受弯构件的挠度验算
- 格式:xlsx
- 大小:13.01 KB
- 文档页数:3
8.2 受弯构件挠度验第8.2.1条钢筋混凝土和预应力混凝土受弯构件在正常使用极限状态下的挠度,可根据构件的刚度用结构力学方法计算。
在等截面构件中,可假定各同号弯矩区段内的刚度相等,并取用该区段内最大弯矩处的刚度。
当计算跨度内的支座截面刚度不大于跨中截面刚度的两倍或不小于跨中截面刚度的二分之一时,该跨也可按等刚度构件进行计算,其构件刚度可取跨中最大弯矩截面的刚度。
受弯构件的挠度应按荷载效应标准组合并考虑荷载长期作用影响的刚度B进行计算,所求得的挠度计算值不应超过本规范表3.3.2规定的限值。
第8.2.2条矩形、T形、倒T形和I形截面受弯构件的刚度B,可按下列公式计算:B=Mk /Mq(θ-1)+MkBs(8.2.2)式中Mk--按荷载效应的标准组合计算的弯矩,取计算区段内的最大弯矩值;Mq--按荷载效应的准永久组合计算的弯矩,取计算区段内的最大弯矩值;Bs--荷载效应的标准组合作用下受弯构件的短期刚度,按本规范第8.2.3条的公式计算;θ--考虑荷载长期作用对挠度增大的影响系数,按本规范第8.2.5条取用。
第8.2.3条在荷载效应的标准组合作用下,受弯构件的短期刚度Bs可按下列公式计算:1钢筋混凝土受弯构件B s =EsAsh2/1.15ψ+0.2+6αEρ/1+3.5γ'f(8.2.3-1)2预应力混凝土受弯构件1)要求不出现裂缝的构件B s =0.85EcI(8.2.3-2)2)允许出现裂缝的构件B s =0.85EcI/kcr+(1-kcr)ω(8.2.3-3)k cr =Mcr/Mk(8.2.3-4)ω=(1.0+0.21/αE ρ)(1+0.45γf)-0.7 (8.2.3-5)M cr =(σpc+γftk)W(8.2.3-6)γf =(bf-b)hf/bh(8.2.3-7)式中ψ--裂缝间纵向受拉钢筋应变不均匀系数,按本规范第8.1.2条确定;αE --钢筋弹性模量与混凝土弹性模量的比值:αE=Es/Ec;ρ--纵向受拉钢筋配筋率:对钢筋混凝土受弯构件,取ρ=As /(bh);对预应力混凝土受弯构件,取ρ=(Ap+As)/(bh);I--换算截面惯性矩;γf--受拉翼缘截面面积与腹板有效截面面积的比值;b f 、hf--受拉区翼缘的宽度、高度;K cr --预应力混凝土受弯构件正截面的开裂弯矩Mcr与弯矩Mk的比值,当kcr >1.0时,取kcr=1.0;σpc--扣除全部预应力损失后,由预加力在抗裂验算边缘产生的混凝土预压应力;γ--混凝土构件的截面抵抗矩塑性影响系数,按本规范第8.2.4条确定。
一、受弯构件(一)在主平面内受弯的实腹式构件抗弯强度应符合下列规定1、翼缘板弯曲正应力满足下列要求:双向受弯的实腹式构件:f d ≥γ0(M y W y,eff +M z W z,eff )式中:γ0——结构重要性系数;M y 、M z ——计算截面的弯矩设计值;W y,eff 、W z,eff ——有效截面相对于y 轴和z 轴的截面模量,其中受拉翼缘应考虑剪力滞影响,受压翼缘应同时考虑剪力滞和局部稳定影响。
2、腹板剪应力应满足下列要求。
闭口截面腹板剪应力应按剪力流理论计算。
γ0τ≤f vd式中:γ0——结构重要性系数;τ——剪应力;f vd ——钢材的抗剪强度设计值。
3、平面内受弯实腹式构件腹板在正应力 σx 和剪应力 τ 共同作用时,应满足下列要求。
γ0√(σx f d )2+(τf vd)2≤1 式中:σx ——x 方向正应力;f d ——钢材的抗拉、抗压和抗弯强度设计值。
(二)受弯构件的整体稳定性应符合下列规定1、等截面实腹式受弯构件,应按下列规定验算整体稳定。
