活性炭吸附作用的应用研究
- 格式:doc
- 大小:34.50 KB
- 文档页数:3
活性炭吸附废水中有机污染物的应用研究近年来,随着人类经济的快速发展和工业生产的普及,环境污染问题越来越引起人们的重视。
其中,废水污染是环境污染的一个重要方面,废水中的有机污染物对环境和人类健康产生不良影响。
因此,解决废水中有机污染物的排放和处理,已成为当前的热门研究领域。
而活性炭吸附废水中有机污染物的应用,成为一种有效的处理方法。
一、活性炭的基本概念活性炭是一种具有强吸附性能的多孔性固体材料。
它由于其多孔性结构和庞大的比表面积等特性,在环境治理、制药、化学工业等领域广泛应用。
通常,活性炭可分为粉末状、颗粒状和纤维状,用于废水处理的在工业上以颗粒状活性炭为主。
二、活性炭吸附的机理活性炭吸附污染物的机理主要是物理、化学和生物吸附三种作用相互作用的综合效果。
其中物理吸附主要与活性炭的孔径及比表面积有关,化学吸附主要与出现在孔内表面的功能基团有关,而生物吸附主要与虫体、细胞壁、藻类和菌丝等生物体产生的吸附作用有关。
三、活性炭吸附废水中有机污染物的应用活性炭吸附废水中有机污染物的应用主要有两个方面:一是利用颗粒状活性炭吸附废水中的有机污染物,提高水质;二是利用活性炭吸附废水中的有机污染物,将废水进行处理,达到环保目的。
四、影响活性炭吸附效果的因素活性炭吸附效果的高低,与多个因素有关。
以下是影响活性炭吸附效果的主要因素:1. 活性炭品种不同品种的活性炭,吸附性能存在明显差异。
要选择适合的品种,才能获得良好的吸附效果。
2. 废水中污染物的性质废水中污染物的性质不同,对活性炭的吸附效果也会产生不同的影响。
所以,要根据废水中污染物的性质来选择合适的活性炭品种。
3. 活性炭处理时间活性炭对污染物的吸附量随处理时间的增加而增加,但同时,处理时间过长会造成活性炭饱和,吸附效果降低。
4. 活性炭投加量活性炭投加量大,污染物吸附量也大,但同时也会增加成本开支。
五、活性炭吸附废水中有机污染物的优点和不足活性炭吸附废水中有机污染物,具有以下优点:1. 具有良好的处理效果,可有效去除废水中的污染物,提高水质。
活性炭的吸附性能研究活性炭是一种广泛应用于化工、生物、环境等多个领域的高端材料。
它是一种具有多孔、高表面积的吸附剂,因其在物质分离、净化、催化等方面的独特性能而备受关注。
本文将就基于活性炭的吸附性能展开讨论。
一、活性炭的定义活性炭是一种碳质材料,具有高表面积和利于吸附的孔隙结构。
它广泛应用于气体和液体的吸附、分离和净化等方面。
活性炭具有重要的环保和生态价值,在植物培育和水处理中也有广泛的应用。
活性炭的吸附能力是由其具有的孔隙结构和表面化学性质决定的。
相比于普通的炭材料,活性炭具有更多的小孔和中孔,在空间上更加复杂和狭小。
因此,活性炭可以吸附分子的表面积更大,结果其吸附能力也更强。
二、活性炭的吸附机制活性炭的吸附机制主要有物理吸附和化学吸附两种。
物理吸附:指分子吸附到活性炭孔隙表面时,分子的表面分子作用力和孔穴内分子的作用力通过范德华力吸引,将其牢固地钟在孔中。
在物理吸附中,吸附剂和吸附物分子之间不会产生化学反应,因此物理吸附的吸附热相对较低。
化学吸附:指活性炭表面上具有活性位点,使吸附分子与其表面产生化学反应,形成化合物,在化学键作用下强烈的结合在活性炭上。
化学吸附在吸附物和吸附剂之间产生了化学反应,是一种更牢固的吸附过程。
与物理吸附相比,化学吸附的吸附热相对较高。
三、活性炭吸附性能的影响因素1. 外在因素温度、湿度、压力等外在因素的改变会影响活性炭的吸附能力。
在高温下,分子内部的热能增强,因此分子与活性炭表面吸附的能力减弱。
而在负压下,分子与活性炭表面的相对吸附能力增加。
2. 活性炭的孔隙大小活性炭的孔隙大小对于吸附能力有着非常重要的影响。
通常,孔径越小的活性炭其表面积越大,因此吸附能力会更高。
除此之外,孔隙形状也会影响吸附性能。
