DWI.DTI的原理和临床应用
- 格式:ppt
- 大小:3.28 MB
- 文档页数:3
一、磁共振信号的来源不是基于SE(自旋回波序列)就是基于GRE(梯度回波序列)。
二、SE的xy平面信号(所测量用来形成图像的信号)来源是90度脉冲把Z轴的质子宏观向量“翻转”到xy平面。
GRE的xy平面信号来源是小角度(通常小于90度)脉冲把Z轴的质子宏观向量稍微倾斜,而在xy平面上通过矢量分解得到的磁场强度分向量。
三、这两种基础序列上,发展出各种各样的序列,原理就是不断添加各种附加的“条件式”磁场脉冲,修改TE和TR,从而得到想要的目的图像。
比如SE类别下发展出以下各种序列:RARE(弛豫增强快速采集)SS-RARE(单次激发RARE)HF-SS-RARE(半傅立叶采集单次激发RARE)IR(反转恢复)TIR(快速翻转恢复)而GRE类别下则有:扰相梯度回波(Spoiled GRE)稳态进动快速成像(FISP)真实稳态进动快速成像(True FISP)快速梯度回波序列(Fast GRE)PISF(梯度回波序列中的自旋回波)DESS序列CISS序列四、其中,在SE类别中FSE则是为了提高扫描成像速度而诞生的一个序列,全称为快速自旋回波成像(fast spin echo)。
在欧洲厂家飞利浦和西门子的磁共振机器中称之为TSE (tubor spin echo)。
快速SE是一个90º激励射频脉冲后跟随多个或一串180º聚焦射频脉冲,每个聚焦射频脉冲对应不同的相位编码梯度,这样必然得到一串MR回波。
这种技术被称为弛豫增强快速采集(rapid acquisition with relaxation enhancement,RARE)。
理论上,在施加了一次90度脉冲后,只要在横向弛豫完全结束前,施加足够多的180度脉冲,可以得到相应的多次回波信号。
这当然又是一个理论上的美好设想,在实际应用中,当回波链长度不断加长是,随着采集的进行,横向矢量逐渐接近于零,可探测到的人体组织磁共振信号已经衰减到无法形成有诊断价值的图像。
dwi基本原理及其在中枢神经系统中的应用
DWI(Diffusion weighted imaging)是一种MRI(Magnetic Resonance Imaging)技术,能够测量组织内水分子的自由扩散程度。
DWI原理基于布朗运动理论,即水分子在组织中不停地随机运动。
DWI采用梯度强度以及梯度方向不同来衡量水分子扩散方向和速度,这些信息被整合在一起形成图像,即DWI 图像。
DWI在中枢神经系统中的应用广泛,因为DWI可以反映大脑中白质和灰质的微结构和组织完整性。
白质病变、水肿和缺血性损伤等神经系统疾病都可以通过DWI检测到。
DWI对于急性缺血性脑卒中的早期诊断和治疗提供了重要的支持,因为发生脑卒中后,组织坏死开始导致扩散系数降低,DWI可以显示出白质区域的异常高信号或强度减低。
DWI还可以用于定位肿瘤和神经网络功能区域的准确识别,可以帮助医生提供更好的手术规划和处理。
弥散加权成像(DWI):从原理到临床前言磁共振成像(MRI)是神经科疾病最重要的检查手段之一,对神经科疾病的临床诊疗有着深远而持续的影响。
MRI序列繁多,每个序列都能侧重反映组织间某种特性的差别(所谓的侧重即是MRI中经常说的“加权”的意思,比如最常用的T1加权成像(T1WI)侧重反映组织间的T1弛豫时间对比,T2加权成像(T2WI)侧重反映组织间的T2弛豫时间对比)。
弥散加权成像(diffusion weighted image,DWI)则是侧重反映组织间水分子弥散情况的对比,是目前颅脑MR 成像最常用的序列之一,也可以说是神经科医生“最喜欢”的序列之一,其成像速度快,对很多疾病的诊断都能起到非常重要的作用。
本文将以神经系统疾病为例,简单阐述DWI形成的原理、阅片注意事项以及常见的临床应用,希望对各位读者特别是临床医生和MR初学者有所助益。
一、什么是弥散?什么是弥散受限?弥散(diffusion)是一种物理现象,指的是分子(MRI中主要指水分子)随机杂乱无章的运动。
正常脑脊液中的水分子状态接近自由水,可以自由运动而无所限制,无弥散受限(图1)。
一些特殊的病理生理过程会影响水分子这种自由运动(比如细胞毒性水肿),则称之为弥散受限(图2)。
一种组织是否有弥散受限可以通过DWI序列检测出来,会在DWI和ADC图中有相应的信号改变(灰白对比度改变)。
弥散受限在DWI表现为高信号,在ADC图中表现为低信号。
