有限元法的理论基础
- 格式:doc
- 大小:98.00 KB
- 文档页数:4
有限元的理论基础有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
1.加权余量法:是指采用使余量的加权函数为零求得微分方程近似解的方法称为加权余量法。
(Weigh ted residual method WRM )是一种直接从所需求解的微分方程及边界条件出发,寻求边值问题近似解的数学方法。
加权余量法是求解微分方程近似解的一种有效的方法。
设问题的控制微分方程为:在V 域内 在S 边界上式中 :L 、B ——分别为微分方程和边界条件中的微分算子;f 、g ——为与未知函数u 无关的已知函数域值;u ——为问题待求的未知函数 ()0B u g -=(5.1.2)()0L u f -=(5.1.1)混合法对于试函数的选取最方便,但在相同精度条件下,工作量最大。
对内部法和边界法必须使基函数事先满足一定条件,这对复杂结构分析往往有一定困难,但试函数一经建立,其工作量较小。
无论采用何种方法,在建立试函数时均应注意以下几点:(1)试函数应由完备函数集的子集构成。
已被采用过的试函数有幂级数、三角级数、样条函数、贝赛尔函数、切比雪夫和勒让德多项式等等。
(2)试函数应具有直到比消除余量的加权积分表达式中最高阶导数低一阶的导数连续性。
(3)试函数应与问题的解析解或问题的特解相关联。
若计算问题具有对称性,应充分利用它。
显然,任何独立的完全函数集都可以作为权函数。
按照对权函数的不同选择得到不同的加权余量计算方法,主要有:配点法、子域法、最小二乘法、力矩法和伽辽金法。
其中伽辽金法的精度最高。
2、虚功原理——平衡方程和几何方程的等效积分“弱”形式虚功原理包含虚位移原理和虚应力原理,是虚位移原理和虚应力原理的总称。
有限单元法的数学基础1、引言有限元方法归根结底是一种数值计算方法,它有严格的数学证明作为其近似的客观性和合理性的保证。
力学问题最终归结为一组微分方程的边值问题或者初值问题抑或是混合问题。
比如弹性静力学最终归结为L-N 方程的微分提法。
在很难或者根本不可能得到所得方程的理论解的情况下,究竟用什么样的方法才能得到方程的近似解(这种近似解已经能够满足实际工程的需要),在这种情况下,二十世纪五六十年代由结构力学家进而由数学家提出和证明了这种思想方法的合理性。
有限元方法产生于力学计算,但是,它本质上并不是力学的专利。
世间万物的变化过程很多都可以通过微分方程特别是偏微分方程来描述,也就是说,微分方程是很多现象和过程的数学结构,而大多数的微分方程是不能得到理论解的,这时候就可以使用有限元方法来求其近似解,因为有限元方法是求解微分方程(组)的数值计算方法。
它适用于力学的微分方程,也同样适用于其它领域的相应的微分方程的数值求解。
2、有限元方法数学根源对于一个给定的微分方程定解问题,为了求其近似解,我们可以使用Ritz 方法和Galerkin 方法。
下面分别阐述这两种方法,然后讨论有限元方法和他们的关系。
(1) Ritz 法Ritz 法源于最小势能原理,设H 是可分的Hilbert 空间,在H 中取有限维空间Sn ,它是由N 个线性无关向量12,,,N φφφ 张成,即:121,,(,,)NN n n i i N N i S C C C C R ωωφ=⎧⎫≡=∀∈⎨⎬⎩⎭∑用N S 代替H ,在N S 上求泛函J(w)的极值,即求N U ∈N S ,使得()N J U =min ()N N S N J ωω∈实际上寻求N U 只需通过解一个线性方程组1()(,)()02J D F ωωωω=-≥D--------双线性形式 F--------线性泛函1NN i i i C ωφ==∑111,111()(,)()21(,)()2N N NN i i i i i i i i i NN i j i j i ii j i J D C C F C D C C F C ωφφφφφφ====== =-∑∑∑∑∑-因此,()N J ω是一个以12,,,N C C C 为未知数(自变量)的二次多项式12(,,,)N j C C C ,如果二次项的系数矩阵,1,2,,[(,)]i j i j N D φφ= 是正定的,那么12(,,,)N j j C C C = 在N+1维空间是一个开口向上的椭球抛物面,它有且只有一个极(最)小值点,所谓在N S 上求()N J ω的极值,就是确定00012,,,N C C C ,使得:00012(,,,)N j C C C =1000,,12min (,,,)N C C R N j C C C ∈极值条件:ijC ∂∂|00012,,,N C C C =0 (1,,i N = ) 得:01()()ni ji i i D CF φφφ==∑ (1,,i N = )即:00012[,,,]T N C C C C = 适合方程组:KC=F11[(),,()]T F F F φφ=112111222212(,)(,)(,)(,)(,)(,)(,),(,),,(,)N N N N N N D D D D D D K D D D φφφφφφφφφφφφφφφφφφ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,,,,,, 。
数值模拟偏微分方程的三种方法:FDM、FEM及FVM偏微分方程数值模拟常用的方法主要有三种:有限差分方法(FDM)、有限元方法(FEM)、有限体积方法(FVM),本文将对这三种方法进行简单的介绍和比较。
有限差分方法有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛运用。
该方法包括区域剖分和差商代替导数两个过程。
具体地,首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。
其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替来进行离散,从而建立以网格节点上的值为未知量的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。