3. 活性炭的含氧量由于活性炭含氧量的变化会影响其表面化学性质,因此也可以影响吸附性能。
在一定的范围内,增加含氧量可以增强活性炭的吸附能力;但如果过高,则可能影响吸附剂的硬度和酸碱性态,因此不利于吸附过程。
活性炭吸附法实验报告活性炭吸附法实验报告引言:活性炭是一种具有高度孔隙结构和吸附能力的材料,广泛应用于环境治理、水处理以及空气净化等领域。
本实验旨在探究活性炭吸附法在去除水中有机污染物方面的效果,并分析吸附过程中的影响因素。
实验方法:1. 实验材料准备:活性炭样品、去离子水、有机污染物溶液。
2. 实验仪器:烧杯、滴定管、磁力搅拌器、分光光度计等。
3. 实验步骤:a. 准备一定浓度的有机污染物溶液。
b. 在烧杯中加入一定量的活性炭样品。
c. 将有机污染物溶液加入烧杯中,并使用磁力搅拌器进行搅拌。
d. 在一定时间间隔内,取出一定量的溶液样品进行分析。
e. 使用分光光度计测定溶液中有机污染物的浓度。
实验结果:通过实验测定,我们得到了活性炭吸附有机污染物的吸附效果。
在一定时间范围内,随着活性炭样品的加入,有机污染物的浓度逐渐降低。
吸附效果与活性炭样品的质量、孔隙结构以及有机污染物的性质有关。
讨论:1. 活性炭的孔隙结构对吸附效果的影响:活性炭具有丰富的孔隙结构,包括微孔、介孔和宏孔。
微孔对小分子有机物具有较高的吸附能力,而介孔和宏孔则对大分子有机物具有较高的吸附能力。
因此,在选择活性炭样品时,需要考虑有机污染物的分子大小与活性炭孔隙结构的匹配程度。
2. 活性炭样品质量对吸附效果的影响:活性炭样品的质量与其表面积和孔隙体积密切相关。
表面积越大,孔隙体积越大,吸附效果越好。
因此,在实际应用中,选择具有较大表面积和孔隙体积的活性炭样品可以提高吸附效果。
3. 有机污染物性质对吸附效果的影响:不同的有机污染物具有不同的化学结构和性质,对活性炭的吸附能力也有所差异。
有机污染物的极性、分子大小以及溶解度等因素都会影响其与活性炭的相互作用。
因此,在实际应用中,需要根据有机污染物的性质选择合适的活性炭样品。
结论:通过本实验,我们验证了活性炭吸附法在去除水中有机污染物方面的有效性。
活性炭的孔隙结构、质量以及有机污染物的性质都对吸附效果有影响。
活性炭吸附实验1.实验目的本实验用亚甲基蓝(C16H18ClN3S)代替工业废水中有机污染物,采用活性炭吸附法,探究活性炭投放量、吸附时间等因素对活性炭吸附性的影响,探究活性炭处理有机污染水体时的最优工艺参数。
2.实验原理2.1活性炭特性活性炭是水处理吸附法中广泛应用的吸附剂之一,有粒状和粉状两种。
其中粉末活性炭应用于水处理在国内外已有较长的历史。
活性炭是一种暗黑色含炭物质,具有发达的微孔构造和巨大的比表面积。
它化学性质稳定,可耐强酸强碱,具有良好吸附性能,是多孔的疏水性吸附剂。
活性炭最初用于制糖业,后来广泛用于去除受污染水中的有机物和某些无机物。
它几乎可以用含有碳的任何物质做原材料来制造,活性炭在制造过程中,其挥发性有机物被去除,晶格间生成空隙,形成许多形状各异的细孔。
其孔隙占活性炭总体积的 70%~ 80%,每克活性炭的表面积可高达 500 ~ 1700 平方米,但 99.9%都在多孔结构的内部。
活性炭的极大吸附能力即在于它具有这样大的吸附面积[1,2]。
2.2活性炭吸附特征活性炭的孔隙大小分布很宽,从 10-1nm 到104nm 以上,一般按孔径大小分为微孔、过渡孔和大孔。
在吸附过程中,真正决定活性炭吸附能力的是微孔结构。
活性炭的全部比表面几乎都是微孔构成的,粗孔和过渡孔只起着吸附通道作用,但它们的存在和分布在相当程度上影响了吸附和脱附速率。
研究表明,活性炭吸附同时存在着物理吸附、化学吸附和离子交换吸附。
在活性炭吸附法水处理过程中,利用3种吸附的综合作用达到去除污染物的目的。
对于不同的吸附物质,3种吸附所起的作用不同。
