MIDAS—GEN施工阶段分析例题
- 格式:pdf
- 大小:3.39 MB
- 文档页数:36
MIDAS-GEN大体积混凝土水化热分析例题9大体积混凝土水化热分析MIDAS/Gen1例题大体积混凝土水化热分析例题9. 大体积混凝土水化热分析概要此例题将介绍利用MIDAS/Gen做大体积混凝土水化热分析的整个过程,以及查看分析结果的方法。
此例题的步骤如下:1. 简要2. 设定操作环境及定义材料3. 定义材料时间依存特性4. 建立实体模型5. 组的定义6. 定义边界条件7. 输入水化热分析控制数据8. 输入环境温度9. 输入对流函数10. 定义单元对流边界11. 定义固定温度12. 输入热源函数及分配热源13. 输入管冷数据14. 定义施工阶段15. 运行分析16. 查看结果2例题大体积混凝土水化热分析1.简要本例题介绍使用MIDAS/Gen 的水化热模块来进行大体积混凝土水化热分析的方法。
例题模型为板式基础结构,对于浇筑混凝土后的1000个小时进行了水化热分析,其中管冷作用于前100个小时。
(该例题数据仅供参考) 基本数据如下:? ? ?地基:17.6 x 12.8 x 2.4 m 板式基础:11.2 x 8.0 x 1.8 m 水泥种类:低热硅酸盐水泥(Type IV)板式基础地基图1. 分析模型模型3例题大体积混凝土水化热分析2. 设定操作环境及定义材料在建立模型之前先设定环境及定义材料注:也可以通过程序右下角随时更改单位。
41. 主菜单选择文件>新项目2. 主菜单选择文件>保存:输入文件名并保存 3. 主菜单选择工具>单位体系:长度m,力kN 图2. 定义单位体系 4. 主菜单选择模型>材料和截面特性>材料:添加:定义新材料材料号:1 名称:基础规范:GB(RC) 混凝土:C30 材料类型:各向同性材料号:2 名称:地基设计类型:用户定义材料类型:各向同性弹性模量:1e6 泊松比:0.2 线膨胀系数:1e-5 容重:18 5. 主菜单选择工具>单位体系:长度m,力kgf,热度kcal 6. 主菜单选择模型>材料和截面特性>材料:例题大体积混凝土水化热分析编辑:修改材料热特性数据基础比热:0.25 热传导率:2.3 地基比热:0.2 热传导率:1.7图3. 定义材料3.定义材料时间依存特性1. 主菜单选择模型>材料和截面特性>时间依存性材料(抗压强度):添加:定义基础的时间依存特性名称:强度发展类型:设计规范规范:ACI混凝土28天抗压强度:3e4 KN/m2 混凝土抗压强度系数a 4.5 b 0.95 2. 主菜单选择模型>材料和截面特性>时间依存性材料连接:强度进展:强度发展选择指定的材料:1.基础添加5例题大体积混凝土水化热分析图4. 定义材料时间依存特性注:材料的收缩徐变特性在水化热分析控制中定义。
—钢筋混凝土结构时程分析北京市海淀区中关村南大街乙56号方圆大厦1402室Phone : 010-8802-6170 Fax : 010-8802-6171E-mail : Beijing@M odeling, I ntegrated D esign & A nalysis S oftware目录简要 (1)设定操作环境及定义材料和截面 (2)用建模助手建立模型 (1)建立框架柱及剪力墙 (6)楼层复制及生成层数据文件 (9)定义边界条件 (10)输入楼面及梁单元荷载 (11)输入风荷载 (14)输入时程分析数据 (15)定义结构类型 (18)定义质量 (19)运行时程分析 (19)荷载组合 (20)时程分析结果 (20)框架-剪力墙建模动画一、建模1、新建项目,将树形菜单换到“工作”目录,方便查看,保存文件;2、迈达斯中的操作没有严格的先后顺序,大家可以根据自己的习惯来操作。
使用者还可以根据自己的习惯来设定程序中的很多参数,如点格的大小可以在“模型/定义轴网/定义点格”里面设置;单位体系可以在“工具/单位体系”里面定义,同时屏幕下方也可以随时修改单位。
3、输入材料及截面。
选择材料的种类,这里选择混凝土,输入混凝土的等级;输入梁的截面,次梁的截面,剪力墙洞口上连梁的截面,柱的截面;输入剪力墙的厚度。
4、然后开始建模。
迈达斯中的建模方式有很多种,大家可以采用平时熟悉的方法:先建立轴网,然后再在轴网上布置梁柱墙等构件,这种方式建模较慢,这里只做简单介绍,不推荐大家在MIDAS中这样建模,MIDAS中提供更快捷的方式。
5、屏幕右下方的视点如果妨碍工作,可以关闭。