γ0(βm,yM y χLT,y M Rd,y +M z M Rd,z )≤1 γ0(M y M Rd,y +βm,z M z χLT,z M Rd,z)≤1 M Rd,y =W y,eff f dM Rd,z =W z,eff f dλLT,y =√W y,eff f y M cr,y ,λLT,z =√W z,eff f y M cr,z式中: M y 、M z ——构件最大弯矩;βm,y、βm,z——等效弯矩系数;χLT,y、χLT,z——M y和M z作用平面内的弯矩单独作用下,构件弯扭失稳模态的整体稳定折减系数;λ̅̅̅LT,y、λLT,z——弯扭相对长细比;W y,eff、W z,eff——有效截面相对于y轴和z轴的截面模量,其中受拉翼缘应考虑剪力滞影响,受压翼缘应同时考虑剪力滞和局部稳定影响。
M cr,y、M cr,z——M y和M z作用平面内的弯矩单独作用下,考虑约束影响的构件弯扭失稳模态的整体弯扭弹性屈曲弯矩,可采用有限元方法计算。
第五章 整体分析验算5.1 一般规定5.1.1 局部受压稳定折减系数钢桥在验算受压稳定性时,一般结构在屈曲前后仍在小变形假设范围内处于弹性状态,即弹性屈曲。
对于局部受压的板件,由于构件的弹性屈曲,对构件材料的标准值有所影响。
在计算时,需要考虑弹性屈曲引起的局部稳定折减,局部稳定折减系数ρ应按下列规定计算[3]:()020.4=1110.4=112p λρλρελ⎧≤⎪⎪⎧⎨⎪>++⎨⎪⎪⎪⎩⎩时:时: (5-1)()00.80.4p ελ=- (5-2)1.05p p b t λ⎛== ⎝ (5-3) 式中:p λ——相对宽厚比; t ——加劲板的母板厚度;y f ——屈服强度; E——弹性模量;cr σ——加劲板弹性屈曲欧拉应力;p b ——加劲板局部稳定计算宽度,对开口刚性加劲肋,按加劲肋的间距 b i计算;对闭口刚性加劲肋,按加劲肋腹板间的间距计算;对柔性加劲肋,按腹板间距或腹板至悬臂端的宽度i b 计算;k ——加劲板的弹性屈曲系数,可参考规范《公路钢结构桥梁设计规范》附录B 计算,计算如下。
参考规范《公路钢结构桥梁设计规范》附录B 规定,加劲肋和加劲板对弹性屈曲系数k 有很大的影响。
对纵向加劲肋等间距布置且无横向加劲肋布置的顶板和底板,其弹性屈曲系数k 可由式5-4、5-5计算:*4l l k γγ≥=时: (5-4)()()(()2202*011211l l l l l n a k n b a k n b αγαααδγγααδ⎧++⎛⎫⎪==≤ ⎪⎪+⎝⎭⎪<⎨⎪⎛⎫==>⎪ ⎪+⎝⎭⎪⎩时: (5-5)式中:n ——受压板被纵向加劲肋分割的板元数,1l n n =+; l n ——等间距布置纵向加劲肋根数;a ——加劲板的计算长度(横隔板或刚性横向加劲肋的间距);b——加劲板的计算宽度(腹板或刚性纵向加劲肋的间距);α——加劲板的长宽比,按时5-6计算:abα=(5-6) l δ——单根纵向加劲肋的截面面积与母板的面积之比, 按式5-7计算:l l Abtδ= (5-7)t ——加劲板的厚度;l A ——单根纵向加劲肋的截面面积;l γ——纵向加劲肋相对刚度,按式5-8计算:l l EIbDγ= (5-8)l I ——单根纵向加劲肋对加劲板的抗弯惯性矩;D——单宽板刚度,按式5-9计算:()32121Et D ν=- (5-9) ν——泊松比; t ——加劲板的厚度;E——弹性模量。
【钢筋混凝土受弯构件的裂缝宽度和挠度计算】一、引言钢筋混凝土结构是现代建筑中常见的结构形式之一,而受弯构件作为其重要组成部分,其裂缝宽度和挠度的计算是设计过程中的关键内容。
