人教版八年级数学上册第一单元试题及标准答案
- 格式:doc
- 大小:475.50 KB
- 文档页数:8
一、选择题1.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒2.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25°3.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒ 4.如果一个三角形的三边长分别为5,8,a .那么a 的值可能是( )A .2B .9C .13D .155.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30° 6.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .1,3,5C .2,3,4D .2,6,107.在ABC 中,若B 与C ∠互余,则ABC 是( )三角形A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形8.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .4cm, 5cm,9cmB .4cm, 5cm, 6cmC .5cm,12cm,6cmD .4cm,2cm,2cm9.在ABC 中,若一个内角等于另两个内角的差,则( ) A .必有一个内角等于30° B .必有一个内角等于45° C .必有一个内角等于60°D .必有一个内角等于90°10.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60° 11.内角和与外角和相等的多边形是( ) A .六边形B .五边形C .四边形D .三角形12.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④B .①②③C .①④⑤D .②④⑤二、填空题13.如图1,ABC 纸片面积为24,G 为ABC 纸片的重心,D 为BC 边上的一个四等分点(BD CD <)连结CG ,DG ,并将纸片剪去GDC ,则剩下纸片(如图2)的面积为__________.14.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.15.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.16.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.17.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.18.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.19.如图,在△ABC 中,∠A=64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n-1BC 与∠A n-1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.20.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.三、解答题21.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______; (2)若110ABC ACB ∠+∠=︒,则BPC ∠=______; (3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).22.如图1,△ABC 中,AD 是∠BAC 的角平分线,AE ⊥BC 于点E . (1)若∠C=80°,∠B=40°,求∠DAE 的度数; (2)若∠C >∠B ,试说明∠DAE=12(∠C-∠B); (3)如图2,若将点A 在AD 上移动到A′处,A′E ⊥BC 于点E .此时∠DAE 变成∠DA′E ,请直接回答:(2)中的结论还正确吗?23.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.24.如图,已知BP 是△ABC 的外角∠ABD 的平分线,延长CA 交BP 于点P .射线CE 平分∠ACB 交BP 于点E .(1)若∠BAC=80°,求∠PEC 的度数;(2)若∠P=20°,分析∠BAC 与∠ACB 的度数之差是否为定值?(3)过点C 作CF ⊥CE 交直线BP 于点F .设∠BAC=α,求∠BFC 的度数(用含α的式子表示).25.若a ,b ,c 是ABC 的三边的长,化简|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|. 26.如图ABC 中,45B ∠=︒,70ACB ∠=︒,AD 是ABC 的角平分线,F 是AD 上一点EF AD ⊥,交AC 于E ,交BC 的延长线于G .求G ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数 【详解】 解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒ ∴45E ∠=︒ 又∵60ABC ∠=︒ ∴120FBE ∠=︒ 由三角形的外角性质得DFB E FBE ∠=∠+∠ 45120=︒+︒165=︒故选:C 【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质2.B解析:B 【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【详解】解:如图,由平行线的性质可得∠2=30°, ∠1=∠3-∠2=45°-30°=15°. 故选:B .【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.3.D解析:D 【分析】根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解. 【详解】 解:∵AD 是∠CAE 的平分线,60=︒∠DAC , ∴∠DAC =∠DAE =60°, 又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°, ∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°. 故选:D . 