在“显示”按钮下的“显示控制”,去掉“视点”前面方框里的勾。
6、这里我们使用一种比较快捷的方式。
利用“模型/结构建模助手/框架”来建模。
可以一次把轴网生成,同时布置上构件。
注意“β”角控制截面放置的角度(如梁截面是正放还是平放成扁梁),这里选择角度为“90”;生成框架,注意在建模助手里面框架是放在整体坐标系的X-Z面(即建筑物的立面),插入的时候需要将旋转角度“Alpha”设置为“-90”,这样才将框架生成到整体坐标系的X-Y平面。
一、施工步骤划分,计算内容及荷载取值1.施工步骤的划分根据施工总进度计划及主体结构施工方案,将整个施工过程划分为12个步骤来进行施工模拟分析,以外筒每两个竖向分段节点间距(每6层)作为一个施工步骤,核心筒在比外筒存在一定高差的前提下与外筒同步施工,楼板施工滞后外筒施工6个结构层,具体如下表所示。
施工步骤核心筒(楼层)外筒(楼层)楼板(楼层)幕墙(楼层)Stage1 F9 F2 ————Stage2 F15 F8 F2 ——Stage3 F20 F14 F8 ——Stage4 F26 F19 F14 ——Stage5 F31 F25 F19 ——Stage6 F37 F30M F25 ——Stage7 F43 F36 F30M F2Stage8 F48 F42 F36 F8Stage9 F54 F47 F42 F14Stage10 F60 F53 F47 F19Stage11 完成F59 F53 F25Stage12 ——屋顶屋顶F30M2.计算内容及原因计算各施工阶段结构变形的变化和发展过程。
由于施工顺序和加载条件不同,实际施工的建筑物的受力情况与建立整个模型后进行结构分析的分析结果是不同的。
导致产生这些误差的原因可大致分为两点:(1)对整个建筑物的模型同时施加荷载时,所施加的荷载会被传递到刚施工的上部楼层,这与实际施工条件不同,因此会产生误差。
(2)在各施工阶段的荷载会导致竖向构件的不同收缩。
因此必须进行施工阶段的变形,指导现场施工,确保施工阶段的安全。
3.算法及荷载概述根据施工顺序,本公司采用MIDAS/GEN进行施工阶段模拟分析,计算模型为一整体模型,按照施工步骤将结构构件、支座约束、荷载工况划分为若干个组,按照施工步骤、工期进度进行施工阶段定义,程序按照控制数据进行分析。
在分析某一施工步骤时,程序将会冻结该施工步骤后期的所有构件及后期需要加载的荷载工况,仅允许该步骤之前完成的构件参与运算,例如第一步骤的计算模型,程序冻结了该步骤之后的所有构件,仅显示第一步骤完成的构件(内筒第一节),参与运算的也只有内筒第一节,计算完成显示计算结果时,同样按照每一步骤完成情况进行显示。
Midas/gen在施工过程仿真分析中的应用摘要本文研究了通用有限元软件 midas/gen 7.8,在施工过程仿真分析中的应用。
通过对某高层组合结构模型的施工过程仿真分析,探讨了施工过程中部分结构构件内力、应力和位移等变量的演化历程。
关键字:施工过程、仿真分析、midas/gen、高层组合结构1、引言近年来,高层结构在我国得到了广泛的应用其造型也越来越多样化,施工难度越来越大。
按照实际施工工况来模拟结构在施工过程中及建成后的力学和几何状态显得越来越有必要。
高层结构在施工过程中,受具体施工方案、临时施工荷载、混凝土收缩徐变、环境温度场变化等诸多因素的影响。
在施工过程中,结构的刚度、变形、内力状态等都是不断变化的。
结构构件的最大应力和变形可能发生在施工期间。
依据新版《建筑抗震设计规范》(gb50011-2010)对结构进行性能化的抗震设计及结构弹塑性分析时,也要求设计人对复杂高层结构进行施工过程仿真分析,并以施工全过程完成后的静载内力为计算初始状态。
当施工方案与施工仿真计算不同时,应重新调整相应的计算过程。
2、midas/gen施工过程仿真模块介绍midas/gen是一款大型通用有限元分析软件,曾应用于奥运会主体育馆(鸟巢)、国家游泳中心(水立方)、广州新图书馆等4500多个工程项目[1],实践证明其能够满足工程设计和分析的精度要求。
midas/gen施工过程仿真模块具有如下几个特点:1、内含各种高性能的有限元单元,用户界面友好,加入了国内的混凝土和钢结构等设计规范,能与cad以及其它有限元程序进行数据的交换,具有卓越的输入和编辑功能;2、通过钝化和激活结构组、荷载组、边界组实现对施工过程的模拟。
3、可考虑材料的时间依存特性(抗压强度、徐变、收缩等),可考虑任意构件的产生与消失、任意荷载的施加与卸载,并且可以实现施工过程耦合计算。
