勾股定理教案(4课时)
- 格式:doc
- 大小:828.50 KB
- 文档页数:9
初中数学勾股定理教案(集合4篇)本文为大家分享初中数学勾股定理教案相关范本模板,以供参考。
一、例题的意图分析例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。
例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。
二、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。
三、例习题分析例1(P83例2)分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12某1.5=18,PQ=16某1.5=24,QR=30;⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;⑸∠PRS=∠QPR-∠QPS=45°。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。
解略。
四、课堂练习1、小强在操场上向东走80m后,又走了60m,再走100m回到原地。
小强在操场上向东走了80m后,又走60m的方向是。
2、如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?3、如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。
已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向学习目标1、通过拼图,用面积的方法说明勾股定理的正确性.2.探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。
人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。
本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。
但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。
三. 教学目标1.了解勾股定理的定义和证明过程。
2.能够运用勾股定理解决直角三角形的相关问题。
3.培养学生的逻辑思维能力和空间想象能力。
4.激发学生对数学的兴趣,培养合作探究的精神。
四. 教学重难点1.教学重点:勾股定理的定义和证明过程。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。
六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。
2.学具:学生用书、练习册、文具。
七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。
教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。
”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。
学生独立思考,教师选取部分学生进行讲解。
5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。
勾股定理教案范本勾股定理教案教学方法优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!勾股定理教案范本勾股定理教案教学方法优秀6篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
第十八章勾股定理18.1 勾股定理课时安排: 4课时第1课时 18.1 .1 勾股定理(1)三维目标一、知识与技能让学生通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论.二、过程与方法1.在学生充分观察、归纳、猜想、探索直角三角形两条直角边的平方和等于斜边的平方的过程中,发展合情推理能力,体会数形结合的思想.2.在探索上述结论的过程中,发展学生归纳、概括和有条理地表达活动的过程和结论.三、情感态度与价值观1.培养学生积极参与、合作交流的意识,2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气.教学重点探索直角三角形两条直角边的平方和等于斜边的平方的结论。
从而发现勾股定理.教学难点以直角三角形的边为边的正方形面积的计算.教具准备学生准备若干张方格纸。
教学过程一、创设问题情境,引入新课活动1问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?问题3:我们再来看章头图,在下角的图案,它有什么童义?为什么选定它作为2002年在北京召开的国际数学家大会的会徽?二.实际操作,探索直角三角形的三边关系活动2问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?问题2:你能发现下图中等腰直角三角形ABC有什么性质吗?问题3:等腰直角三角形都有上述性质吗?观察下图,并回答问题:(1)观察图1正方形A中含有________个小方格,即A的面积是________个单位面积;正方形B中含有________个小方格,即B的面积是________个单位面积;正方形C中含有________个小方格,即C的面积是________个单位面积.