【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.4.B解析:B 【分析】根据三角形三边关系得出a 的取值范围,即可得出答案. 【详解】 解:8-5<a <8+5 3<a <13, 故a 的值可能是9, 故选:B . 【点睛】本题考查了三角形三边关系,掌握知识点是解题关键.5.A解析:A 【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论. 【详解】解:∵∠ADC 是△ABD 的外角, ∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE ∵∠AED 是△CDE 的外角, ∴∠AED=∠C+∠EDC , ∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC , ∵∠B=∠C , ∴∠BAD=2∠EDC , ∵10CDE ∠=︒ ∴∠BAD=20°; 故选:A 【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.C解析:C 【分析】根据三角形三边关系逐一进行判断即可. 【详解】A 、1+2=3,不能构成三角形,故不符合题意;B 、1+3=4<5,不能构成三角形,故不符合题意;C 、2+3=5>4,可以构成三角形,故符合题意;D 、2+6=8<10,不能构成三角形,故不符合题意, 故选:C . 【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.7.B解析:B 【分析】由B 与C ∠互余,结合180A B C ∠+∠+∠=︒,求解A ∠,从而可得答案. 【详解】 解:B 与C ∠互余,90B C ∴∠+∠=︒, 180A B C ∠+∠+∠=︒, 90A ∴∠=︒,ABC ∴是直角三角形,故A 、C 、D 不符合题意,B 符合题意, 故选:B . 【点睛】本题考查的是两个角互余的概念,三角形的内角和定理的应用,二元一次方程组的解法,掌握以上知识是解题的关键.8.B解析:B 【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解. 【详解】解:根据三角形的三边关系,知: A 中,4+5=9,排除; B 中,4+5>6,满足; C 中,5+6<12,排除;D中,2+2=4,排除.故选:B.【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.D解析:D【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可判断.【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴必有一个内角等于90°,故选:D.【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.10.A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∵∠CED=∠α=47°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣47°=43°.故选:A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.11.C解析:C 【分析】设这个多边形为n 边形,根据题意列出方程,解方程即可求解. 【详解】解:设这个多边形为n 边形,由题意得 (n-2)180°=360°, 解得n=4,所以这个多边形是四边形. 故选:C 【点睛】本题考查多边形的内角和公式,多边形的外角和360°,熟知两个定理是解题关键.12.A解析:A 【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断. 【详解】①过两点有且只有一条直线,故①正确; ②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确; ⑤各角都相等且各边相等的多边形是正多边形,故⑤错误. ∴正确的有①②④, 故选:A . 【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键.二、填空题13.18【分析】连接BG 根据重心的性质得到△BGC 的面积再根据D 点是BC 的四等分点得到△GDC 的面积故可求解【详解】连接BG ∵G 为纸片的重心∴S △BGC=S △ABC=8∵D 为边上的一个四等分点()∴S △解析:18 【分析】连接BG ,根据重心的性质得到△BGC 的面积,再根据D 点是BC 的四等分点得到△GDC 的面积,故可求解. 【详解】连接BG ,∵G 为ABC 纸片的重心,∴S △BGC =13S △ABC =8 ∵D 为BC 边上的一个四等分点(BD CD <) ∴S △DGC =34S △BGC =6 ∴剪去GDC ,则剩下纸片的面积为24-6=18故答案为:18.【点睛】此题主要考查重心的性质,解题的关键是熟知重心的性质及面积的换算关系.14.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠,∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.15.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛 解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠,∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 16.540°【分析】连接GD 根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F 进而可求解【详解】解:连解析:540°【分析】连接GD ,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F ,进而可求解.【详解】解:连接GD ,∠A+∠B+∠C+∠CDG+∠DGA =(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG =180°,∠2+∠E+∠F =180°,∠1=∠2,∴∠FGD+∠EDG =∠E+∠F ,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA =540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键. 17.