(1)物理吸附分子力产生的吸附称为物理吸附,它的特点是被吸附的分子不是附着在吸附剂表面固定点上,而稍能在界面上作自由移动。
物理吸附可以形成单分子层吸附,又可形成多分子层吸附。
由于分子力的普遍存在, 一种吸附剂可以吸附多种物质,但由于吸附物质不同,吸附量也有所差别。
这种吸附现象与吸附剂的表面积、细孔分布有着密切关系,也和吸附剂表面力有关。
活性炭材料的制备及其吸附性能研究活性炭是一种高效的吸附材料,广泛应用于工业领域和环保中。
其制备过程复杂,其中关键是制备方法和材料特性的控制。
本文将介绍活性炭的制备及其吸附性能的研究进展。
一、活性炭的制备方法活性炭的制备方法多种多样,如物理法、化学法和物化法等。
物理法是利用高温和特殊气氛,将无机原材料直接聚集成炭,其制备过程简单,但性能相对差。
化学法是将有机高分子或碳素化合物在特定条件下进行裂解或氧化后,得到炭材料。
物化法是结合物理和化学原理,在制备过程中控制原料和反应条件,以获得理想的炭材料。
二、活性炭的制备材料活性炭的制备原料多种多样,包括木屑、竹材、果壳等天然原材料,也包括聚丙烯、聚氨酯、纤维素等人工高分子。
材料种类不同,会影响活性炭的孔径大小和吸附性能。
例如,天然原材料产生的活性炭多为微孔,吸附能力较强;而人工高分子制备的活性炭多为介孔或大孔,吸附能力相对较弱。
三、活性炭的吸附性能活性炭的吸附能力主要取决于其孔径分布、表面性质和晶体结构等因素。
不同孔径大小的活性炭对不同物质的吸附效果也不同。
例如,微孔活性炭对小分子有机物质具有较强的吸附作用,而介孔或大孔活性炭对大分子有机物具有更好的吸附性能。
此外,活性炭表面化学性质的不同也会导致其吸附性能的差异。
一般而言,具有氨基、羟基、羧基等官能团的活性炭吸附能力会更强。
四、活性炭的应用由于其吸附能力和环保性质,活性炭广泛应用于水处理、空气净化等领域,同时也被用作电容器、电极材料等电子制品中。
在水处理方面,活性炭可以去除水中的有害物质,如重金属离子、有机物、药物等,提高水的质量和纯度。
在空气净化方面,活性炭可以去除甲醛、苯、二氧化硫等有害气体,改善人们生活环境。
总之,活性炭材料的制备及其吸附性能的研究是一个重要的领域。
通过不断探索材料特性和优化制备工艺,可以获得更具吸附能力和应用价值的活性炭,促进其在各个领域的应用。
活性炭吸附法实验报告1. 实验目的本实验旨在探究活性炭作为吸附剂在去除染料废水中的应用,通过实验验证活性炭的吸附性能。
2. 实验原理活性炭是一种具有大量微孔和孔隙的多孔性材料,具有较大的比表面积和吸附能力。
活性炭材料的孔隙结构可以吸附和储存多种气体、液体或溶质,并在一定的条件下释放出来。
本实验中,活性炭将吸附溶液中的染料分子,实现对染料的去除。
3. 实验步骤3.1 准备工作•准备所需材料:活性炭样品、染料溶液、试管、试管架、移液管等。
•将试管清洗干净,并晾干备用。
3.2 实验操作1.在试管中加入一定量的染料溶液。
2.取适量的活性炭样品,加入试管中。
3.用试管架将试管固定,并加热至一定温度。
4.观察试管中溶液的颜色变化,并记录下来。
5.将试管从加热源中取出,待其冷却至室温。
6.使用移液管将试管中的溶液转移至离心管中。
7.进行离心操作,分离出溶液中的活性炭样品。
8.观察离心管中的溶液,记录下其颜色变化。
4. 实验结果与分析根据实验步骤所得到的结果,我们可以观察到染料溶液在与活性炭接触后发生了颜色的变化。
这是因为活性炭的表面具有较大的吸附能力,能够有效吸附溶液中的染料分子。
通过离心操作,我们将溶液中的活性炭与染料分离,观察到离心管中的溶液颜色明显变浅,说明活性炭对染料的吸附效果良好。
5. 总结与展望通过本次实验,我们验证了活性炭作为吸附剂在去除染料废水中的有效性。
活性炭具有较大的比表面积和吸附能力,能够吸附溶液中的有害物质,实现净化水质的目的。
然而,本次实验仅是基于简单的染料溶液,后续可以进一步研究和探究活性炭在处理更为复杂的废水中的应用。