在本文中,我将分析钢筋混凝土受弯构件的裂缝宽度和挠度计算,并对其进行深度探讨,希望能为您提供有价值的信息。
二、裂缝宽度计算1.裂缝宽度计算公式钢筋混凝土受弯构件的裂缝宽度计算可以使用以下公式进行:\[w_k = k \times \frac{f_s}{f_y} \times \frac{M_s}{b \times d}\]其中,\(w_k\)为裂缝宽度,\(k\)为调整系数,\(f_s\)为梁内应力,\(f_y\)为钢筋的屈服强度,\(M_s\)为抗弯强度矩,\(b\)为截面宽度,\(d\)为截面有效高度。
2.裂缝宽度计算包含的因素在裂缝宽度计算中,需要考虑梁内应力、钢筋的屈服强度以及抗弯强度矩等因素。
通过对这些因素的综合考虑,可以准确计算出钢筋混凝土受弯构件的裂缝宽度,从而确保结构的安全性。
三、挠度计算1.挠度计算公式钢筋混凝土受弯构件的挠度计算可以使用以下公式进行:\[f = \frac{5 \times q \times l^4}{384 \times E \times I}\]其中,\(f\)为挠度,\(q\)为荷载,\(l\)为构件长度,\(E\)为弹性模量,\(I\)为惯性矩。
2.挠度计算的影响因素在挠度计算中,荷载、构件长度、弹性模量和惯性矩等因素都会对挠度产生影响。
通过对这些因素进行综合考虑,并结合实际工程情况,可以准确计算出钢筋混凝土受弯构件的挠度,从而满足设计要求。
四、个人观点和理解钢筋混凝土受弯构件的裂缝宽度和挠度计算是结构设计中的重要内容,它直接关系到结构的安全性和稳定性。
在实际工程中,我们需要充分理解裂缝宽度和挠度计算的原理和方法,结合设计规范和实际情况,确保结构设计的合理性和可行性。
五、总结与展望通过本文的分析,我们深入探讨了钢筋混凝土受弯构件的裂缝宽度和挠度计算,并对其进行了详细介绍。
受弯构件挠度验算的最小刚度原则:从实际案例中看如何应用受弯构件挠度验算是结构设计的一个重要环节,如果挠度过大就会影响建筑物的使用寿命和安全性。
在实际设计中,采用最小刚度原则可以有效地控制受弯构件的挠度,从而确保建筑物的安全。
本文将通过一个实际案例,详细分析最小刚度原则的应用方法。
实际案例:A楼工地在A楼工地,施工方将一根跨度为5m的钢梁作为楼板,承受楼上的荷载。
设计要求在荷载作用下,钢梁挠度不得超过20mm。
第一步:计算荷载和受力情况首先,我们需要计算楼板荷载。
假设楼上是一家办公室,每平方米所承受的荷载为5KN。
因此,若办公室面积为200平米,则荷载为:(200m²)×(5KN/m²)=1000KN接下来,我们需要确定钢梁受力情况。
由于钢梁受弯,因此只需考虑梁的弯曲部分。
假设钢梁宽度为300mm,高度为400mm,模量为210GPa。
则钢梁的截面惯性矩可以表示为:I=(1/12)×(0.3m)×(0.4m)³=0.0024m⁴钢梁所承受的最大弯矩可以表示为:Mmax=(1/8)×1000KN×5m=625KN·m钢梁所受的最大弯应力可以表示为:σmax=Mmax×y/I=625×(0.4/2)m×(0.0024m⁴)/0.0024m⁴=250MPa其中,y为钢梁中心面到受力处距离,即0.2m。
第二步:计算钢梁的最小截面面积根据单纯弯曲的状态下,可以计算得到钢梁的最小截面面积:Amin=Mmax/(σyield×h)=(625×10³N·m)/(250×10⁶N/m²×0.4m)=0.0 0625m²其中,σyield为钢材的屈服应力,假设为250MPa。
第三步:检查钢梁截面面积是否符合要求根据计算所得的钢梁最小截面面积,我们可以根据图表查询得到标准截面的尺寸,最终可以确定按标准截面加工的钢梁截面面积为0.01m²,符合计算所得的最小截面面积。
