x x ++--)5165651(2x x )512109203(2+--x x=548518532+--x x =15)3(532++-x ,∵-8<-3<2故当3-=x 时,15=最大值l .…………………………………………………………12分。