参考文献[1] Kim, J., Yun, S., & Park, S. (2015). Adsorption of dissolved organic matter onto activated carbon: Mechanisms and kinetic models. Chemical Engineering Journal, 279, 775-784.[2] Wang, S., & Li, H. (2019). Application of activated carbon in water treatment:A review. Journal of Environmental Sciences, 75, 123-135.。
1 实验目的(1) 通过实验进一步了解活性炭的吸附工艺及性能;(2) 熟悉整个实验过程的操作;(3) 掌握用“间歇法”、“连续流”法确定活性炭处理污水的设计参数的方法;(4) 学会使用一级动力学、二级动力学方程拟合分析,对 PAC 的吸附进行动力学分析研究;(5) 了解活性炭改性的方法以及其影响因素。
2 实验原理2.1 活性炭间隙性吸附实验原理活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,己达到净化水质的目的。
活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受到同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。
活性炭的吸附是上述两种吸附综合的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不在变化,而达到平衡,此时的动平衡称为活性炭吸附平衡而此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭的吸附能力以吸附量q表示。
式中:q ——活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g;V ——污水体积,L;C0、C ——分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L;X ——被吸附物质重量,g;M ——活性炭投加量,g。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化称为吸附等温线,通常费用兰德里希经验公式加以表达。
式中:q ——活性炭吸附量,g/g ;C ——被吸附物质平衡浓度g/L;K、n ——溶液的浓度,pH值以及吸附剂和被吸附物质的性质有关的常数。
K、n值求法如下:通过间歇式活性炭吸附实验测得q、C相应之值,将式取对数后变换为下式:将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为K。
此外,还有朗缪尔吸附等温式,它通常用来描述物质在均一表面上的单层吸附,表达式为:由于间歇式静态吸附法处理能力低、设备多,故在工程中多采用连续流活性炭吸附法,即活性炭动态吸附法。
活性炭吸附实验报告
引言概述:
本实验旨在研究活性炭材料在吸附过程中的性能和效果。
活性炭是一种具有高孔隙度和高吸附能力的材料,广泛应用于水处理、空气净化、废气处理等领域。
通过实验确定活性炭的吸附性能,可以为其在工业和环境应用中提供科学依据。
正文内容:
1.活性炭的原理和特性
1.1活性炭的制备方法
1.2活性炭的物理特性和表面结构
1.3活性炭的吸附原理
2.实验设计和方法
2.1活性炭的选择和准备
2.2吸附试剂的选择和制备
2.3实验装置和操作流程
3.吸附实验结果与分析
3.1吸附平衡实验
3.1.1吸附剂用量对吸附效果的影响
3.1.2吸附剂颗粒大小对吸附效果的影响
3.1.3吸附剂pH值对吸附效果的影响
3.2吸附动力学实验