在熟知一些疾病的病理生理过程和弥散受限常见的成因的前提下,DWI和ADC图的信号改变就能帮助我们做出某些疾病的倾向性诊断。
图1:圆形代表水分子,箭头方向和长度表示运动方向和速度大小,自由水中,水分子运动杂乱无章。
图2:弥散受限。
某些原因(图中杂乱的线条表示)导致了水分子运动方向和速度的限制(箭头长度小于图1,表示速度减低)。
这种弥散受限可以通过DWI探测出来。
二、DWI序列是如何成像的,DWI和ADC图各有什么意义?首先,要明确一点的是,DWI序列并不是单纯的反映水分子弥散信息的序列,因为序列的特殊性,他始终都有不同程度的T2权重,为什么这么说呢?这与其成像技术有关。
磁共振弥散张量成像(DTI)在颅脑疾病诊断中的应用磁共振弥散张量成像(DTI)在颅脑疾病诊断中的应用弥散张量成像(DTI),是一种描述大脑结构的新方法,是磁共振成像(MRI)的特殊形式。
举例来说,如果说磁共振成像是追踪水分子中的氢原子,那么弥散张量成像便是依据水分子移动方向制图。
弥散张量成像图(呈现方式与以前的图像不同)可以揭示脑瘤如何影响神经细胞连接,引导医疗人员进行大脑手术。
它还可以揭示同中风、多发性硬化症、精神分裂症、阅读障碍有关的细微反常变化。
磁共振弥散张量成像( diffusion tensor imaging,DTI) 是弥散加权成像 ( diffusion weighted imaging,DWI)的发展和深化, 是当前惟一的一种能有效观察和追踪脑白质纤维束的非侵入性检查方法。
到2015年主要用于脑部尤其对白质束的观察、追踪, 脑发育和脑认知功能的研究, 脑疾病的病理变化以及脑部手术的术前计划和术后评估。
衡量弥散大小的数值称为弥散系数,用D表示,即一个水分子单位时间内自由随机弥散运动的平均范围,单位是mm2/s。
D值越大,水分子弥散运动越强。
表观弥散系数ADC只代表弥散梯度磁场施加方向上水分子的弥散特点.而不能完全、正确地评价不同组织各向异性的特点。
DTI是弥散成像的高级形式, 可以定量地评价脑白质的各向异性主要参数【平均弥散率】(mean diffusivity MD),MD反映分子整体的弥散水平(平均椭球的大小)和弥散阻力的整体情况。
MD只表示弥散的大小,而与弥散的方向无关。
MD 越大,组织内所含自由水分子则越多。
【各向异性程度】反映分子在空间位移的程度,且与组织的方向有关。
用来定量分析各向异性的参数很多,有各向异性分数(fractional anisotropy,FA)、相对各向异性(relative anisotropy ,RA)、容积比指数(volume ratio ,VR)等。
[DTI/DWI]DTI(弥散张量成像)简介及原理磁共振弥散张量成像技术是利用水分子的弥散各向异性进行成像,可用于脑白质纤维研究,常用扫描技术包括单次激发平面回波成像(EPI),线阵扫描弥散成像, 导航自旋回波弥散加权成像(LSDI),半傅立叶探测单发射快速自旋回波成像等.每种成像技术各有其优缺点,EPI扫描时间短,图像信噪比高,但存在化学位移伪影、磁敏感性伪影、几何变形;LSDI精确度高,几乎无伪影及变形,但扫描时间过长;导航自旋回波弥散加权成像运动伪影少,但扫描时间长;半傅立叶探测单发射快速自旋回波成像扫描时间短,但图像模糊.综合比较,单次激发平面回波成像是用于临床研究较适宜的方法.(引自%26lt;%26lt;医学影像学杂志%26gt;%26gt;2006年04期王海燕, 赵斌, 于富华) 1827 Robert Brown 首次发现弥散现象1950 Hanh 从理论上提出用自旋回波测量水分子弥散过程的方法1985 Taylor 和Bushel 首次实现磁共振弥散成像1986 Denis LeBihan 首次将磁共振弥散成像应用于活体1990 Michael Moseley 发现弥散成像在早期脑缺血诊断中的价值1996 首次实现人脑弥散张量成像1999首次实现人脊髓弥散张量成像一、弥散张量成像的基本原理弥散张量成像(DTI)是利用弥散加权成像技术改进和发展的一项新技术,弥散张量不是平面过程,以三维立体角度分解,量化了弥散各向异性的信号数据,使组织微结构更加精细显示,弥散需要用张量显示,扫描应用多个梯度场方向,现用6-55个方向。
DTI:弥散具有方向依靠性,分子向各个方向弥散的距离不相等,则成为各向异性(anistrophic)。
而DWI则为水分子弥散的方向相一致,即相同性。
