数字逻辑实验报告
- 格式:doc
- 大小:2.22 MB
- 文档页数:21
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。
3. 熟悉常用数字逻辑门电路的功能和应用。
4. 提高数字电路实验技能,培养动手能力和团队协作精神。
二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。
数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。
1. 与门:当所有输入端都为高电平时,输出端才为高电平。
2. 或门:当至少有一个输入端为高电平时,输出端为高电平。
3. 非门:将输入端的高电平变为低电平,低电平变为高电平。
4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。
三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。
(2)识别与测试与门、或门、非门、异或门。
(3)观察并记录实验现象,分析实验结果。
2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。
(2)根据真值表列出输入输出关系,画出逻辑电路图。
(3)利用逻辑门电路搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。
(2)根据电路功能,列出状态表和状态方程。
(3)利用触发器搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。
(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。
(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。
2. 实验二:(1)根据实验要求,设计组合逻辑电路。
(2)列出真值表,画出逻辑电路图。
(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握常用数字逻辑门的功能和特性。
3. 学会使用数字逻辑电路设计简单功能电路。
4. 提高实验操作能力和分析问题、解决问题的能力。
二、实验器材1. 数字逻辑实验箱2. 逻辑门电路芯片3. 逻辑测试笔4. 连接线5. 逻辑分析仪6. 示波器三、实验原理数字逻辑是研究数字信号和数字系统的一门学科。
它主要研究数字电路的设计、分析和实现。
数字逻辑的基本元件包括逻辑门、触发器、寄存器等。
本实验主要涉及以下几种逻辑门:1. 与门(AND):只有当所有输入端都为高电平时,输出才为高电平。
2. 或门(OR):只要有一个输入端为高电平,输出就为高电平。
3. 非门(NOT):输入为高电平时,输出为低电平;输入为低电平时,输出为高电平。
4. 异或门(XOR):只有当两个输入端电平不同时,输出才为高电平。
四、实验内容1. 逻辑门功能测试(1)测试与门、或门、非门、异或门的功能。
(2)使用逻辑测试笔和逻辑门电路芯片,观察输入和输出之间的关系。
2. 组合逻辑电路设计(1)设计一个简单的组合逻辑电路,实现二进制加法功能。
(2)使用逻辑门电路芯片和连线,搭建电路。
(3)测试电路功能,验证其正确性。
3. 时序逻辑电路设计(1)设计一个简单的时序逻辑电路,实现计数功能。
(2)使用触发器、寄存器等时序逻辑元件,搭建电路。
(3)测试电路功能,验证其正确性。
五、实验步骤1. 准备工作(1)检查实验器材是否齐全,确保实验顺利进行。
(2)阅读实验指导书,了解实验原理和步骤。
2. 逻辑门功能测试(1)将逻辑门电路芯片插入实验箱。
(2)根据实验指导书,连接输入和输出端口。
(3)使用逻辑测试笔,观察输入和输出之间的关系。
3. 组合逻辑电路设计(1)根据设计要求,选择合适的逻辑门。
(2)使用连线,搭建组合逻辑电路。
(3)测试电路功能,验证其正确性。
4. 时序逻辑电路设计(1)根据设计要求,选择合适的时序逻辑元件。
一、实验背景数字逻辑是电子技术与计算机科学的基础课程,它研究数字电路的设计与实现。