3.2.1吸附速率对吸附效果的影响
3.2.2吸附温度对吸附效果的影响
3.2.3吸附剂可重复使用性能的评估
4.吸附实验的结果讨论
4.1吸附平衡实验结果分析
4.2吸附动力学实验结果分析
4.3吸附剂的选择和应用前景
5.实验改进和未来研究方向
5.1实验方法的改进和优化
5.2活性炭的改良和性能提升
5.3活性炭在环境治理中的应用研究
总结:
通过本实验,我们对活性炭吸附过程的性能和效果进行了研究。
实验结果表明,活性炭吸附效果受到吸附剂用量、颗粒大小、pH值、吸附速率和温度等因素的影响。
活性炭作为一种有潜力的吸附材料,在水处理、空气净化、废气处理等领域具有广阔的应用前
景。
未来的研究可以着重于改进实验方法、提升活性炭的吸附性能,并进一步探索其在环境治理中的应用。
活性炭对多种有机物质的吸附效果
1. 研究背景
活性炭是一种常见的吸附剂,广泛应用于水处理、废气处理、
食品加工等领域。
活性炭具有强大的吸附能力,能够有效去除水中
的有机污染物。
本文将探讨活性炭对多种有机物质的吸附效果。
2. 实验设计与方法
本实验选取了四种常见的有机物质:苯酚、甲苯、乙醇和乙酸。
通过将这些有机物溶解在一定浓度的水溶液中,并加入一定量的活
性炭,观察其吸附效果。
实验设置多个组别,分别改变有机物浓度
和活性炭用量,以获得更全面的数据。
3. 实验结果
通过实验观察和数据统计,我们得到了以下结果:
- 对于苯酚、甲苯这样的芳香族化合物,活性炭表现出较好的吸附效果。
在适当的活性炭用量下,可以去除水中高浓度的芳香族化合物。
- 乙醇和乙酸是饮料和食品加工中常见的有机物质,它们在水中的浓度相对较低。
活性炭也能够吸附这些有机物质,但需要较高的用量才能达到较好的去除效果。
4. 结论
活性炭作为吸附剂,在处理多种有机物质时具有一定的效果。
不同种类的有机物质对活性炭的吸附效果不同,芳香族化合物的去除效果较好,而含有羟基的有机物质则需要较高的活性炭用量。
此外,活性炭用量的控制也是关键,过高或过低的用量都可能影响吸附效果。
5. 参考文献
[1] 张三, 李四. 活性炭在水处理中的应用研究. 中国环境科学, 20XX(1): 12-18.
[2] 王五, 赵六. 活性炭吸附有机物质的机理研究. 化学与工程, 20XX(2): 35-40.。
活性炭吸附有害气体的研究活性炭是一种具有微孔结构的多孔性吸附剂,具有较强的吸附能力,被广泛应用于空气净化、饮用水处理、工业废水处理等领域。
在现代社会,由于工业化进程加快,汽车尾气、化工废气等有害气体排放也越来越严重,给人们的健康带来很大威胁。
因此,研究活性炭吸附有害气体的能力和机理,对改善环境质量、保护人类健康具有重要意义。
活性炭通过吸附作用能够有效去除空气中的污染物,如臭氧、二氧化硫、二氧化氮等。
其吸附效果主要受活性炭的孔径、比表面积、孔体积等因素影响。
通过调控活性炭的炭化温度、活化方式等方法,可以改变其孔径大小和分布,从而提高吸附效率。
研究表明,活性炭对不同有害气体的吸附效果不同。
例如,对于一氧化碳(CO),由于其分子较小,比表面积大的活性炭更适合吸附。
而对于大分子有机物,如苯、甲苯等,孔径较大的活性炭更具有吸附能力。
因此,在实际应用中,需要选择合适的活性炭种类和处理方式来进行空气净化。
除了孔径大小外,活性炭的疏水性也是影响其吸附性能的重要因素。
疏水性较强的活性炭更容易吸附疏水性分子,如苯、甲苯等,而疏水性较弱的活性炭适合吸附极性分子。
因此,设计制备具有特定疏水性的活性炭材料,对提高其吸附性能具有重要意义。
活性炭的再生和回收也是研究热点之一。
传统的热脱附法虽然可以实现活性炭的再生,但存在能耗高、操作复杂等问题。
近年来,通过改进活性炭表面功能团、引入金属氧化物等方法,实现了活性炭的快速再生和高效回收,从而提高了其重复利用率。
未来,随着环境污染加剧和人们对健康生活的追求,活性炭在环境净化和健康保护领域的应用前景将更加广阔。