从差分的空间离散形式来考虑,有中心格式和迎风格式。
对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。
目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于结构网格,网格的步长一般根据问题模型和Courant稳定条件来决定。
请输入标题有限元方法(Finite Element Methods)的基础是变分原理和分片多项式插值。
该方法的构造过程包括以下三个步骤。
首先,利用变分原理得到偏微分方程的弱形式(利用泛函分析的知识将求解空间扩大)。
其次,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等)。
再次,在每个单元内选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。
利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。
有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。
第二章有限单元法的基本原理作为一种比较成熟的数值计算方法,有限元的数学基础是变分原理。
经过半个过世纪的发展,它的数学基础已经比较完善。
从数学角度分析,有限元法是以变分原理和剖分插值为基础的数值计算方法。
它广泛的应用于解算各种类型的偏微分方程,特别对椭圆型方程,因为椭圆型方程的边值问题等价于适当的变分问题,即能量积分的级值问题。
通过变分,导出相应的泛涵,再把作用域从几何上剖分为足够小的单元,这样就能够用简单的图形去拟合复杂的边界,用简单的初等函数去模拟单元的性质。
在解算中先对每个单元进行分析,后在通过连接单元的节点对作用域的整体进行分析,就是对泛涵求极值,从而把一个复杂的偏微分方程求解问题,变成解线形代数方程组的问题。
尽管这样会出现大量的未知数,由于采用了矩阵分析的方法,总体上很有规律,适合编制程序用计算机完成。
通常的数学考虑包括这些:1)从古典变分方法原理去定义微分方程边值问题的广义解以及在古典变分方法的框架对有限元进行理论分析。
2)保证偏微分方程边值问题的提法正确,即要求解存在、唯一和稳定,即保证数值解法是可靠的。
3)有限元中重要的一点是采用了分块多项式插值函数,因此,有限元的误差估计转化为插值逼近的误差估计问题。
4)有限元的收敛性和误差估计。
由于本文是应用有限元的理论解决大地测量中的问题,因此,这里将不讨论上叙问题,而是从固体力学的基本方程出发,通过虚功原理建立起离散化的有限元方程。
另外,还以八节点六面体单元为例,简要叙述了实际中最常用的等参单元的概念及其数值变化的一些公式。
§2.1 弹性力学基本方程有限元法中经常要用到弹性力学的基本方程,这里写出这些方程的矩阵表达式。
2-1-1、平衡方程对任意一点的受力情况分析,沿坐标轴方向x, y ,z分解得到平衡方程0*00000000=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z y xxz yz xy z y x F F F z yzz x y z y x τττσσσ 记为: 0=+F A σ其中A 是微分算子,F 是体积力向量。
有限元分析的基本原理有限元分析法是一种通用的数值分析技术,它利用有限数目的计算元素来对结构的应力、变形以及失效的可能性进行分析,它简化了复杂的工程结构在实际受力情况下的模拟计算,可以预测出构件的性能、变形和可能失效等。
有限元分析是用数学模型来模拟生活用来模拟工程中结构抗压、抗弯、抗剪、抗疲劳等性能。
有限元分析有三个基本原理:结构变形、力学方程和材料本构方程。
首先,有限元分析的基础原理是结构变形。
结构变形是指在施加外力作用下,受力的结构的空间变形和大小的变化,它是有限元分析的基础,该原理说明了满足力学方程的解决方法如何以有限元的形式出现。
通常情况下,我们会把构件的耦合变形分成很多小的计算元(这些计算元之间有连接约束),减少变形的不确定性,从而提高分析的准确性。
其次,有限元分析的基础原理是力学方程。
满足力学方程条件的解决方案就是有限元分析,也就是把问题分解成很多小的子问题来求解。
力学方程最常见的形式是基于有限元技术的动态和静态结构分析。
动态结构分析是指结构在某个加载下的振动反应,涉及到施加外力、弹性和惯性效应。
静态结构分析则指结构在不同类型外力作用下的变形。
最后,有限元分析的基础原理是材料本构方程。
材料本构方程是指材料受拉力作用而形成变形和应力的关系,它可以用来描述材料在承受外力时的作用。
本构方程有很多不同的形式,最常用的形式是弹性体的本构方程,它说明了当受到外力作用时,材料的拉伸和压缩的反应,从而将其应用于有限元分析技术。
以上就是有限元分析的基本原理,它是构成有限元分析的基础,而且这些基本原理也被广泛应用于工程中对结构性能进行模拟和分析。
有限元分析可以帮助工程师准确地估算出结构在特定加载条件下的变形和应力,也可以帮助他们判断结构在疲劳荷载作用下是否会发生破坏。
有限元分析也可以帮助设计者更好地分析结构在复杂(多变)条件下的性能,以确定结构的最优设计。
所以,有限元分析的基本原理是工程分析的基础,合理的运用可以节约大量的时间和精力,从而达到性能最优的结构设计。
一、里兹法与迦辽金法(摘自电磁场有限元方法 金建铭) 1. 里兹法里兹法是一种变分方法,其中边值问题用变分表达式(也称泛函)表示,泛函的极小值对应于给定边界条件下的控制微分方程。
通过求泛函相对于其变量的极小值可得到近似解。
2. 伽辽金法伽辽金法属于残数加权方法类型,它通过对微分方程的残数求加权的方法得到方程的解。
若u是方程的近似解,将u 代入方程可得到非零的残数: r Luf =- u的最佳近似应能使残数r 在Ω内所有点上有最小值。
残数加权方法要求: 0i i R rd ωΩ=Ω=⎰这里i R 表示残数的加权积分,i ω是所选的加权函数。
在伽辽金法中,加权函数与近似解展开中所用的函数相同。