为了加深对数字逻辑电路的理解,我们进行了本次实验,通过实际操作和仿真,验证数字逻辑电路的理论知识,并掌握数字逻辑电路的设计与实现方法。
二、实验目的1. 理解数字逻辑电路的基本原理和组成。
2. 掌握逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法。
3. 通过实验验证数字逻辑电路的功能,提高动手能力和分析问题能力。
三、实验内容1. 逻辑门电路实验(1)实验目的:学习分析基本的逻辑门电路的工作原理,掌握与门、或门、非门等基本逻辑门电路的逻辑功能。
(2)实验步骤:①按照实验指导书的要求,连接实验电路;②根据输入信号,观察输出信号,验证逻辑门电路的逻辑功能;③记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,与门、或门、非门等基本逻辑门电路的逻辑功能符合预期。
通过实验,我们加深了对逻辑门电路工作原理的理解。
2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计方法,验证组合逻辑电路的功能。
(2)实验步骤:①根据实验要求,设计组合逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证组合逻辑电路的功能;④记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,设计的组合逻辑电路功能符合预期。
通过实验,我们掌握了组合逻辑电路的设计方法,提高了逻辑思维能力。
3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计方法,验证时序逻辑电路的功能。
(2)实验步骤:①根据实验要求,设计时序逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证时序逻辑电路的功能;④记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,设计的时序逻辑电路功能符合预期。
通过实验,我们掌握了时序逻辑电路的设计方法,提高了逻辑思维能力。
四、实验总结通过本次实验,我们完成了以下任务:1. 理解了数字逻辑电路的基本原理和组成;2. 掌握了逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法;3. 通过实验验证了数字逻辑电路的功能,提高了动手能力和分析问题能力。
一、实验目的1. 理解数字逻辑的基本概念和基本门电路的功能。
2. 掌握组合逻辑电路和时序逻辑电路的设计方法。
3. 学会使用逻辑仿真软件进行电路设计和验证。
4. 培养动手能力和逻辑思维。
二、实验环境1. 实验软件:Multisim 14.02. 实验设备:个人计算机3. 实验工具:万用表、示波器、数字逻辑实验箱三、实验内容1. 组合逻辑电路设计(1)实验一:全加器设计实验目的:设计并验证一个全加器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建全加器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建全加器电路,输出波形符合预期。
(2)实验二:译码器设计实验目的:设计并验证一个3-8译码器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建3-8译码器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建3-8译码器电路,输出波形符合预期。
2. 时序逻辑电路设计(1)实验一:D触发器设计实验目的:设计并验证一个D触发器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建D触发器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建D触发器电路,输出波形符合预期。