简述受弯构件挠度验算的最小刚度原则受弯构件是常见的工程结构,其在受到外力作用下会发生弯曲变形。
挠度验算是评估受弯构件变形程度的重要方法之一。
挠度验算的最小刚度原则是指在进行受弯构件的挠度验算时,应根据最小刚度原则,选择合适的验算方法和参数,确保构件在工作状态下的变形满足设计要求。
受弯构件挠度验算的最小刚度原则主要包括以下几个方面:1. 选择合适的验算方法:挠度验算方法有解析法和数值法两种。
解析法适用于简单和理想化的构件情况,可以得到解析解;数值法适用于复杂和实际工程中的构件,可以通过有限元分析等方法得到数值解。
在进行挠度验算时,应根据具体情况选择合适的验算方法。
2. 考虑多种载荷情况:在进行挠度验算时,需考虑不同工作状态下的载荷情况,包括常规荷载、临时荷载、地震作用等。
根据不同载荷情况进行挠度验算,确保结构在各种工作状态下的变形满足设计要求。
3. 确定适当的验算参数:在进行挠度验算时,需确定合适的验算参数,包括构件的刚度、截面性能等。
刚度是指受弯构件抵抗外力作用时的刚性程度,是影响挠度的主要因素之一。
根据构件的实际情况和设计要求,选择适当的刚度参数,进行挠度验算。
4. 参考相关规范和标准:在进行挠度验算时,应参考相关的规范和标准,确保验算结果的准确性和合理性。
例如,中国的《建筑结构荷载标准》(GB 50009-2012)和《钢结构设计规范》(GB 50017-2003)等,提供了受弯构件挠度验算的相关要求和参数。
通过以上几个方面的考虑和参考,可以有效地进行受弯构件的挠度验算。
在实际工程中,挠度验算的结果对于受弯构件的设计和施工具有重要指导意义。
通过合理选择验算方法和参数,确保受弯构件在工作状态下的变形控制在允许范围内,提高结构的安全性和可靠性。
受弯构件的挠度计算的基本概念及原则下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、绪论受弯构件在工程建设中广泛应用,其挠度计算是结构分析和设计的重要内容。
受弯构件的挠度容许值
在建筑设计中,受弯构件的挠度容许值是一个十分关键的参数。
本篇文档将详细介绍受弯构件的挠度容许值的定义、计算方法以及影响因素。
定义
受弯构件的挠度容许值是指在设计荷载或实际荷载作用下,构件产生的挠度不能超出规定的极限值;超出极限值将导致构件变形过大、出现裂缝、关键部位的破坏等安全隐患。
挠度容许值的计算需要考虑结构的受力性能、荷载的作用情况、结构的材料和尺寸等多种因素,并且需要符合相关的规范和标准。
计算方法
受弯构件的挠度容许值计算一般采用“平衡法”确定,具体计算方法如下:
1.根据极限荷载计算构件的截面抗弯强度。
2.确定荷载作用点处的曲率半径。
3.根据构件的几何尺寸和材料弹性模量计算构件的惯性矩和截面模量。
4.根据计算公式计算出挠度容许值。
在实际应用中,计算方法需要根据具体情况进行适当调整,包括采用不同的计算公式,考虑不同的荷载作用情况等。
影响因素
受弯构件的挠度容许值受到多种因素的影响,如下:
1. 结构的受力性能
挠度容许值的计算需要考虑受力性能,包括结构的受力状态、截面尺寸和形状等。
2. 荷载的作用情况
荷载的作用情况对挠度容许值也有很大的影响。
如荷载的大小、类型、分布等都会影响到构件产生的挠度。
3. 结构的材料和尺寸
结构的材料和尺寸也是影响挠度容许值的因素。
不同的材料和尺寸对挠度容许值有着不同的限制。
受弯构件的挠度容许值是建筑设计中一个十分重要的参数。
在设计过程中,需要充分考虑受力性能、荷载作用情况、结构材料和尺寸等各种因素,以确保构件的挠度在安全范围内。