高频电子线路第一章2
- 格式:ppt
- 大小:888.50 KB
- 文档页数:23
高频电子线路习题集第一章 绪论1-1 画出无线通信收发信机的原理框图,并说出各部分的功用。
答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。
发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。
低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。
接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。
由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。
话筒扬声器1-2 无线通信为什么要用高频信号?“高频”信号指的是什么?答:高频信号指的是适合天线发射、传播和接收的射频信号。
采用高频信号的原因主要是:(1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。
1-3无线通信为什么要进行凋制?如何进行调制?答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的信号是高频信号,所以也提高了信道利用率,实现了信道复用。
调制方式有模拟调调制和数字调制。
在模拟调制中,用调制信号去控制高频载波的某个参数。
在调幅方式中,AM普通调幅、抑制载波的双边带调幅(DSB)、单边带调幅(SSB)、残留单边带调幅(VSSB);在调频方式中,有调频(FM)和调相(PM)。
在数字调制中,一般有频率键控(FSK)、幅度键控(ASK)、相位键控(PSK)等调制方法。
高频电子线路第五版课后习题答案高频电子线路第五版课后习题答案高频电子线路是电子工程中的一个重要分支,其研究的是高频电路的设计、分析和优化。
在学习高频电子线路的过程中,课后习题是巩固知识、提高技能的重要方式。
本文将为大家提供高频电子线路第五版课后习题的答案,希望对大家的学习有所帮助。
第一章:基础知识1. 什么是高频电子线路?高频电子线路是指工作频率在几十千赫兹(kHz)到几百千赫兹(MHz)之间的电子线路。
它主要应用于无线通信、雷达、卫星通信等领域。
2. 高频电子线路的特点有哪些?高频电子线路的特点包括信号失真小、传输损耗小、耦合效应显著、传输线效应显著、元器件参数变化大等。
3. 什么是S参数?S参数是描述高频电子线路中信号传输和反射特性的参数。
S参数包括S11、S12、S21和S22四个参数,分别表示输入端反射系数、传输系数、输出端反射系数和逆传输系数。
第二章:传输线1. 什么是传输线?传输线是一根用于传输高频信号的导线。
常见的传输线有平行线、同轴电缆和微带线等。
2. 传输线的特性阻抗有哪些?传输线的特性阻抗包括平行线的特性阻抗、同轴电缆的特性阻抗和微带线的特性阻抗等。
3. 传输线的特性阻抗如何计算?平行线的特性阻抗可以通过导线间距、导线半径和介质介电常数等参数计算得到。
同轴电缆的特性阻抗可以通过内外导体半径和介质介电常数等参数计算得到。
微带线的特性阻抗可以通过导线宽度、介质厚度和介质介电常数等参数计算得到。
第三章:射频二极管1. 什么是射频二极管?射频二极管是一种特殊的二极管,其工作频率在几十千赫兹(kHz)到几百千赫兹(MHz)之间。
射频二极管具有快速开关速度和低噪声等特点。
2. 射频二极管的工作原理是什么?射频二极管的工作原理是基于PN结的电子流动和载流子的注入与抽取。
当正向偏置时,电子从N区域流向P区域,形成电流;当反向偏置时,电子不能流动,形成电流截止。
3. 射频二极管的主要参数有哪些?射频二极管的主要参数包括最大工作频率、最大直流电流、最大反向电压、最大功率损耗和最大噪声系数等。
高频电子线路第二版课后答案第一章:高频电子线路基础知识1.1 什么是高频电子线路?高频电子线路是指工作频率在数百千赫兹(MHz)到几百吉赫兹(GHz)之间的电子线路。
它通常涉及到射频(Radio Frequency)和微波(Microwave)信号的传输和处理。
1.2 高频电子线路的特点有哪些?•高频信号具有短波长和高频率的特点,需要特殊的设计和制造技术。
•高频电子线路的工作频率范围广,要求具有较宽的频带宽度。
•高频电子线路对线路布局和组件的电特性要求较高,需要考虑信号传输的延迟和衰减等因素。
•高频电子线路需要较好的抗干扰和抗干扰能力,以保证信号的可靠传输。
1.3 高频信号的特性及其参数有哪些?高频信号的特性主要包括以下几个方面:•频率:频率是指高频信号在单位时间内的振荡次数,单位为赫兹(Hz)。
•波长:波长是指高频信号波动一个周期的距离,其与频率之间有确定的关系,单位为米(m)。
•幅度:幅度是指高频信号在峰值和谷值之间的振荡范围。
•相位:相位是指高频信号在时间上相对于一个参考点的偏移。