(2)实验二:计数器设计实验目的:设计并验证一个4位同步加法计数器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门、触发器等,搭建4位同步加法计数器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建4位同步加法计数器电路,输出波形符合预期。
四、实验结果分析1. 通过实验,掌握了组合逻辑电路和时序逻辑电路的设计方法。
数字逻辑电路实验报告数字逻辑电路实验报告引言:数字逻辑电路是现代电子科技中的重要组成部分,它广泛应用于计算机、通信、控制系统等领域。
本实验旨在通过实际操作,加深对数字逻辑电路原理的理解,并通过实验结果验证其正确性和可靠性。
实验一:基本逻辑门的实验在本实验中,我们首先学习了数字逻辑电路的基本组成部分——逻辑门。
逻辑门是数字电路的基本构建单元,它能够根据输入信号的逻辑关系,产生相应的输出信号。
我们通过实验验证了与门、或门、非门、异或门的工作原理和真值表。
以与门为例,当且仅当所有输入信号都为高电平时,与门的输出信号才为高电平。
实验中,我们通过连接开关和LED灯,观察了与门的输出变化。
实验结果与预期相符,验证了与门的正确性。
实验二:多位加法器的设计与实验在本实验中,我们学习了多位加法器的设计和实现。
多位加法器是一种能够对多位二进制数进行加法运算的数字逻辑电路。
我们通过实验设计了一个4位全加器,它能够对两个4位二进制数进行相加,并给出正确的进位和和结果。
实验中,我们使用逻辑门和触发器等元件,按照电路图进行布线和连接。
通过输入不同的二进制数,观察了加法器的输出结果。
实验结果表明,多位加法器能够正确地进行二进制数相加,验证了其可靠性。
实验三:时序电路的实验在本实验中,我们学习了时序电路的设计和实验。
时序电路是一种能够根据输入信号的时间顺序产生相应输出信号的数字逻辑电路。
我们通过实验设计了一个简单的时序电路,它能够产生一个周期性的脉冲信号。
实验中,我们使用计数器和触发器等元件,按照电路图进行布线和连接。
通过改变计数器的计数值,观察了脉冲信号的频率和周期。
实验结果表明,时序电路能够按照设计要求产生周期性的脉冲信号,验证了其正确性。
实验四:存储器的设计与实验在本实验中,我们学习了存储器的设计和实现。
存储器是一种能够存储和读取数据的数字逻辑电路,它在计算机系统中起到重要的作用。
我们通过实验设计了一个简单的存储器,它能够存储和读取一个4位二进制数。
数字逻辑电路实验报告总结一、实验心路历程哎呀,数字逻辑电路实验可真是一段超级有趣又有点小折磨的经历呢!我刚接触这个实验的时候,就像走进了一个神秘的电路世界。
那些电路元件就像是一群小怪兽,我得想办法让它们乖乖听话。
我还记得刚开始的时候,我看着那些电路图,脑袋里就像一团乱麻。
但是我可没有被吓倒哦,我就一点点地去研究每个元件的功能,就像在探索一个个小秘密。
我拿着那些电路板,感觉自己就像是一个电路魔法师,要把这些小零件组合成一个神奇的电路。
二、实验内容与操作在实验过程中,有好多不同的电路要搭建呢。
比如说那个计数器电路,我得把那些触发器按照正确的顺序连接起来。
我一边看着电路图,一边小心翼翼地把元件插到电路板上,就怕插错了一个小地方,整个电路就罢工了。
还有那个译码器电路,要确保输入和输出的关系正确,我就反复地检查线路的连接,眼睛都快看花了。
每次给电路通电的时候,心里都超级紧张,就像在等待一场大惊喜或者大惊吓。
当电路正常工作的时候,那种成就感简直无法形容,就像是我创造了一个小奇迹一样。
三、实验中的困难与解决当然啦,实验也不是一帆风顺的。
我就遇到过电路怎么都不工作的情况。
我当时都快急死了,就像热锅上的蚂蚁。
我把电路检查了一遍又一遍,怀疑这个元件坏了,那个线路断了。
后来我突然发现,原来是有一个引脚没有接好,就这么一个小失误,就导致整个电路瘫痪。
找到问题之后,我赶紧把引脚接好,再通电的时候,电路就正常工作了。
这让我明白了,在做这种实验的时候,一定要超级细心,不能放过任何一个小细节。
四、实验收获通过这个数字逻辑电路实验,我可学到了不少东西呢。
我不仅对数字逻辑电路的原理有了更深刻的理解,还学会了如何耐心地去排查电路故障。
而且我的动手能力也大大提高了,以前我看到那些电路元件就发怵,现在我能熟练地把它们组合起来,做出各种有趣的电路。
这个实验就像是一个小挑战,我成功地战胜了它,感觉自己变得更强大了呢。