midas/gen的施工过程仿真分析可以通过如下步骤实现:1、建立模型、定义施工阶段。
例题大体积混凝土水化热分析2 例题. 大体积混凝土水化热分析概要此例题将介绍利用midas Gen做大体积混凝土水化热分析的整个过程,以及查看分析结果的方法。
此例题的步骤如下:1.简介2.设定操作环境及定义材料3.定义材料时间依存特性4.建立实体模型5.组的定义6.定义边界条件7.输入水化热分析控制数据8.输入环境温度9.输入对流函数10.定义单元对流边界11.定义固定温度12.输入热源函数及分配热源13.输入管冷数据14.定义施工阶段15.运行分析16.查看结果例题大体积混凝土水化热分析1.简介本例题介绍使用 midas Gen 的水化热功能来进行大体积混凝土水化热分析的方法。
例题模型为板式基础结构,对于浇筑混凝土后的1000个小时进行了水化热分析,其中管冷作用于前100个小时。
(该例题数据仅供参考)基本数据如下:地基:17.6 x 12.8 x 2.4 m板式基础:11.2 x 8.0 x 1.8 m水泥种类:低热硅酸盐水泥(Type IV)板式基础地基1/4模型图1 分析模型3例题大体积混凝土水化热分析4 2.设定操作环境及定义材料在建立模型之前先设定环境及定义材料1.主菜单选择文件>新项目2.主菜单选择文件>保存:输入文件名并保存3.主菜单选择工具>设置>单位系:长度 m,力 kgf,热度 kcal图2 定义单位体系4.主菜单选择特性>材料>材料特性值:添加:定义新材料材料号:1 名称:基础规范:GB10(RC)混凝土:C30 材料类型:各向同性比热:0.25 热传导率:2.3材料号:2 名称:地基设计类型:用户定义材料类型:各向同性弹性模量:1.0197e8 泊松比:0.2 线膨胀系数:1e-5 容重:1835比热:0.2 热传导率:1.7注:也可以通过程序右下角随时更改单位。
例题 大体积混凝土水化热分析5图3 定义材料3.定义材料时间依存特性1. 主菜单选择 特性>时间依存性材料>抗压强度:添加:定义基础的时间依存特性名称:强度发展 类型:设计规范 规范:ACI混凝土28天抗压强度:3e4 kN/m 2混凝土抗压强度系数a 4.5 b 0.95 注意:此处注意修改单位:力 kN ,长度 m 2. 主菜单选择 特性>时间依存性材料>材料连接:强度进展:强度发展 选择指定的材料:1.基础 添加例题大体积混凝土水化热分析6图4 定义材料时间依存特性图5 时间依存性材料连接注:材料的收缩徐变特性在水化热分析控制中定义。
例题7 弹性地基梁分析1例题弹性地基梁分析2 例题. 弹性地基梁分析概要此例题将介绍利用midas Gen做弹性地基梁性分析的整个过程,以及查看分析结果的方法。
此例题的步骤如下:1.简介2.设定操作环境及定义材料和截面3.利用建模助手建立梁柱框架4.弹性地基模拟5.定义边界条件6.输入梁单元荷载7.定义结构类型8.运行分析9.荷载组合10.查看结果例题弹性地基梁分析1.简介本例题介绍使用midas Gen进行弹性地基梁的建模分析。
(该例题数据仅供参考)基本数据如下:➢轴网尺寸:见平面图➢柱:900mmx1000mm,800mmx1000mm➢梁:500mmx1000mm,400mmx1000mm,1000mmx1000mm➢混凝土:C30图1 弹性地基梁分析模型3例题弹性地基梁分析4 2.设定操作环境及定义材料和截面在建立模型之前先设定环境及定义材料和截面1.主菜单选择文件>新项目2.主菜单选择文件>保存:输入文件名并保存3.主菜单选择工具>设置>单位系:长度 m, 力 kN图2 定义单位体系4.主菜单选择特性>材料>材料特性值:添加:定义C30混凝土材料号:1 名称:C30 规范:GB10(RC)混凝土:C30 材料类型:各向同性5.主菜单选择特性>截面>截面特性值添加:定义梁、柱截面尺寸注:也可以通过程序右下角随时更改单位。
例题弹性地基梁分析图3 定义材料图4 定义梁、柱截面5例题弹性地基梁分析6 3.用建模助手建立模型1、主菜单选择结构>建模助手>基本结构>框架输入:添加x坐标,距离8,重复1;距离10,重复2;距离8,重复1;添加z坐标,距离8,重复1;距离6,重复1;编辑:Beta角,0;材料,C30;截面,500x1000;点击;插入:插入点,0,0,0;图5 建立框架例题弹性地基梁分析2、主菜单选择节点/单元>单元>修改参数分别将梁及柱修改为相应的截面。