通常,这样可得到最精确的解。
二、有限元方法里兹法和伽辽金法中,在整个解域内找出能表示或至少近似表示问题真实解的试探函数是非常重要的。
然而对于许多问题,这个步骤是十分困难的,对二维和三维问题尤其如此。
为此,我们可将整个区域划分成小子域,并应用定义在每个子域上的试探函数。
因为子域是小区域,因而在每一子域内函数的变化不大,所以定义在子域上的试探函数通常比较简单。
这正是有限元法的基本思想。
应用里兹法的过程通常称为里兹有限元法或变分有限元法,而应用伽辽金方法的过程通常称为伽辽金有限元方法。
有限元法与经典里兹法和伽辽金法的不同之处是在试探函数的公式上。
在经典里兹法和伽辽金法中,试探函数由定义在全域上的一组基函数组成。
这种组合必须能够(至少近似)表示真实解,也必须满足适当的边界条件。
在有限元法中,试探函数是由定义在组成全域的子域上的一组基函数构成。
因为子域很小,所以定义在子域上的基函数能够十分简单。
三、关于形函数(摘自有限元法在电磁计算中的应用 张榴晨)对于一个待求的微分方程,用一组线性独立的尝试函数i ψ和待定系数i C 来表示方程的近似解,并用加权余数法(迦辽金法)来求解这些待定系数。
求解待定系数的代数方程组为:1[]1,2,,ni j i j i d C q d j n ψψψΩΩ=∇∇Ω=Ω=∑⎰⎰这里j ψ为所选择的加权函数,应用迦辽金法时,所选取的加权函数即为尝试函数。
第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。
它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。
求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。
应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。
这就需要研究它的数值解法,以求出近似解。
目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。
其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。
下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。
如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。
其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。
已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。
① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。
根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。
有限元法的理论基础有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。
能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。
下面介绍有限元法中经常使用的虚位移原理和最小势能原理。
1.虚位移原理虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。
反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。
可以看出,虚位移原理等价于平衡微分方程与力学边界条件。
所以虚位移原理表述了力系平衡的必要而充分的条件。
虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。
2.最小势能原理最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。
根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。
最小势能原理仅适用于弹性力学问题。
2.2有限元法求解问题的基本步骤弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。
2.2.1问题的分类求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。
对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。
2.2.2建模在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。
有限元法的理论基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
有限元法的理论基础
有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。
能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。
下面介绍有限元法中经常使用的虚位移原理和最小势能原理。
1.虚位移原理
虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。
反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。
可以看出,虚位移原理等价于平衡微分方程与力学边界条件。
所以虚位移原理表述了力系平衡的必要而充分的条件。
虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。
2.最小势能原理
最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。
根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。