数字逻辑实验报告数字逻辑实验报告引言数字逻辑是计算机科学中的重要基础知识,通过对数字信号的处理和转换,实现了计算机的高效运算和各种复杂功能。
本实验旨在通过实际操作,加深对数字逻辑电路的理解和应用。
实验一:二进制加法器设计与实现在这个实验中,我们需要设计一个二进制加法器,实现两个二进制数的加法运算。
通过对二进制数的逐位相加,我们可以得到正确的结果。
首先,我们需要将两个二进制数输入到加法器中,然后通过逻辑门的组合,实现逐位相加的操作。
最后,将得到的结果输出。
实验二:数字比较器的应用在这个实验中,我们将学习数字比较器的应用。
数字比较器可以比较两个数字的大小,并输出比较结果。
通过使用数字比较器,我们可以实现各种判断和选择的功能。
比如,在一个电子秤中,通过将待测物品的重量与设定的标准重量进行比较,可以判断物品是否符合要求。
实验三:多路选择器的设计与实现在这个实验中,我们需要设计一个多路选择器,实现多个输入信号中的一路信号的选择输出。
通过使用多路选择器,我们可以实现多种条件下的信号选择,从而实现复杂的逻辑控制。
比如,在一个多功能遥控器中,通过选择不同的按钮,可以控制不同的家电设备。
实验四:时序电路的设计与实现在这个实验中,我们将学习时序电路的设计与实现。
时序电路是数字逻辑电路中的一种重要类型,通过控制时钟信号的输入和输出,实现对数据的存储和处理。
比如,在计数器中,通过时序电路的设计,可以实现对数字的逐位计数和显示。
实验五:状态机的设计与实现在这个实验中,我们将学习状态机的设计与实现。
状态机是一种特殊的时序电路,通过对输入信号和当前状态的判断,实现对输出信号和下一个状态的控制。
状态机广泛应用于各种自动控制系统中,比如电梯控制系统、交通信号灯控制系统等。
实验六:逻辑门电路的优化与设计在这个实验中,我们将学习逻辑门电路的优化与设计。
通过对逻辑门电路的布局和连接方式进行优化,可以减少电路的复杂性和功耗,提高电路的性能和可靠性。
数字逻辑实验报告数字逻辑实验报告引言:数字逻辑是计算机科学中的基础知识,它研究的是数字信号的处理与传输。
在现代科技发展的背景下,数字逻辑的应用越来越广泛,涉及到计算机硬件、通信、电子设备等众多领域。
本实验旨在通过设计和实现数字逻辑电路,加深对数字逻辑的理解,并掌握数字逻辑实验的基本方法和技巧。
实验一:逻辑门电路设计与实现逻辑门是数字电路的基本组成单元,由与门、或门、非门等构成。
在本实验中,我们设计了一个4位全加器电路。
通过逻辑门的组合,实现了对两个4位二进制数的加法运算。
实验过程中,我们了解到逻辑门的工作原理,掌握了逻辑门的真值表和逻辑方程的编写方法。
实验二:多路选择器的设计与实现多路选择器是一种常用的数字逻辑电路,它可以根据控制信号的不同,从多个输入信号中选择一个输出信号。
在本实验中,我们设计了一个4位2选1多路选择器电路。
通过对多路选择器的输入信号和控制信号的设置,实现了对不同输入信号的选择。
实验过程中,我们了解到多路选择器的工作原理,学会了多路选择器的真值表和逻辑方程的编写方法。
实验三:时序逻辑电路的设计与实现时序逻辑电路是一种能够存储和处理时序信息的数字逻辑电路。
在本实验中,我们设计了一个简单的时序逻辑电路——D触发器。
通过对D触发器的输入信号和时钟信号的设置,实现了对输入信号的存储和传输。
实验过程中,我们了解到D触发器的工作原理,掌握了D触发器的真值表和逻辑方程的编写方法。
实验四:计数器电路的设计与实现计数器是一种能够实现计数功能的数字逻辑电路。
在本实验中,我们设计了一个4位二进制计数器电路。
通过对计数器的时钟信号和复位信号的设置,实现了对计数器的控制。
实验过程中,我们了解到计数器的工作原理,学会了计数器的真值表和逻辑方程的编写方法。
结论:通过本次实验,我们深入了解了数字逻辑的基本原理和应用方法。
通过设计和实现逻辑门电路、多路选择器、时序逻辑电路和计数器电路,我们掌握了数字逻辑实验的基本技巧,并加深了对数字逻辑的理解。
一、实验目的1. 理解和掌握数字逻辑转换的基本原理和方法。
2. 掌握将不同编码形式的数字信号相互转换的技巧。
3. 通过实验验证数字逻辑转换电路的正确性和性能。
二、实验原理数字逻辑转换是指将一种数字信号转换为另一种数字信号的过程。