(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)?活动3问题1:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A、B、C,A'、B'、C'的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于虚线标出的正方形的面积减去四个直角三角形的面积.)问题2:给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,也满足上述结论吗?我们通过对A、B、C,A'、B'、C'几个正方形面积关系的分析可知:一般的以整数为边长的直角三角形两直角边的平方和也等于斜边的平方,一个边长为小数的直角三角形是否也有此结论?我们不妨设小方格的边长为0.1,我们不妨在你准备好的方格纸上画出一个两直角边为0,5,1.2的直角三角形来进行验证.生:也有上述结论.这一结论,在国外就叫做“毕达哥拉斯定理”,而在中国则叫做“勾股定理”.而活动1中的问题1提到的“勾三,股四,弦五”正是直角三角形三边关系的重要体现.勾股定理到底是谁最先发现的呢?我们可以自豪地说:是我们中国人最早发现的.证据就是《周髀算经》,不仅如此,我们汉代的赵爽曾用2002年在北京召开的国际数学家大会的徽标的图案证明了此结论,也正因为为了纪念这一伟大的发现而采用了此图案作徽标.下节课我们将要做更深入的研究.大哲学家毕达哥拉斯发现这一结论后,就已认识到,他的这个发现太重要了.所以,按照当时的传统,他高兴地杀了整整一百头牛来庆贺.三、例题剖析活动4问题:(1)如下图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?(2)求斜边长17cm,一条直角边长15cm的直角三角形的面积.解:(1)解:由勾股定理可求得旗杆断裂处到杆顶的长度是:92+122=15(m);15+9=24(m),所以旗杆折断之前高为24m.(2)解:另一直角边的长为172-152=8(cm),所以此直角三角形的面积为12×8×15=60(cm2).师:你能用直角三角形的三边关系解答活动1中的问题2.请同学们在小组内讨论完成.四、课时小结1.掌握勾股定理及其应用;2.会构造直角三角形,利用勾股定理解简单应用题.五.布置作业六.板书设计18.1.1勾股定理(1)第2课时勾股定理(2)三维目标一、知识与技能1.掌握勾股定理,了解利用拼图验证勾股定理的方法.2.运用勾股定理解决一些实际问题.二、过程与方法1.经历用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力.2.在拼图的过程中,鼓励学生大胆联想,培养学生数形结合的意识.三、情感态度与价值观1.利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献,借助此过程对学生进行爱国主义的教育.2.经历拼图的过程,并从中获得学习数学的快乐,提高学习数学的兴趣.教学重点经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值.教学难点经历用不同的拼图方法证明勾股定理.教具准备每个学生准备一张硬纸板.教学过程一、创设问题情境,引入新课活动1问题:我们曾学习过整式的运算,其中平方差公式(a+b(a-b)=a2-b2,完全平方公式(a±b)2=a2±2ab+b2是非常重要的内容.谁还能记得当时这两个公式是如何推出的?生:这两个公式都可以用多项式乘以多项式的乘法法则推导.如下:(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以(a+b)(a-b)=a2-b2;(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2;(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2;所以(a±b)2=a2±2ab+b2;生:还可以用拼图的方法说明上面的公式成立.例如:图(1)中,阴影部分的面积为a2-b2,用剪刀将(1)中的长和宽分别为(a-b)和b的长方形剪下来拼接成图(2)的形式便可得图(2)中阴影部分的面积为(a+b)(a-b).而这两部分面积是相等的,因此(a+b)(a-b)=a2-b2成立.生:(a+b)2=a2+2ab+b2也可以用拼图的方法,通过计算面积证明,如图(3)我们用两个边长分别a和b的正方形,两个长和宽分别a和b的长方形拼成一个边长为(a+b)的正方形,因此这个正方形的面积为(a+b)2,也可以表示为a2+2ab+b2,所以可得(a+b)2=a2+2ab+b2.师:你能用类似的方法证明上一节猜想出的命题吗?二、探索研究活动2我们已用数格子的方法发现了直角三角形三边关系,拼一拼,完成下列问题:(1)在一张纸上画4个与图(4)全等的直角三角形,并把它们剪下来.(2)用这4个直角三角形拼一拼,摆一摆,看能否得到一个含有以斜边c为边长的正方形,你能利用拼图的方法,面积之间的关系说明上节课关于直角三角形三边关系的猜想吗?(3)有人利用图(4)这4个直角三角形拼出了图(5),你能用两种方法表示大正方形的面积吗?大正方形的面积可以表示为:_______________,又可以表示为________________.对比两种衷示方法,你得到直角三角形的三边关系了吗?生:我也拼出了图(5),而且图(5)用两种方法表示大正方形的面积分别为(a+b)2或4× ab+c2.由此可得(a+b)2=4×12 ab+c2.化简得a2+b2=c2.由于图(4)的直角三角形是任意的,因此a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