最小势能原理仅适用于弹性力学问题。
有限元法求解问题的基本步骤
弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。
2.2.1问题的分类
求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。
对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。
2.2.2建模
在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。
因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。
材料可以理想化为线弹性和各向同性的。
根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。
在求解中运用分析理论简化问题,建立问题的模型。
2.2.3连续体离散化
连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。
单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元
可以是四面体、长方体和六面体等。
为合理有效地表示连续体,需要适当选择单元的类型、数目、大小和排列方式。
离散化的模型与原来模型区别在于,单元之间只通过节点相互连接、相互作用,而无其他连接。
因此这种连接要满足变形协调条件。
离散化是将一个无限多自由度的连续体转化为一个有限多自由度的离散体过程,因此必然引起误差。
主要有两类:建模误差和离散化误差。
建模误差可以通过改善模型来减少,离散化误差可通过增加单元数目来减少。
因此当单元数目较多,模型与实际比较接近时,所得的分析结果就与实际情况比较接近。
单元分析
(1)选择位移模式在有限元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分力一部分节点位移作为基本未知量时称为混合法。
与力法相比,位移法具有易于实现计算机自动化的优点,因此,在有限元法中,位移法应用最广。
如采用位移法计算,单元内的物理量如位移、应力、应变就可以通过节点位移来描述。
在有限元法中,首先将单元内的位移表示成单元节点位移函数,称为位移函数或者位移模式,位移函数通常为多项式,最简单的情况是线性多项式。
(2)分析单元的力学性质根据单元的材料性质、形状、尺寸、节点数目、位移和含义等,应用弹性力学中的几何方程和物理方程来建立节点载荷和节点位移的方程式,导出单元的刚度矩阵。
设节点载荷向量用Fͤ表示,节点位移向量用△表示,则单元的载荷和位移的关系式为
Fͤ= Kͤ△
式中,k为单元刚度矩阵。
(3)计算等效节点载荷连续体离散化后,力是通过节点从一个单元传递到另一个单元的。
但在实际的连续体中,力是由一个单元传递到另一个单元的,故要把作用在单元边界上的表面力、体积力或集中力等效地移到节点上,即用等效的节点力来代替所有在单元上的力。
组成物体的整体方程组
由已知的单元刚度矩阵和单元等效节点载荷列阵集成得到整个结构的总刚度矩阵和结构载荷列阵,从而建立起整个节点载荷与节点位移的关系式。
设总刚度矩阵为K、载荷向量为F,节点位移向量为△,则整个结构的平衡方程为
F=K△
得到整个结构的平衡方程后,还需要考虑其边界条件或初始条件,才能求解上述方程组。
求解有限元方程和结果解释
求解上述的结构平衡方程。
求解结果是单元节点处状态变量的近似值,对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。
简言之,有限元分析可分成三个阶段,前处理、求解和后处理。
前处理是建立有限元模型,完成单元网格划分;后处理则是采集求解分析结果,使用户能简便提取信息,了解计算结果。
由于在实际工程问题中,结构件的几何形状、边界条件、约束条件和外载荷一般比较复杂,需要进行相应的简化。
这种简化必须尽可能反映实际情况,且不会使计算过于复杂。
在进行力学模型的简化时要注意以下几点:
1)判别实际结构是属于哪一种类型,是属于一维问题、二维问题还是三维问题。
如果是二维问题,要分清是平面应力问题还是平面变力问题,若能简化成平面问题的就不要用三维实体单元去分析。
2)注意实际结构的对称性,如果对称,可以利用结构的对称性进行计算简化。
3)对实际机构建模时可以去掉一些不必要的细节,比如倒角等。
4)简化后的力学模型须是静定结构或是超静定结构。
高级仿真综述
UG NX4 高级仿真是一个综合性的有限元建模和结果可视化的产品,旨在满足设计工
程师与分析师的需要。
高级仿真包括一整套前处理和后处理工具,并支持广泛的产品性能
评估解法。
高级仿真工作流程
在开始一个分析前,应该对试图求解的问题有一彻底了解。
应该知道将利用哪个求解
器,正在执行什么类型的分析和需要什么类型的解决方案。
下列简要摘录了在结构仿真中
通用的工作流程。
(1)在NX 中,打开一部件文件。
(2)启动高级仿真应用。
为FEM 和仿真文件规定默认求解器(设置环境,或语言)。
注意:也可以选择先建立FEM 文件,然后再建立仿真文件。
(3)建立一解决方案。
选择求解器(如NX Nastran)、分析类型(如Structural)和
解决方案类型(如Linear Statics)。
(4)如果需要,理想化部件几何体。
一旦使理想化部件激活,可以移去不需要的细节,
如孔或圆角,分隔几何体准备实体网格划分或建立中面。
(5)使FEM 文件激活,网格划分几何体。
首先利用系统默认自动地网格化几何体。
在许多情况下系统默认提供一好的高质量的网格,可无须修改使用。
(6)检查网格质量。
如果需要,可以用进一步理想化部件几何体细化网格,此外在
FEM 中可以利用简化工具,消除当网格划分模型时由CAD 几何体可能引起的不希望结果
的问题。
(7)应用一材料到网格。
(8)当对网格满意时,使仿真文件激活、作用载荷与约束到模型。
(9)求解模型。
(10)在后处理中考察结果。