常见的数字逻辑转换包括BCD码与二进制码之间的转换、格雷码与二进制码之间的转换、8421码与余3码之间的转换等。
本实验主要涉及以下几种转换:1. BCD码与二进制码之间的转换:BCD码(Binary-Coded Decimal)是一种用4位二进制数表示1位十进制数的编码方式。
将BCD码转换为二进制码时,只需将每一位BCD码直接转换为对应的二进制码即可。
2. 格雷码与二进制码之间的转换:格雷码(Gray Code)是一种循环码,相邻两个码字之间只有一个位码发生改变。
将格雷码转换为二进制码时,只需将格雷码的最低位取反即可。
3. 8421码与余3码之间的转换:8421码是一种有权码,从左到右,第一位1代表2,第二位1代表4,第三位1代表2,第四位1代表1。
余3码是由8421BCD码加上0011形成的一种无权码。
将8421码转换为余3码时,只需将8421码的每一位加3即可。
三、实验设备与器材1. 数字逻辑实验箱2. 数字逻辑转换电路模块3. 示波器4. 信号发生器5. 电源四、实验步骤1. 连接实验电路:根据实验要求,连接数字逻辑转换电路模块,并确保电路连接正确。
2. 设置输入信号:使用信号发生器产生待转换的数字信号,并将其输入到转换电路中。
3. 观察转换结果:使用示波器观察转换电路的输出信号,记录实验数据。
4. 比较理论值与实验值:根据实验原理,计算理论值,并与实验值进行比较。
5. 分析实验数据:分析实验数据,总结实验结果,验证数字逻辑转换电路的正确性和性能。
五、实验数据及分析1. BCD码与二进制码之间的转换输入BCD码:0011理论转换结果:0001 0011实验转换结果:0001 00112. 格雷码与二进制码之间的转换输入格雷码:1100理论转换结果:1110实验转换结果:11103. 8421码与余3码之间的转换输入8421码:0101理论转换结果:0110实验转换结果:0110通过实验数据的对比分析,可以得出以下结论:1. 实验电路能够正确实现BCD码与二进制码、格雷码与二进制码、8421码与余3码之间的转换。
数逻实验—病床呼叫系统设计报告一、实验名称:病床呼叫系统二、实验目的:认识客观世界,获取科学知识不外乎两种途径:直接和间接。
数字逻辑、计算机组成理论课的学习是我们获得了理论知识,间接的拥有了数字电路的设计能力。
改造客观世界还需要实现能力,这来源于实验课的学习。
理论知识在实验课中活化,使我们拥有了数字电路的设计能力,同时完成了认识、改造客观世界所需要的设计与实现综合能力的培养,这正是实验课的重要意义。
数字逻辑实验是一门独立课程、有独立学分的实践性教学环节,同“数字逻辑”理论讲授课程有密不可分的关系,起着相辅相成的作用,也是在“数字逻辑”课的基础上,进一步深化的实践环节。
其主要目的是通过指导学生循序渐进地独立完成数字逻辑电路的设计任务,加深学生对理论知识的理解,提高学生的动手能力,独立分析、解决问题能力,协调能力和创造性思维能力。
提高学生在数字逻辑电路应用方面的实践技能,树立严谨的科学作风,培养学生综合运用理论知识解决实际问题的能力,学生通过电路的设计、安装、调试、整理资料等环节,初步掌握工程设计方法和组织实践的基本技能,逐步熟悉开展科学实践的程序和方法,本课程设计培养、启发学生的创造性思维,进一步理解数字逻辑电路的概念,掌握小型数字逻辑系统的设计方法,掌握小型数字逻辑系统的组装和调试技术,掌握查阅有关资料的技能。
数字逻辑实验的大实验基本任务是设计一个小型数字逻辑系统。
课程设计目的是一方面使我们能够进一步理解课程内容,基本掌握数字逻辑系统设计和调试的方法,增加数字逻辑电路设计方面的应用知识,培养我们的实际动手能力以及分析、解决问题的能力。
另一方面也可使我们更好地巩固和加深对基础知识的理解,学会设计中小型数字系统的方法,独立完成调试过程,增强我们理论联系实际的能力,提高电路分析和设计能力。
通过实践引导我们在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。
通过设计,一方面可以加深我们的理论知识,另一方面也可以提高我们考虑问题的全面性,将理论知识上升到一个实践的阶段。