通过不断深入研究活性炭吸附有害气体的机理和性能,可以为环境保护和人类健康提供更有效的解决方案。
活性炭的发展前景一片光明,我们有理由相信,通过科学研究和技术创新,活性炭在解决环境问题和保护人类健康方面将发挥越来越重要的作用。
活性炭吸附作用的应用研究
Applied Research of the activated carbon adsorption
摘要:作为一种特殊的炭质材料,活性炭孔隙结构发达,比表面积很大,吸附能力很强,稳定性质良好,以及具有优异的再生能力,被广泛应用于各个领域。
本文介绍了活性炭的性能,并着重综述了提高活性炭吸附性能的有效途径及其在净水处理、废水处理、气相吸附等方面的应用研究进展。
关键词:活性炭吸附应用
1、引言
活性炭具有较强的吸附性和催化性能,原料充足且安全性高,耐酸碱、耐热、不溶于水和有机溶剂、易再生等优点,是一种环境友好型吸附剂。
活性炭广泛用于工业三废治理、溶剂回收、食品饮料提纯、载体、医药、黄金提取、半导体应用、电池和电能贮存净水处理、废水处理、气相吸附等方面[1]。
2、活性炭的特点
2.1活性炭的一般性质
活性炭外观为暗黑色,具有良好吸附性能,化学性质稳定,可耐强酸及强碱,能经受水浸、高温,密度比水小,是多孔的疏水性吸附剂[1]。
2.2活性炭的作用机理
活性炭产生吸附的主要原因是固体表面上的原子力场不饱和,有表面能,因而可以吸附某些分子以降低表面能。
固体从溶液中吸附溶质分子后,溶液的浓度将降低,而被吸附的分子将在固体表面上浓聚。
而且活性炭本身是非极性的,其含量及电荷随原料组成、活化条件不同而异,低温活化(< 500℃)的碳可以生成表面酸性氧化物,水解后可以放出H+[2]。
由于活性炭表面有微弱的极性使其他极性溶质竞争活性炭表面的活性位置,导致非极性溶质吸附量的降低,而对水中某些金属离子交换吸附或络合反应,提高了活性炭对金属离子的吸附效果
[2]。
3、活性炭的应用
活性炭作为优良的吸附剂在饮水的净化、废水的深度处理、净化或储存气体等方面有着广泛的应用。
研究表明,活性炭对有机物吸附作用较强,在净化水方面不仅对颜色、臭味去除效果良好,而且对合成洗涤剂EF4、三卤甲烷、卤代烃、游离氯也有较高的吸附能力,也能有效地去除几乎无法分解的氨基甲酸酯类杀虫剂等。
活性炭能有效地去除水中的游离氯和某些重金属且不易产生二次污染,减少循环冷却水中菌藻繁殖。
对于发电厂,低药剂量运行,碳钢材质不经任何处理,无论是使用中水还是中水经深度处理,均腐蚀较重,采用系统开车时对全系统进行保护膜处理可以明显减缓碳钢材质的腐蚀,假如提高缓蚀阻垢剂的使用浓度,也可以明显减缓碳钢材质的腐蚀[2]。
3.1活性炭在饮用水处理中的应用
以颗粒活性炭为滤料的快速生物滤池通常用作第二级过滤,通过生长在颗粒活性炭表面细菌的活动,除去水中的BOM[3]。
这一处理过程又称二级生物活性炭过滤。
有文献报道了这一过程的有效性。
为减少费用及便于在水厂中推广,人们提出了“第一级砂——生物活性炭双层滤池”的构想[4]。
应用生物滤池去除水中BOM有以下优点:
(1)减少了细菌在供水系统中生长所需的营养物质,可有效控制细菌的繁殖;
(2)减少了与消毒剂反应的有机物的量,进而减少了饮水处理所需的消毒剂的用量及稳定了出厂水剩余消毒剂的含量[4];
(3)通过去除一些消毒副产物的有机前体物,减少了水厂水中消毒副产物的含量[3];
(4)将有机物转化为无机终产物;
(5)老化脱落的生物膜残渣较化学沉淀污泥易处理;
(6)生物处理法费用较活性炭吸附法低。
3.2活性炭在废水处理过程中的除臭作用
活性炭吸附柱可以去除许多恶臭物质。
如乙醛、吲哚等恶臭成分是通过物理吸附而去除的,H2S和硫醇等则是在活性炭表面进行氧化反应而进一步吸附去除的[5]。
活性炭对硫化氢以及含硫化合物的去除比较理想,单对氨或含氮化合物的去除并不理想。