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA 然后再根据角平分线的定义求得∠EAD+∠EDA 最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD 中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA ,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD 中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD ,∠EDA=12∠CAD ∴∠EAD+∠EDA=12(∠BAD+∠CDA )=105° ∴∠AED=180°-(∠EAD+∠EDA )=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.18.2或6【分析】利用面积法求出BD 即可求得CD 再分AE 在内部和外部求出DE 即可【详解】解:为的高△ABD 的面积为14AE=7∴∵为的中线∴CD=BD=4当AE 在内部时∵CE=2∴DE=CD-CE=2当解析:2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7,1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线, ∴CD=BD=4,当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键.19.6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到∠A =2∠A1同理可得∠A1=2∠A2即∠A=22∠A2因此找出规律【详解】由三角形的外角性质得∠ACD=∠A+∠ABC∠A1CD=∠A解析:6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∴n=6.故答案为:6.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键. 20.343【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积再根据两三角形的倍数关系求解即可【详解】△ABC 与△A1BB1底相等(AB =A1B )高为1:2(BB1=2BC )故面积比为1:2∵解析:343【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1,∴112A BB S =△,同理可得11112C B C A C A S S ==△△, ∴1112317A B C S =⨯+=△;同理可证222111749A B C A B C S S ==△△,所以333749343A B C S =⨯=△,故答案为:343.【点睛】本题考查了图形面积的规律探究,准确找到每变化一次之后图形面积的变化规律是解决问题的关键.三、解答题21.(1)130°;(2)125°;(3)135°;(4)1902A ︒+∠. 【分析】(1)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(2)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(3)依据∠A=90°,可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(4)根据三角形的内角和定理可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC=90°+12∠A .【详解】解:如下图所示,(1)∵∠ABC=40°,∠ACB=60°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=20°+30°=50°,∴△BCP 中,∠P=180°-50°=130°,故答案为:130°;(2)∵∠ABC+∠ACB=110°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×110°=55°, ∴△BCP 中,∠P=180°-55°=125°,故答案为:125°;(3)∵∠A=90°,∴∠ABC+∠ACB=90°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×90°=45°, ∴△BCP 中,∠P=180°-45°=135°,故答案为:135°;(4)∵∠ABC+∠ACB=180°-∠A ,∠ABC 和∠ACB 的平分线相交于点P , ∴124(180)2A ∠+∠=⨯︒-∠, ∴△BCP 中,11180(180)9022P A A =︒-⨯︒-∠=︒+∠∠. 故答案为:1902A ︒+∠. 【点睛】 本题主要考查了三角形内角和定理以及角平分线的定义的运用,解题时注意:三角形内角和是180°.22.(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC 的度数,再根据角平分线的定义求得∠BAD 的度数,在△ABE 中,利用直角三角形的性质求出∠BAE 的度数,从而可得∠DAE 的度数. (2)结合第(1)小题的计算过程进行证明即可.(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B 和∠C 表示出∠A′DE ,再根据三角形的内角和定理可证明∠DA′E=12(∠C-∠B). 【详解】(1)∵∠C=80°,∠B=40°, ∴∠BAC=180°-∠B-∠C =180°-40°-80°=60°,∵AD 是∠BAC 的角平分线,∴∠BAD=∠CAD=12∠BAC=30°, ∵AE ⊥BC ,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD =20°;(2)理由:∵AD 是∠BAC 的角平分线,∴∠BAD=∠CAD=12∠BAC=12(180°-∠B-∠C)= 90°-12∠B-12∠C , ∵AE ⊥BC ,∴∠AEC=90°,∴∠BAE=90°-∠B ,∴∠DAE=∠BAE-∠BAD=(90°-∠B) -(90°-12∠B-12∠C ) =12∠C-12∠B =12(∠C-∠B); (3)(2)中的结论仍正确.∵∠A′DE=∠B+∠BAD=∠B+12∠BAC=∠B+12(180°-∠B-∠C) = 90°+12∠B-12∠C ; 在△DA′E 中,∠DA′E=180°-∠A′ED -∠A′DE=180°-90°-(90°+12∠B-12∠C) =12(∠C-∠B). 