不同的相位可以表示不同的信号状态。
1.4 高频电子线路的常用组件有哪些?高频电子线路常用的组件包括:•电阻器:用于限制电流流过的器件。
•电容器:用于存储电荷和调节电压的器件。
•电感器:用于储存和释放磁能的器件。
•二极管:用于整流和检波的器件。
•晶体管:用于放大和开关的器件。
•滤波电路:用于滤除干扰信号的电路。
•放大器:用于放大信号的电子元件。
第二章:高频电子线路分析方法2.1 S参数分析方法S参数(Scattering Parameters)是一种用于分析高频电子线路的常用方法。
S参数描述了输入和输出端口之间的电压和电流之间的关系。
S参数分析方法的基本步骤包括:1.定义输入和输出端口。
2.测量S参数矩阵。
3.使用S参数矩阵计算各种电路参数,如增益、插入损耗、反射系数等。
2.2 Y参数分析方法Y参数(Admittance Parameters)也是一种常用的高频电子线路分析方法。
高频电子线路重点内容第一章1.1通信与通信系统1. 信息技术两大重要组成部分——信息传输和信息处理信息传输的要求主要是提高可靠性和有效性。
信息处理的目的就是为了更有效、更可靠地传递信息。
2. 高频的概念所谓“高频”,广义上讲就是适于无线电传播的无线电频率,通常又称为“射频”。
一、基本概念1. 通信:将信息从发送者传到接收者的过程2. 通信系统:实现传送过程的系统3. 通信系统基本组成框图信息源是指需要传送的原始信息,如语言、音乐、图像、文字等,一般是非电物理量。
原始信息经换能器转换成电信号(称为基带信号)后,送入发送设备,将其变成适合于信道传输的信号,然后送入信道。
信道是信号传输的通道,也就是传输媒介。
有线信道,如:架空明线,电缆,波导,光纤等。
无线信道,如:海水,地球表面,自由空间等。
不同信道有不同的传输特性,同一信道对不同频率信号的传输特性也是不同的。
接收设备把有用信号从众多信号和噪声中选取出来,经换能器恢复出原始信息。
4.通信系统的分类按传输的信息的物理特征,可以分为电话、电报、传真通信系统,广播电视通信系统,数据通信系统等;按信道传输的信号传送类型,可以分为模拟和数字通信系统;而按传输媒介(信道)的物理特征,可以分为有线通信系统和无线通信系统。
二、无线电发送与接收设备1. 无线通信系统的发射设备(1)振荡器:产生f osc 的高频振荡信号,几十 kHz 以上。
(2)高频放大器:一或多级小信号谐振放大器,放大振荡信号,使频率倍增至f c,并提供足够大的载波功率。
(3)调制信号放大器:多级放大器组成,前几级为小信号放大器,用于放大微音器的电信号;后几级为功放,提供功率足够的调制信号。
(4)振幅调制器:实现调幅功能,将输入的载波信号和调制信号变换为所需的调幅波信号,并加到天线上。
2. 无线通信系统的接收设备(1)高频放大器:由一级或多级小信号谐振放大器组成,放大天线上感生的有用信号;并利用放大器中的谐振系统抑制天线上感生的其它频率的干扰信号。
1.画出无线通信收发信机的原理框图,并说明各部分的功用。
答:它由发射部分、接收部分以及无线信道三大部分组成。
发射部分:由话筒、音频放大器、调制器(一般需要配备一个高频信号振荡器(载波振荡器))、变频器(可以省去)、功率放大器和发射天线。
功用:低频音频信号(基带信号)经放大以后,首先经调制变成一个高频已调波,然后可经过变频达到所需的发射频率,再经高频功放放大后,由发射天线传播出去。
接收设备:由接收天线、高频小信号放大器、混频器、中频放大器、解调器(配备本地振荡器(恢复载波振荡器))、音频放大器、扬声器。
功用:由天线接收到的信号(比较微弱)经信号放大器放大后,再经混频器变为中频已调波,然后检波(滤波)、经解调器解调后恢复为低频信号,经音频放大器放大后由扬声器传出。
2.无线通信为何要用高频信号?“高频”信号指的是什么?答: 电磁波频率越高,可利用的频带宽度就越宽,信道容量就越大,从而实现频分多址和频分复用,避免了频道间的干扰。
高频信号的穿透力更强,更适合电线辐射和接收,因为只有天线尺寸大小与信号波长相差不大时,才有较高的辐射效率和接收效率。
这样就可以采用较小的信号功率传播较远的距离,自然也获得较高的接收灵敏度。
“高频”信号指的是适合天线发射、接收以及信道传播的射频(RF)信号。
3.无线通信为何要调制?如何进行调制?答: 调制可以将基带信号(低频信号)的频谱搬到高频载波频率,使得所需天线尺寸大大减小。
经调制后的信号是高频信号,因为信道容量增大,实现了信道复用,提高了信道利用率。
●先进的调制、解调还具有较强的抗干扰、抗衰落能力,增强了信号传输的可靠性。
调制方式分为模拟调制和数字调制。
模拟调制中有三种基本方式:调幅、调频(FM)、调相(PM),其中调幅可分为:普遍调幅(AM)、抑制载波的双边带调幅(DSB)、单边带调幅(SSB)、残留单边带调幅(VSSB)等。
数字调制(调制信号为数字信号)中有振幅键控(ASK)、频率键控(FSK)以及相位键控(PSK)。