活性炭在达到饱和之前,其对恶臭物质的去除率是保持相对稳定且其受气体负荷变化的冲击影响比较小,因此适应性比较广泛,但是吸附剂不便频繁再生,因而对被吸附气体的浓度要求不能太高[6]。
3.3活性炭在处理印染废水中的脱色能力
利用活性炭吸附作用处理成分复杂的染料生产废水,具有良好的效果:
(1)厌氧预处理的出水经混凝沉淀后,COD去除率为83%左右,脱色率达到99.3%,为后续的吸附创造了良好的条件[7]。
(2)活性炭具有良好的吸附性能,本工艺的最佳吸附条件:pH=4,粉末活性炭用量为20g/L,吸附过程中需要搅拌,吸附时间为40min,吸附后出水的CODCr为150mg/L以下[8],达到了国家排放标准。
(3)用碱法洗脱和fenton试剂氧化这两种再生方法均可较好地恢复活性炭的吸附性能[9]。
对再生后的活性炭进行吸附,CODCr去除率仍可达77%以上,脱色率可达97%以上[8]。
4.活性炭吸附与其它水处理技术组合工艺的应用及发展
4.1高锰酸钾——活性炭组合工艺
我国的一些水厂,在微污染水源处理中采用高锰酸钾-活性炭联用组合工艺,对降解有机物,提高去除嗅、色能力,效果显著[10][11]。
同时这种组合工艺,对浊度降低,矾耗的节约也较显著。
4.2 生物活性炭法
生物活性炭法是在活性炭吸附技术的基础上发展起来的一种水处理技术。
生物活性炭法是将活性炭作为生物膜载体,利用活性炭的吸附作用和生物膜的降解作用,去除水中的污染物的一种新方法[7]。
4.3 粉末活性炭——活性污泥工艺(PACT)
该法即将粉末活性炭投加到活性污泥曝气池中,形成生物活性炭,利用吸附、降解协同作用去除有机污染物。
由于生物活性炭固有的机理,可以去除活性污泥法难以去除的有机物,提高活性污泥的去除效率。
另一方面,活性污泥具有稳定、良好的压密性,从而克服了污泥膨胀。
因其在经济和处理效率方面的优势,已广泛地应用于工业废水处理中[12]。
5.结论
基于活性炭来源广泛、表面能大、吸附能力强、容易循环利用等众多优点,活性炭吸附技术在污水处理方面已得到很好的发展,并在众多方面得到广泛的应用。
随着人们对它的进一步深入的研究,活性炭将会在各方面有更广阔的发展和应用空间。
参考文献:
[1] 谢志刚,刘成伦.活性炭地方制备及其应用进展[J].工业水处理,2010,893(9):47-48.
[2] 李子龙,马双枫,王栋等.活性炭吸附水中金属离子和有机物吸附模式和机理的研究[J].环境科学与管理,2009,34(10):88-94.
[3] 顾斌.活性炭吸附技术在水处理中的应用[J].能源环境保护,2011,25(5):20 -22.
[4] 刘敏敏,吴云海,杨凤.生物活性碳处理废水中有机物的研究探讨[J].江苏环境科技,2006,19(2):6-8.
[5] 王爱平,刘中华.活性炭水处理技术及在中国的应用前景[J].昆明理工大学学报,2002,27(9):48—52.
[6] 张晶晶,周楚仪,吴春香等.不同活性炭对竹醋液的脱色脱臭应用研究[ J ].宝鸡文理学院学报(自然科学版),2012.32(2):34—41.
[7] 陈卫,李磊,盛誉等.粉末活性炭对水中甲硫醚的吸附性能[ J ].能源环境保护,2010.10(24):671—676.
[8] 周峰,林金清,姚晓亮等.活性炭对印染废水中碱性紫的吸附作用[ J ] .华侨大学学报(自然科学版),2006 .27(3):304—306.
[9] 张林生,蒋岚岚.染料废水的脱色方法[ J] .化工环保,2000,20( 1) : 14-—8.
[10] 崔鹏,刘永德,赵继红,周鹏. 制革废水深度处理技术的研究进展[ J ].中国资源综合利用,2010.10 (28):10—11 .
[ 11] 刘尧,张晓健,戴吉胜.高锰酸钾氧化水中乙硫醇的动力学研究[J].环境科学,2008,11(05): 38-42.
[ 12]陈一飞,施成良. 印染废水成分分析及净化处理技术[ J] .四川丝绸,2002,92( 3) : 15—17.。