【点睛】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.23.(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠,ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .24.(1)140°;(2)是定值;(3)∠BFC=90°12-α 【分析】(1)首先证明∠CEB 12=∠CAB ,求出∠CEB 即可解决问题. (2)利用三角形的外角的性质解决问题即可.(3)利用是菱形内角和定理以及(1)中结论解决问题即可.【详解】由题意,可以假设∠ACE=∠ECB=x ,∠ABP=∠PBD=y .(1)由三角形的外角的性质可知:2y BAC 2x y CEB x =∠+⎧⎨=∠+⎩, 可得∠CEB 12=∠CAB=40°, ∴∠PEC=180°-40°=140°;(2)由三角形的外角的性质可知,∠BAC=∠P+y ,y=∠P+2x , ∴∠BAC=2∠P+2x ,∴∠BAC -∠ACB=∠BAC-2x=2∠P=40°,∴∠BAC -∠ACB=40°,是定值;(3)∵CF ⊥CE ,∴∠ECF=90°,由(1)得:∠CEB 12=∠CAB , ∴∠BFC=90°-∠CEB=90°12-∠CAB=90°12-α. 【点评】 本题考查了三角形内角和定理,三角形的外角性质等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.25.3c+a ﹣b .【分析】根据三角形的三边关系“两边之和>第三边,两边之差<第三边”,判断式子的符号,再根据绝对值的意义去掉绝对值即可.【详解】解:根据三角形的三边关系,两边之和大于第三边,得a ﹣b ﹣c <0,b ﹣c ﹣a <0,c+a ﹣b >0.∴|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|=b+c ﹣a+c+a ﹣b+c+a ﹣b=3c+a ﹣b .【点睛】本题考查了三角形的三边关系、绝对值的性质、整式加减的应用,熟练掌握三角形的三边关系定理是解题关键.26.12.5【分析】根据角平分线的定义以及三角形的内角和定理即可得出∠ADC的度数,再根据垂直定义以及三角形的内角和即可得出∠G的度数.【详解】解:∵∠B=45°,∠ACB=70°,AD是ABC的角平分线,∴∠BAC=2∠CAD=65°,∴∠ADC=180°﹣70°﹣32.5°=77.5°,∵EF⊥AD,∴∠G=180°﹣90°﹣77.5°=12.5°.【点睛】本题主要考查了三角形的内角和定理以及角平分线的定义,难度适中.。
最新人教版八年级上册数学第一单元试卷一、选择题1.(2分)如图,BC ⊥AE 于点C ,CD ∥AB ,∠B=40°,则∠ECD 的度数是( )A .70° B.60° C.50° D.40°2.三角形的内角和等于( )A .90°B .180°C .300°D .360°3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .84.一个凸n 边形,其每个内角都是140°,则n 的值为( )A .6B .7C .8D .95.若一个三角形的两边长分别为5cm ,7cm ,则第三边长可能是 ( )A .2cmB .10cmC .12cmD .14cm6.一个钝角与一个锐角的差是( )A 、锐角B 、钝角C 、直角D 、不能确定7.(4分)如图,四边形ABCD 是菱形,AC=8,DB=6,DH ⊥AB 于H ,则DH=( )A .524B .512C .12D .24 8.如图,DE 是△ABC 中边AC 的垂直平分线,若BC=18 cm, AB=10 cm ,则△ABD 的周长为A .16 cmB .18 cmC .26 cmD .28 cm9.只用下列哪一种正多边形,可以进行平面镶嵌( )A .正五边形B .正六边形C .正八边形D .正十边形二、填空题10.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.11.△ABC 中,若已知∠A :∠B :∠C =2:3:4,则△ABC 是 三角形.12.如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为 .13.等腰三角形的腰长为13,底边上的高为5,则它的面积为__________.14.如图,已知△ABC 中,∠A=40°,剪去∠A 后成四边形,则∠1+∠2= 度.15.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是______.16.如图所示,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 个平方单位.17.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是 个.三、解答题18.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,∠B=70°,∠C=30°.求:(1)∠BAE 的度数;(2)∠DAE 的度数;(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE 的度数?若能,请你写出求解过程;若不能,请说明理由.cmcm19.(本题10分)如图,ABC ∆中,AD 是高,E 、F 分别是AB 、AC 的中点。
人教版八年级上数学第一单元测试题一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 1,2,3B. 2,2,4C. 3,4,5D. 3,4,8解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
A选项,1 + 2 = 3,不满足两边之和大于第三边,不能组成三角形;B选项,2+2 = 4,不满足两边之和大于第三边,不能组成三角形;C选项,3 + 4>5,4 + 5>3,3+5>4,且5 3<4,5 4<3,4 3<5,可以组成三角形;D选项,3+4<8,不满足两边之和大于第三边,不能组成三角形。
所以答案是C。
2. 一个三角形的内角和是()A. 90°B. 180°C. 360°D. 720°解析:三角形内角和定理:三角形的内角和等于180°,所以答案是B。
3. 在△ABC中,∠A = 50°,∠B = 60°,则∠C的度数为()A. 50°B. 60°C. 70°D. 80°解析:因为三角形内角和为180°,已知∠A = 50°,∠B = 60°,所以∠C=180°∠A ∠B = 180°50° 60° = 70°,答案是C。