八年级数学《勾股定理》教案优秀10篇年级数学《勾股定理》教案1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。
它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。
关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。
之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]一、知识与技能1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。
2、应用勾股定理解决简单的实际问题3学会简单的合情推理与数学说理二、过程与方法引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。
通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、重点与难点1、探索和证明勾股定理2熟练运用勾股定理[教学过程]一、创设情景,揭示课题1、教师展示图片并介绍第一情景以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
勾股定理教学设计(教案).doc一、教学目标1.学习勾股定理的定义和正确的应用方法。
2.能够利用勾股定理解决直角三角形和其它相关问题。
3.通过综合应用,提高学生的逻辑思维能力和解决实际问题的能力。
二、教学内容及教学方法1. 教学内容:(1) 勾股定理的定义和原理。
(2) 直角三角形的判定方法。
(4) 在解决实际问题中的应用。
(2) 归纳法:通过多个实例让学生自己总结出勾股定理的应用方法。
(4) 实践法:让学生亲自动手拍摄勾股定理和应用。
三、教学过程1.导入(1) 引入到勾股定理的定义和应用,让学生能够自然而然地理解和接受。
如:“今天我们要学习一种既简单又实用的定理——勾股定理。
”(2) 让学生自己想一想:“如果有一个三角形其中一个角是90度,你该如何判断它是不是直角三角形?”引导学生猜想出判断方法。
(神秘的气氛会让学生很好奇)2. 正文(2) 利用幻灯片或者录像等多媒体工具来展示不同的实例,根据不同例题要求让学生总结和应用勾股定理。
(3) 让学生本着思考和实践的态度利用手边的工具来实验验证勾股定理的正确性和有效性。
(4) 运用平面几何知识来解决各种实际问题,比如测量远近难以到达的高度等等。
3. 讲解(1) 执教教师讲解将平面几何中的勾股定理应用到实际生活中,让学生创建思考概念,当然更需要动手实践操作。
(2) 接着老师再讲解学生怎样用利用一些角度关系来解决直角三角形问题,如相似原理,角平分线定理,直角三角形任一内角的正割等。
四、作业(1) 练习册中练习题和涉及到勾股定理应用的各项练习题。
(2) 要求学生利用勾股定理来解决实际生活中遇到的问题,例如通过测量找出某个物品的高度等等。
五、教学效果在教学过程中,老师通过给予学生许多实例来让学生能够自己想到勾股定理的应用。
并通过引入实际生活中的问题来提高学生的综合应用能力。
这样,学生在完成作业中会感到较为轻松,而且许多问题也可以从勾股定理中找到解决办法。
学生的动手能力也将得到很好的锻炼。
勾股定理【教学目标】1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
【教学重难点】1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
【教学课时】1课时【教学过程】目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义,尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为和的直角,用刻度尺量出的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角,用刻度尺量的长。
你是否发现与的关系,和的关系,即,,那么就有。
命题1 如果直角三角形的两条直角边长分别为a 、b ,斜边长为c ,那么。
我们把它称之为勾股定理。
对于任意的直角三角形也有这个性质吗?3cm 4cm ABC △AB ABC △AB 2234+2522512+21322234=5+222512=13+222+=勾股弦222a b c =+例习题分析:例1(补充)已知:在中,,的对边为a 、b 、c 。
求证:。
分析:(1)让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
(2)拼成如图所示,其等量关系为:,化简可证。
(3)发挥学生的想象能力拼出不同的图形,进行证明。
(4)勾股定理的证明方法,达300余种,这个古老的精彩的证法,出自我国古代无名数学家之手,激发学生的民族自豪感,和爱国情怀。
