热学第二章气体动理论概论
- 格式:ppt
- 大小:20.43 MB
- 文档页数:8
第十三章 气体动理论本章从理想气体的微观组成出发,假以统计性假设,推出理想气体的压强和温度公式,揭示了压强和温度的本质;提出了理想气体内能的概念,介绍了理想气体能量按自由度均分原理;阐述了理想气体的麦克斯韦速率分布率。
这称为气体动理论。
气体动理论的产生和发展凝聚了众多物理学家的智慧和心血。
早在1678年,胡克就提出了气体压强是由大量气体分子与器壁碰撞的结果的观点。
之后,在1738年,伯努利根据这一观点推导出压强公式,并且解释了玻意耳定律。
1744年,俄国的罗蒙诺索夫提出了热是分子运动表现的观点。
在19世纪中叶,气体动理论经克劳修斯、麦克斯韦和玻耳兹曼的努力而有了重大发展。
1858年,克劳修斯提出气体分子平均自由程的概念并导出相关公式。
1860年,麦克斯韦指出,气体分子的频繁碰撞并未使它们的速度趋于一致,而是达到稳定的分布,导出了平衡态气体分子的速率分布和速度分布。
之后,麦克斯韦又建立了输运过程的数学理论。
1868年,玻耳兹曼在麦克斯韦气体分子速率分布律中又引进重力场。
第一节理想气体状态方程一、状态参量1.状态参量概念如何描述系统的冷热变化规律,这就需要一些物理量。
假设气体的质量为 m ,其宏观状态一般可以用气体的压强p 、体积V 和温度T 三个物理量来描述。
如果在热力学过程中伴随着化学反应,还需要物质的量、摩尔质量 、物质各组分的质量等物理量来描述。
如果热力学系统处于磁场中,还需要电场强度E 、电极化矢量P 、磁场强度H 和磁化强度M 等物理量来描述。
选择几个描写系统状态的参量,称为状态参量。
2.状态参量分类按照不同的划分标准,状态参量可作如下划分:(1)按状态参量描写系统的性质划分可分为:V P E P H M几何参量:描述系统的空间广延性。
如体积 。
力学参量:描述系统的强度。
如压强 。
化学参量:描述系统的化学组分。
如各组分的质量,物质的量。
电磁参量:描述系统的电磁性质。
如电场强度 ,电极化强度 ,磁场强度 ,磁化强度 。
气体动理论知识点总结简介气体动理论是研究气体分子运动和相应的宏观性质的一门学科,它为气体力学、热力学、物理化学等学科提供了理论基础。
本文将从气体分子运动、状态方程、麦克斯韦速度分布定律、运动学理论、能量分配等方面进行详细阐述。
气体分子运动气体分子运动是气体动理论研究的核心内容,它是气体宏观性质的微观基础。
气体分子的运动状态大致可以由速度、位置、能量和运动方向等参数确定。
其中,气体分子的平均速度和平均动能是气体动理论所研究的重要内容。
气体的平均速度可以通过麦克斯韦速度分布定律求解,它描述了气体分子速度在不同方向上的分布情况。
麦克斯韦速度分布定律表明,气体分子的速度服从麦克斯韦-波尔兹曼分布,即$$f(v)=4\pi(\frac{m}{2\pi kT})^{\frac{3}{2}}v^2e^{-\frac{mv^2}{2kT}},$$其中,$f(v)$表示速度为$v$的气体分子在速度空间中的密度,$m$为分子质量,$k$为玻尔兹曼常数,$T$为温度。
气体分子的平均速度可以用麦克斯韦速度分布定律求算,它的表达式为$$\bar{v}=\sqrt{\frac{8kT}{\pi m}}.$$气体分子的平均动能同样可以用温度、分子质量和玻尔兹曼常数表示为$$\bar{E_k}=\frac{3}{2}kT.$$状态方程状态方程是气体动理论研究的另一个重要内容,它描述了气体在不同温度、压强下的状态。
热力学气体状态方程的一般形式为$$PV=nRT,$$其中,$P$表示气体压强,$V$为气体体积,$n$表示气体摩尔数,$T$为气体温度,$R$为气体常数。
可以通过研究气体微观特性,推导出不同热力学气体状态方程。
对于理想气体,由于气体分子之间没有相互作用力,可以用下列状态方程来描述$$PV=nRT,$$其中,$P$表示气体压强,$V$表示气体体积,$n$为摩尔数,$R$为气体常数,$T$为气体的热力学温度。
麦克斯韦速度分布定律麦克斯韦速度分布定律是描述气体分子运动速度分布的定律,在研究气体分子运动性质、气体热力学性质等方面有重要的应用。
气体动理论知识点总结气体动理论是研究气体的微观运动状态及宏观性质的一门物理学理论,是现代物理学中较为重要的分支之一。
气体动理论不仅对实际问题的探究有着重要的作用,它的理论体系及方法也为其他学科提供了有力的支持。
下面将围绕着气体运动状态、气体的性质以及气体的热力学定律三个方面,介绍气体动理论中的相关知识点。
一、气体运动状态气体动理论认为,气体分子的运动状态决定了气体的宏观控制状态。
因此,研究气体分子的运动状态对于了解气体的性质及可控性具有重要的意义。
1.分子移动气体分子无序地、自由地运动,并且分子的速度是高度非一致性的。
分子的速度与温度、分子的种类有关。
分子受温度影响,速度随温度的升高而增加。
2.分子运动轨迹气体分子在空间中做无规则运动,但可以将其平均运动速度视为直线运动。
分子的运动具有随机性,在时间、位置上无法精确定位。
3.分子碰撞气体分子之间存在碰撞,碰撞时能量和动量都会发生变化,同时碰撞前和碰撞后分子的速度方向也会发生改变。
二、气体的性质气体的性质不仅涉及气体的物理状态,还涉及气体的化学性质,气体与其他物质的相互作用,气体的电学性质等方面,其中,最为重要的性质包括以下几个方面:1.流动性:气体具有流动性,能够流动并具有一定的流动性质。
2.扩散性:气体分子具有无序运动状态,具有自由的运动方式。
在一定条件下,气体分子能够通过物质间的空隙扩散到其他区域。
3.压缩性:气体分子间的间隔较大,气体分子之间的相互作用力较弱,分子之间可以变形并发生相对位移,气体具有较好的压缩性。
4.热膨胀性:在一定温度下,气体分子具有较大的运动能,随着温度的升高,气体分子之间的反向作用力会减小,会引起体积的增加。
5.气体的状态方程:气体在不同温度下具有不同的压强、体积关系,可以利用理想气体状态方程(P V/ nRT)来描述气体的状态。
三、气体的热力学定律气体动理论依据物理实验,建立了气体的热力学学说体系,包括状态方程、热力学过程、热力学定律等。