弥散张量成像的原理:在完全均质的溶质中,分子向各方向的运动是相等的,此种弥散方式为各向同性(isotrophic),其向量分布轨迹成一球形,而另一种弥散是在非均一状态中,分子向各方向运动具有方向依靠性,分子向各方向弥散的距离不相等,称为各向异性(anisotrophic),其向量分布轨迹成一椭圆形。
脑肿瘤的D W I和D T I什么是DWI 和DTI?DWI高信号(低ADC值)的病变。
脑肿瘤不同成分的DWI 和ADC值。
脑部病变的神经束成像形态类型。
DWI和DTI在脑肿瘤诊断和鉴别诊断中的作用。
常见脑肿瘤的DWI表现。
弥散加权磁共振成像弥散所指为分子的随机运动(Brownian motion)。
当温度高于绝对零度时,所有分子均具有Brownian运动。
DWI MRI提供的图像对比所表达者为机体各种组织内水分子的弥散相对速度。
弥散加权磁共振成像对急性缺血性脑卒中的诊断DWI可提供其独有的信息,对颅内其他疾病,包括肿瘤、感染、外伤、出血和脱髓鞘疾病等也均能提供有助诊断的信息。
弥散加权磁共振成像DWI所提供的图像对比与常规MRI所提供者是不相同的。
其表达的方式甚多,如DWI,T2纠正过的DWI和ADC图等等。
弥散增高时,其中某些表现为亮区(高信号),而另一些则表现为暗区(低信号)。
脑室内无甚障碍阻止水分子的弥散,故脑脊液的弥散最高,以脑室作为内部参考,信号强度与之相仿者弥散最高。
大多数DWI用SE EPI程序成像,故这种DWI 除具有因近似弥散系数(ADC)不同而形成的对比之外,还可能存在T2对比。
T2和弥散效果均能引起DWI信号增高,因此弥散降低或受限的病灶在DWI图像上信号更高。
但是,由于T2成分的残余,可能造成弥散降低的假阳性表现。
在某些情况下,消除DWI的残余T2效应对脑部疾病的诊断是非常重要的。
重建指数图像(假DWI或T2纠正过的DWI)或ADC图均可消除DWI的残余T2效应。
这些方法对检出DWI因受残余T2效应的掩盖所造成的弥散受限的假象(即消除弥散受限的假阳性)是非常有用的。
假弥散加权成像假DWI,又称指数图像或T2纠正过的DWI,可通过SE EPI T2WI(或b=0sec/mm2)除DWI而获得。
消除 T 2 对比=巨大中央帆腔(箭头),由于残余T2效应,出现弥散降低的假阳性表现。
DWI原理和应用一、DWI的概念 1.定义:弥散又称扩散,是指分子从周围环境的热能中获取运动能量而使分子发生的一连串的、小的、随机的位移现象并相互碰撞,也称分子的热运动或布朗运动。
2. DWI技术就是检测扩散运动的方法之一,由于一般人体MR成像的对象是质子,主要是水分子中的质子,因此DWI技术实际上是通过检测人体组织中水分子扩散运动受限制的方向和程度等信息间接反映组织微观结构的变化。
3. 生物组织内的水分子的扩散分为三大类:细胞外扩散,细胞内扩散,跨膜扩散,且扩散运动受到组织结构、细胞内细胞器和组织大分子的影响。
4. 影响水分子弥散的因素:膜结构的阻挡,大分子蛋白物质的吸附,微血管内流动血液的影响(?)。
5. DWI中的水分子: 1)无创探测活体组织中水分子扩散的唯一方法 2)信号来源于组织中的自由水 3)结合水尽管运动受限,但仍不能产生信号 4)不同组织对自由水扩散限制程度不同 5)产生DWI对比 6)检测组织中自由水限制性扩散的程度6. 常规DWI,主要对细胞外自由水运动敏感 T2WI基础上,施加扩散梯度,组织信号衰减 1)自由水扩散越自由=信号丢失多,DWI信号越低 2)自由水扩散越受限=信号丢失少,DWI信号越高 7. 在均匀介质中,任何方向的弥散系数都相等,这种弥散称为各向同性扩散(eg.脑脊液);在非均匀介质中,各方向的弥散系数不等,这种弥散称为各向异性扩散(eg.脑白质纤维素)。
各向异性扩散在人体组织中是普遍存在的,其中最典型的是脑白质神经纤维束。
水分子在神经纤维长轴方向上扩散运动相对自由,而在垂直于神经纤维长轴的方向上,水分子的扩散运动将明显受到细胞膜和髓鞘的限制。
二、 DWI的原理 1.以SE-EPI序列来介绍DWI的基本原理。
射频脉冲使体素内质子的相位一致,射频脉冲关闭后,由于组织的T2弛豫和主磁场不均匀将造成质子逐渐失相位,从而造成宏观横向磁化矢量的衰减。
除了上述两种因素以外,我们在某个方向上施加一个扩散梯度场,人为在该方向上制造磁场不均匀,造成体素内质子群失相位,然后在施加一个强度与持续时间完全相同的反向扩散梯度场,则会出现两种情况:在该方向上没有位移的质子不会受两次梯度场强的影响而失相位,而移动的质子因两次梯度场引起的相位变化不能相互抵消,而失相位信号衰减。