14.1.1直角三角形的三边关系(第1课时)教学目标:1.经历用画直角三角探索勾股定理的过程,进一步理解掌握勾股定理;2.了解勾股定理的历史,初步掌握勾股定理的简单应用.3经历观察、归纳、猜想和验证的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会数形结合的思想.4通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值.5 通过获得成功的经验和克服困难的经历,增进数学学习的信心;对比介绍我国古代和西方数学家有关勾股定理的研究,对学生进行爱国主义教育.教学重点:勾股定理教学难点:勾股定理的探索教学过程一引入1你对直角三角形的角度关系了解多少?你对直角三角形的边的关系了解多少?2创设情境导入新课如图1955年希腊发行了一张邮票,图案像是由三个棋盘排列而成.这张邮票是纪念2500年前希腊一个学术和宗教团体——毕达哥拉斯学派,它的成立以及在文化上的贡献,请同学们数一数正方形中小方格的个数,看有什么发现?二探究得出新知1.小组合作,根据表格中的要求画直角三角形,其中∠C=90°,量出c的长度,学生活动:(1))、验证.(2)各小组之间交流结论,一致得出:两直角边的平方和等于斜边的平方.老师活动:用几何画板,画任意的直角三角形,然后有度量和计算功能,做出一般直角三角形三边关系的表格.同样得到两直角边的平方和等于斜边的平方.板书:[勾股定理]直角三角形两直角边的平方和等于斜边的平方.提示:注意勾股定理中的关键点.教师提问:你能证明这一结论吗?这是下节课的知识,请同学们课后通过阅读课本或上网查找相关的资料,来证勾股定理.三应用举例例1在Rt⊿ABC中,已知∠B=90°,AB=6,BC=8.求AC.变式:(例1补充)在Rt△ABC,∠C=90°(1)已知a=b=5,求c;(2)已知a=1,c=2,求b;(3)已知c=17,b=8,求a;(4)已知a:b=1:2,c=5,求a.刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系.(1)已知两直角边,求斜边直接用勾股定理.(2)(3)已知斜边和一直角边,求另一直角边,用勾股定理的变式.(4)已知一边长,两边比,求未知边.四拓展提升例2已知△ABC中,BC边的上的高为AD,AB=13,BC=19,AD=5,求BD及AC的长.四课堂训练1.课本P111中的练习T1,22.课本P117中的习题1.1中的T2五小结图14-1-1.直角三角形的角度关系2.直角三角形三边关系勾股定理:直角三角形中,两直角边的平方和等于斜边的平方:a2+b2=c2(其中c是斜边).3.勾股定理的变式c=a2+b2,a=c2-b2,b=c2-a2.【教学反思】①设置问题情景,体现数学来源于生活,通过观察感悟图形中的美妙之处,体现勾股定理的美学价值,激发学生的求知探索欲望.②通过画直角三角形,操作、观察、计算、探索出勾股定理的内容,让学生切身感受到自己是学习的主人.为学生今后获取知识、探索发现和创造打下了良好的基础.这种方法符合学生认识图形的过程,培养了学生合作学习、主动探索、敢于实践、善于发现的科学精神以及合作交流的学习习惯,最后通过例题巩固勾股定理,体会勾股定理定理的变式.教学内容:直角三角形的三边关系(第2课时)教学目标:1理解几种常见证明勾股定理的方法,并会验证勾股定理;2应用勾股定理解决一些简单实际问题.3用勾股定理会进行灵活变形,已知直角三角形的任两边,会求它的第三边;会将实际问题转化为数学问题.4在勾股定理的应用过程中,培养探究能力和合作精神,感受勾股定理的作用,培养数学素养.教学重点:应用勾股定理解决简单的实际问题.教学难:将实际问题转化为数学问题中数形结合的思想.一复习1勾股定理:直角三角形中,两直角边的平方和等于斜边的平方:a2+b2=c2(其中c是斜边).2.勾股定理的变式c=a2+b2,a=c2-b2,b=c2-a2.【探究3】探究只有直角三角形才满足a2+b2=c2.二应用例1【教材例2】如图,Rt⊿ABC的斜边AC比直角边AB长2 cm,另一直角边BC长为6 cm,求AC的长.变式:如图14-1-,在Rt⊿ABC中,∠C-90°,AD、BE是中线,AD=,BE=,求AB 的长.例2【教材p111例3】如图14-1-,为了求出位于湖两岸的点A、B之间的距离,一名观测者在点C设桩,使△ABC 恰好为直角三角形.通过测量,得到AC的长为16米,BC的长为12米.问从点A穿过湖到点B有多远?三拓展提升图14-1-例3如图14-1-,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC 为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2015个等腰直角三角形的斜边长是__(____)2015__.四课堂训练1.放学以后,小红和小颖从学校分手,分别沿着东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖用20分钟到家,小红和小颖家的距离为()A.600米;B.800米;C.1000米;D.不能确定2.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().A.30 cm2B.130 cm2C.120 cm2D.60 cm23.下列阴影部分是一个正方形,求此正方形的面积图14-1-图14-1-4.如图14-1-,受台风麦莎影响,一棵高18 m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高.五小结勾股定理的变式c=a2+b2,a=c2-b2,b=c2-a2.作业P112/ 1教学内容:直角三角形的判定教学目标1掌握勾股定理的逆定理,并能进行简单的应用;理解勾股数的概念并能熟记常用的勾股数.2经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.3通过应用勾股定理逆定理解决实际问题,培养应用数学的意识.