第2章-气体动理论3
- 格式:ppt
- 大小:1004.00 KB
- 文档页数:19
第十三章 气体动理论本章从理想气体的微观组成出发,假以统计性假设,推出理想气体的压强和温度公式,揭示了压强和温度的本质;提出了理想气体内能的概念,介绍了理想气体能量按自由度均分原理;阐述了理想气体的麦克斯韦速率分布率。
这称为气体动理论。
气体动理论的产生和发展凝聚了众多物理学家的智慧和心血。
早在1678年,胡克就提出了气体压强是由大量气体分子与器壁碰撞的结果的观点。
之后,在1738年,伯努利根据这一观点推导出压强公式,并且解释了玻意耳定律。
1744年,俄国的罗蒙诺索夫提出了热是分子运动表现的观点。
在19世纪中叶,气体动理论经克劳修斯、麦克斯韦和玻耳兹曼的努力而有了重大发展。
1858年,克劳修斯提出气体分子平均自由程的概念并导出相关公式。
1860年,麦克斯韦指出,气体分子的频繁碰撞并未使它们的速度趋于一致,而是达到稳定的分布,导出了平衡态气体分子的速率分布和速度分布。
之后,麦克斯韦又建立了输运过程的数学理论。
1868年,玻耳兹曼在麦克斯韦气体分子速率分布律中又引进重力场。
第一节理想气体状态方程一、状态参量1.状态参量概念如何描述系统的冷热变化规律,这就需要一些物理量。
假设气体的质量为 m ,其宏观状态一般可以用气体的压强p 、体积V 和温度T 三个物理量来描述。
如果在热力学过程中伴随着化学反应,还需要物质的量、摩尔质量 、物质各组分的质量等物理量来描述。
如果热力学系统处于磁场中,还需要电场强度E 、电极化矢量P 、磁场强度H 和磁化强度M 等物理量来描述。
选择几个描写系统状态的参量,称为状态参量。
2.状态参量分类按照不同的划分标准,状态参量可作如下划分:(1)按状态参量描写系统的性质划分可分为:V P E P H M几何参量:描述系统的空间广延性。
如体积 。
力学参量:描述系统的强度。
如压强 。
化学参量:描述系统的化学组分。
如各组分的质量,物质的量。
电磁参量:描述系统的电磁性质。
如电场强度 ,电极化强度 ,磁场强度 ,磁化强度 。
第二章气体动理论1-2-1选择题:1、处于平衡状态的一瓶氮气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。
以下说法正确的是:(A )它们的温度、压强均不相同。
(B )它们的温度相同,但氮气压强大于氮气压强。
(C)它们的温度、压强都相同。
(D)它们的温度相同,但氮气压强小于氮气压强。
2、三个容器A、B、C中装有同种理想气体其分子数密度n相同方均根速率之比J而:J冏:J冏 = 1:2:4 ,则其压强之比p A:p B: p c为:(A)1: 2 : 4 (B) 1: 4 : 8 (C) 1: 4 :16 (D) 4 : 2 :13、一走星的理想气体贮于某一容器中,温度为T.气体分子的质呈为m.根据理想气体的分子模型和统计假设,分子速度在x方向的分呈平方的平均值为:m4、关于温度的意义,有下列几种说法:(1)气体的温度是分子热运动平均平动动能的星度.(2)气体的温度是大呈气体分子热运动的集体表现,具有统计意义.(3)温度的高低反映物质内部分子热运动剧烈程度的不同.(4)从微观上看,气体的温度表示每个气体分子的冷热程度.上述说法中正确的是(A ) (1). (2)、(4) (B) (1). (2)、(3)(C) (2)、(3)、(4) (D)⑴、(3)、(4)5、两容器内分别盔有氢气和氮气,若它们的温度和质呈分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的方均根速率相等.(D) 两种气体的内能相等.6、一容器内装有M 个单原子理想气体分子和M 个刚性双原子理想气体分子,当该系统处在温度为厂的平衡态7、有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边,如果其中的一边装有0.1kg 某一温度的氢气, 为了使活塞停留在圆筒的正中央则另一边应装入同一温度的氧气质臺为:(A ) 丄 kg (B) 0.8 kg (C ) 1.6 kg (D) 3.2 kg16&若室内生火炉以后,温度从15°C 升高到27°C ,而室内的气压不变,则此时室内的分子数减少了 :(A) 0.5% (B) 4% (C) 9% (D) 21%9、有容积不同的A x B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体。