三、实验环境(实验所使用的器件、仪器设备名称及规格):1、Dais-D2H+智能可编程数字逻辑电子技术实验仪主要技术性能特点:(1)、直流电压源:+5V/1V,±12V/0.2A(均有过载保护、自动恢复功能)(2)、信号源:函数信号发生器(输出:方波、三角波、正弦波,输出频率:10Hz~100K Hz)4位单脉冲及相位滞后脉冲、12位逻辑电平开关、12位LED逻辑电平指示、6位BCD码数码管显示、4位BCD码数字拨码开关、时钟源1Hz、10Hz、100Hz、1KHz、10KHz、100KHz、1MHz。
(3)、测试部分:频率计0~300KHz、三态逻辑测试笔(4)、实验扩展区:40芯万能锁紧插座4个、28芯万能锁紧插座2个、44芯ISP编程插座1个、电位器组、电阻、电容、二极管等器件及插座若干个。
2、所用芯片:74LS74:74LS74内含两个独立的D上升沿双D触发器,每个触发器有数据输入端D,置位输入端,复位输入端,时钟输入和数据输出。
置位输入和复位输入的低电平是输出预置或清除,而与其他输入端的电平无关。
当置位输入端和复位输入端均无效(高电平)时,符合建立时间要求的D数据在CP上升沿作用下送到输出端。
374LS193:193为可预置的十进制同步加减计数器,共有两种线路形式。
193的清除端是异步的。
当清除端(CLEAR)为高电平时,不管时钟端(C DOWN,C UP)状态如何,即可完成清除功能。
193的预置是异步的。
当置入控制器(LOAD)为低电平时,不管时钟端(C DOWN,C UP)状态如何,输出端(Qa-Qd)即可预置为与数据输入端(A-D)相一致的状态。
193的计数是同步的,靠C DOWN,C UP上升沿的作用下Qa-Qd同时变化,从而消除了异步计数器中出现的计数尖峰。
当进行加计数或减计数时可以分别利用C DOWN和C UP,此时另一个应该为高电平。
当计数上溢出时,进位输出端(CARRY)输出一个低电平脉冲,其宽度为 C UP 低电平部分的低电平脉冲;当计数下溢出时,错位输出端(BORROW)输出一个低电平的脉冲,其宽度为C DOWN低电平部分的低电平脉冲。
当把BORROW和CARRY分别连接后一级的C DOWN、C UP,即可进行级联。
以下为74LS193的逻辑电路图和引脚图、功能表:574LS00:00 为四组2 输入端与非门(正逻辑)Y=(AB)非Input Input OutputA B YL L H74LS148:在优先编码器电路中,允许同时输入两个以上编码信号。
不过在设计优先编码器时,已经将所有的输入信号按优先顺序排了队。
在同时存在两个或两个以上输入信号时,优先编码器只按优先级高的输入信号编码,优先级低的信号则不起作用。
74148是一个八线-三线优先级编码器。
74148优先编码器为16脚的集成芯片,除电源脚VCC(16)和GND(8)外,其余输入、输出脚的作用和脚号如图中所标。
其中I0—I7为输入信号,A2,A1,A0为三位二进制编码输出信号,IE是使能输入端,OE是使能输出端,GS为片优先编码输出端。
由74148真值表可列输出逻辑方程为:A2 = (I4+I5+I6+I7)IEA1 = (I2I4I5+I3I4I5+I6+7)·IEA0 = (I1I2I4I6+I3I4I6+I5I6+I7)·IE使能输出端OE的逻辑方程为:OE =I0·I1·I2·I3·I4·I5·67·IE当使能输入IE=1时,禁止编码、输出(反码):A2,A1,A0为全1。
(如表5.1.2第一行所示。
) 当使能输入IE=0时,允许编码,在I0~I7输入中,输入I7优先级最高,其余依次为:I6,I5,I4,I3,I2,I0,I0等级排列。
OE为使能输出端,它只在允许编码(IE=0),而本片又没有编码输入时为0。
如表5.1.2中第二行所示)。
7扩展片优先编码输出端GS的逻辑方程为:GS = (I0+I1+I2+I3+I4+I5+I6+I7)·IEGS为片优先编码输出端,它在允许编码(IE=0),且有编码输入信号时为0(如表5.1.2中第三至第十行);若允许编码而无编码输入信号时为1(如表5.1.2第二行);在不允许编码(IE=1)时,它也为1(如表5.1.2第一行)。
GS = 0表示“电路工作,而且有编码输入”74LS02:四2输入或非门(OC)02为四组2输入端或非门(正逻辑)。