教学重点:通过边长判断一个三角形是否是直角三角形,熟悉几组勾股数,并会辨析哪些问题应用哪个结论.教学难点:解勾股定理的逆定理是通过数的关系来反映形的特点.教学过程:一复习引入1.上节课的勾股定理内容是什么?画出图形,写出表达式.2.如何判定一个三角形是直角三角形?学生一般是从直角三角的定义出发,或两个角互余的三角形是直角三角形.二探索新知活动内容1:下面有三组数,分别是一个三角形的三边长a,b,c,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:1.这三组数都满足a2+b2=c2吗?2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数.活动内容2:提问:有同学认为测量结果可能有误差,不同意这个发现.你认为这个发现正确吗?你能给出一个更有说服力的理由吗?如果一个三角形的三边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.活动内容3:勾股定理的逆定理的证明勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角形三角,且边c所对的角为直角.图14-1-已知:如图14-1-,在△ABC中,AB=c,BC=a,AC=b,a2+b2=c2.求证:∠C=90°证明:如图14-1-(2)所示,作△A′B′C′,使∠C′=90°,A′C′=b,B′C′=a,则A′B′2=a2+b2=c2,即A′B′=c.在△ABC和△A′B′C′中,∵BC=a=B′C′,AC=b=A′C′,AB=c=A′B′,∴△ABC≌△A′B′C′.∴∠C=∠C′=90°.活动内容4:反思总结提问:1.同学们还能找出哪些勾股数呢?2.今天的结论与前面学习勾股定理有哪些异同呢?3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?三应用例1(教材第113页-114页)已知△ABC,AB=a2-1,BC=2n,AC=n2+1(n为大于1的正整数),试问△ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由.变式变形1.如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?2.已知△ABC的三边长为a,b,c,根据下列各组已知条件,试判定△ABC的形状.(1)a=41,b=40,c=9.(2)a=m2-n2,b=m2+n2,c=2mn.(m>n>0)四、练习P114/练习1、2题五、小结勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角形三角,且边c所对的角为直角.六、作业P118/5教学内容:反证法教学目标:1通过实例体会反证法的含义.培养用反证法简单推理的技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力.2了解反证法证题的基本步骤,会用反证法证明简单的命题3通过学习反证法,让学生体会用直接证法证明命题困难时,用反证法解决数学问题时的优势.教学重点:应用反证法解决简单的数学问题.教学难点:证明过程中引出矛盾所在.教学过程:一、探究新知在△ABC中,已知AB=c,BC=a,CA=b,且∠C≠90°.求证:a2+b2≠c2.问题:根据勾股定理及其逆定理,你能直接证明吗?思考:假设a2+b2=c2,则由勾股定理的逆定理可以得到∠C=90°,这与已知条件∠C≠90°产生矛盾,因此,假设a2+b2=c2是错误的.所以a2+b2≠c2是正确的.有些命题想从已知条件出发,经过推理,得出结论是很困难的,因此,人们想出了一种证明这种命题的方法,即反证法.归纳:反证法的步骤:1.假设命题的结论的反面是正确的;2.从这个假设出发,经过逻辑推理,推出与公理、巳证的定理、定义或已知条件矛盾;3.由矛盾判定假设不正确,从而肯定命题的结论是正确的.二、应用例1【教材p116页例5】求证:两条直线相交只有一个交点.已知:两条相交直线l1与l2.求证:l1与l2只有一个交点.例2【教材p116例6】求证:在一个三角形中,至少有一个内角小于或等于60°.【归纳总结】用反证法证明一个命题时,要先把文字命题转化为符号命题,写出已知和求证,再用反证法完成证明.证明过程的步骤主要是:先假设结论的反面是正确的;然后通过演绎推理,推出与基本事实、已证的定理、定义或已知条件相矛盾;从而说明假设不成立,进而得出原结论正确.变式:用反证法证明:两直线都与第三条直线平行,那么这两条直线也与第三条直线平行.三、当堂训练1.要证明命题“若a>b,则a2>b2”是假命题,下列a、b的值不能作为反例的是()A.a=1,b=-2B.a=0,b=-1C.a=-1,b=-2D.a=2,b=-12.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°”时,应先假设( )A .∠A>45°,∠B>45°B .∠A ≥45°,∠B ≥45°C .∠A<45°,∠B<45°D .∠A ≤45°,∠B ≤45°3.用反证法证明命题“在直角三角形中至少有一个锐角不大于45°”时,应先假设( )A .有一个锐角小于45°B .每一个锐角都小于45°C .有一个锐角大于45°D .每一个锐角都大于45°四、小结反证法⎩⎪⎨⎪⎧假设推理得到矛盾否定假设,则原命题的结论成立五、作业P117 练习第2题教学反思:。