第2章气体动理论◆本章学习目标了解:玻耳兹曼分布率;范德瓦耳斯方程和输运过程。
理解:理想气体的压强,温度的微观意义;能量均分定理,麦克斯韦速率分布律及其统计意义;麦克斯韦速率分布律的实验验证,实际气体等温线;气体分子的平均自由程的概念。
掌握:理想气体的压强,能量均分定理,麦克斯韦速率分布律及其统计意义;实际气体等温线;气体分子的平均自由程的概念。
◆本章教学内容1、理想气体压强公式2、温度的微观意义3、能量均分定理4、麦克斯韦速率分布律5、麦克斯韦速率分布律的实验验证*6、玻尔兹曼分布率◆本章重点压强和温度的微观实质和意义、理想气体的内能、速率分布函数以及理想气体平衡态的特征速率等。
◆本章难点压强和温度的微观实质和意义。
速率分布函数的物理意义以及相关的计算。
2.1 理想气体的压强一、理想气体模型1. 关于单个分子的力学性质的假设在宏观上我们知道,理想气体是一种在任何情况下都遵守玻意耳定律、盖-吕萨克定律和查理定律的气体。
但从微观上看什么样的分子组成的气体才具有这种宏观特性呢?气体分子的运动是肉眼看不见的,所以理想气体的微观模型是通过对宏观实验结果的分析和综合提出的一个假说。
通过这个假说得到的结论与宏观实验结果进行比较来判断模型的正确性。
通过前人多年的努力,我们现在知道理想气体的微观模型具有以下特征:(1)分子与容器壁和分子与分子之间只有在碰撞的瞬间才由相互作用,其它时候的相互作用可以忽略不计。
(2)分子本身的体积在气体中可以忽略不计,即对分子可采用质点模型。
(3)而分子与容器壁以及分子与分子之间的碰撞属于牛顿力学中的完全弹性碰撞。
实验证明,实际气体中分子本身占的体积约只占气体体积的千分之一,在气体中分子之间的平均距离远大于分子的几何尺寸,所以将分子看成质点是完全合理的。
从另一个方面看,对已达到平衡态的气体如果没有外界影响,其温度、压强等态参量都不会因分子与容器壁以及分子与分子之间的碰撞而发生改变,气体分子的速度分布也保持不变,因而分子与容器壁以及分子与分子之间的碰撞是完全弹性碰撞也是理所当然的。
2009年 热学总复习提纲第一章 温度1、基本概念:孤立系;封闭系;开放系统;平衡态; 稳恒态;温度。
2、掌握:温标建立的三要素及类型;温度计类型;理想气体温标特点。
3、熟练掌握:理想气体状态方程。
4、熟练掌握常数:5、熟练掌握混合理想气体状态方程6、了解Van der Waals 方程:1mol 实际气体: 任意质量实际气体:第二章气体分子运动论的基本概念(气体动理论) 1. 了解物质微观模型2、熟练掌握理想气体微观模型(1) 分子本身的线度比起分子之间的距离小得对多而忽略不计。
(2) 除碰撞的一瞬间外,分子间相互作用力可忽略不计。
(3) 处于平衡态的理想气体,分子之间及分子与器壁间的碰撞是完全弹性的碰撞。
在标准状态下,1摩尔理想气体中的分子数:例如固体氮:分子紧密排列,分子的半径:3、熟练掌握理想气体的压强公式(气动理论的基本公式)4、熟练掌握温度的微观意义地球的逃逸速度=11.2km.s-1。
RT MRT PV μυ==RTP V M μρ==mol N A2310023.6⨯=K mol J R .31.8=K J N R k A231038.1-⨯==VV i i =α∑=ii μαμM M i i =β∑=ii μβμ1RT b v v a P =-+))((2RT M b M V Va M p μμμ=-+))((22232500107.2-⨯==m v N n A mn L 9310103.31-⨯≈⎪⎪⎭⎫ ⎝⎛=33.1000.1-⨯=m kg ρ3341r n π=m N n r A N 103131103.343432-⨯≈⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=πρμπεn P 32=nkT P =μRT m kT v v rms 332===22123mv kT ==ε计算大气中如下各分子逃逸速度与方均根速度之比(0℃)。
H2、He 、H2O 、N2、O2,试解释地球大气里H2、He 未能保住,主要成分是N2、O2的原因。