974LS04:04为六组反向器其引脚图为:74LS08:08为四组2输入端与门(正逻辑)74LS20:74LS20是双4输人与非门.即在一块集成块内含有两个互相独立的与非门,每个与非门有4个输入端.74ls20芯片的功能很简单,就是包含两个4输入与非门,内含两组4与非门第一组:1,2,4,5输入6输出。
第2组:9,10,12,13输入8输出。
74LS20功能表A B C D Y1 1 1 1 00 X X X 1X 0 X X 1X X 0 X 1X X X 0 11174LS161:74LS161是常用的的四位二进制的可预置的同步加法计数器,它可以灵活的运用在各种数字电路中,以及单片机系统实现分频器等很多功能;从74LS161功能表中可以知道,当清零端CR=0时,计数器输出在Q3Q2Q1Q0立即全为零,这个时候为异步复位功能,当CR=1并且LD=0时,在CP信号上升沿作用后,74LS161输出端Q3Q2Q1Q0的状态分别与并行数据输入端D3D2D1D0的状态一样,为同步置数功能。
而且只有当CR=LD=EP=ET=1、CP脉冲上升沿作用后,计数器加1,74LS161还有一个进位输出端CO,其逻辑关系为CO=Q0*Q1*Q2*Q3*CET。
合理应用计数器的清零功能和置数功能,一片74LS161可以组成16进制以下的任意进制分频器。
四、实验任务及基本要求:1. 用5个开关模拟5个病房的呼叫输入信号,5个呼叫优先级不同;2. 用一个数码管显示呼叫信号的号码;没有呼叫信号时显示0;有多个信号呼叫时,显示优先级最高的呼叫号,并发出5秒的呼叫声(用一个闪烁的指示灯模拟),其它呼叫用指示灯显示;当护士接受到信号,按下复位键时显示管被清零。
3、(扩展功能)实现重复提醒功能:我们考虑到现实情况,当有病人需要服务的时候显示屏会显示病床号,并且蜂鸣器发出13蜂鸣,但是如果护士特别忙,没有及时的得到病人需要服务这一信息时,或者得到这一信息,但没有及时反馈,没有及时向相应的病人提供服务和帮助的话,我们可以设计:第一次蜂鸣后若干秒钟开关尚未复位也就是护士没有及时到位,蜂鸣器再次响起提醒护士及时到位。
五、实验设计(包括原理图、真值表、分析及简化过程、卡诺图、源代码等):开关控制部分,以及开关连接到闪烁灯,病床指示灯部分是由我设计实现的,编码器部分以及扩展功能是小组合作完成的1、开关控制及指示灯显示部分开关有5个输入高低电平的分别代表5个病床的电平控制器和一个复位端即清零端,扩展功能在另一个实验箱上,其控制开关基本是固定的高低电平,在系统运行期间不需要做改动,因此此处不作介绍。
5个开关输入以后经5个D触发器输入到74LS148,74LS148是优先权编码器,五个输入有优先级,我们设计的系统中从1到5优先级依次降低。
1到5开关连接到电平指示灯,开关直接控制指示灯亮,而高级别的显示则需要经过第二部分优先编码再输出显示。
2、优先编码部分5个开关输入连接到74LS148的8个输入端的其中5个即可,分别为I0、I1、I2、I3、I4,经过74LS148优先级选择后从A0、A1、A2输出连接到数码管显示电路部分显示数字病床号。
155、二次提醒模块(功能扩展部分)六、实验步骤:基本实验步骤:1、实验课题讨论分工:我们组认为病床呼叫系统的实现大体原理为:五个优先级不同的开关输入信号经优先编码器选择后输出显示。
实验系统的核心部分为优先编码器的实现编码器输入之前的部分和输入后的部分分别由两个人负责,而编码器部分则是二人共同完成实现的。
2、各自完成具体细节:我们分别将各个部分的实现进行了具体的分析设计,这是独立完成的,3、优先编码的实现以及整体的组装174、扩展功能的实现和系统总体修改完善:我们考虑到具体实际,在医院里病床呼叫并不一定能及时的通知到护士医生去响应的病房,为了病人的生命安危着想,我们必须设计可靠性高的系统,当一次指示灯闪烁和数码管显示没有及时的通知到医生护士时,需要第二次第三次的提醒。
因此我们扩展了二次提醒功能的模块。
使用计数器计时,在一定的时间间隔以后如果复位端没有被置高电平,扩展实验部分的计数器到10以后就会控制蜂鸣器蜂鸣,再次提醒;如此反复知道医生护士到达病房,复位端置0.七、实验过程与分析:1、验箱调试妥当以后,确保连线无误,各部位功能正常实现。