4. 等腰三角形的一个角是80°,则它的底角是()A. 80°B. 50°C. 80°或50°D. 20°解析:当80°角为等腰三角形的顶角时,底角=(180° 80°)÷2 = 50°;当80°角为底角时,底角就是80°,所以答案是C。
5. 下列图形具有稳定性的是()A. 正方形B. 长方形C. 三角形D. 平行四边形解析:三角形具有稳定性,四边形具有不稳定性,正方形、长方形、平行四边形都是四边形,所以答案是C。
人教版八年级数学上册单元测试题及答案全套一、选择题(每小题2分,共20分)1. 下列运算中,结果是有理数的是()。
A. √7 + √5B. √8 + √16C. √11 + 5D. √3 + 2√72. 已知a、b为正有理数,且a > b,下列不等式中正确的是()。
A. a√2 > b√2B. a√3 < b√3C. a√5 > b√5D. a√6 < b√63. 下列数中,不能化成√10 形式的无理数是()。
A. √10 –√5B. (√15 + √5) –√10C. √10 + √5D. (√15 –√5) + √104. 已知√3 + √2 > x,下列结论错误的是()。
A. √2 < xB. √6 > xC. 2 < xD. 1 < x5. 若(a+b)√2 = a√3 + b√6,那么a:b等于()。
A. 1:2B. 2:1C. 1:1D. 1:36. 已知数集A = {x | x = 2k – 1,k∈Z},则集合A的元素个数是()。
A. 0B. 3C. 4D. 57. 过已知点P(a,b),不与直线y = 2x + 1平行的直线的个数是()。
A. 0B. 1C. ∞D. 28. 两直线k1∶-2x + y = 4,k2∶ 6x – 3y = 1,那么k1和k2的关系是()。
A. 相交B. 平行C. 重合D. 垂直9. 若线段AB的中点坐标是(2,1),A的坐标是(5,3),则B的坐标是()。
A. (-1,-1)B. (4,1)C. (3,5)D. (1,4)10. 在平面直角坐标系xOy中,点A(7,3)关于y轴的对称点是()。
A. (7,3)B. (3,7)C. (-7,3)D. (7,-3)二、填空题(每小题2分,共20分)11. 设√a = √2 + √3,则a等于填空。
12. 若x∈R 且√(x+1) = 2,则x的值为填空。
人教版八年级数学上册单元测试题附答案全套第一单元:有理数单项选择题1.下列数中,哪个是负有理数?a.0b. 5c. -3d. 22.哪组数中,有一个正有理数和一个负有理数?a.{-2, -3}b. {0, 1}c. {5, 7}d. {-4, 4}3.下列数中,哪些是无理数?a.√2b. -7c. 0.5d. 3/74.若 a、b 均为正有理数,且 a > b,那么 a < 0 的可能性是多少?a.0b. 1c. 无穷大d. 无法确定5.若 a 和 b 是互为倒数的数,且 a 是正有理数,则 b 是:a.正有理数b. 负有理数c. 正无理数d. 负无理数解答题1.请用画数轴的方法表示 -2.5 这个有理数。
数轴2.判断下列数中哪些是有理数,哪些是无理数:√3、0.75、-5.5、0、5/4–有理数:0.75、-5.5、0、5/4–无理数:√3答案单项选择题答案:1. c 2. b 3. a 4. a 5. d解答题答案: 1.2. 有理数:0.75、-5.5、0、5/4,无理数:√3第二单元:整式的加减单项选择题1.下列算式中,不是整式的是:a.3x + y + 5b. 2x² - 3x + 4c. 4√2 + 7d. 6x - 5y - 42.下列算式中,能简化为整式的是:a.3x - √2b. 6x - 2/xc. 5x + 1/2d. 4x - √33.若 a = 2x + 3y,b = 4x - 6y,则 a - b 的结果是:a.2x + 3yb. -2x - 9yc. 6x - 3yd. -6x + 9y解答题1.将算式 3xy + 7y² - 4yx - 5x²的项按 x 的次数从高到低写出来。
-5x² + (3xy - 4yx) + 7y²2.将算式 a = 2x + 3y 和 b = 4x - 6y 相加,并合并同类项。
第11章三角形一、选择题1.平行四边形的内角和为()A.180°B.270°C.360°D.640°2.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A.240°B.120°C.60°D.30°3.五边形的内角和是()A.180°B.360°C.540°D.600°4.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形5.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.88.一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.79.一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定10.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.511.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°12.已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3 B.4 C.5 D.613.如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3 B.4 C.5 D.614.八边形的内角和等于()A.360°B.1080°C.1440°D.2160°15.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形二、填空题16.若一个正多边形的一个内角等于135°,那么这个多边形是正______边形.17.正多边形一个外角的度数是60°,则该正多边形的边数是______.18.正多边形的一个外角等于20°,则这个正多边形的边数是______.19.n边形的每个外角都等于45°,则n=______.20.一个多边形的内角和比外角和的3倍多180°,则它的边数是______.21.一个正多边形的一个外角等于30°,则这个正多边形的边数为______.22.五边形的内角和为______.23.四边形的内角和是______.24.若正多边形的一个外角为40°,则这个正多边形是______边形.25.内角和与外角和相等的多边形的边数为______.26.若正n边形的一个外角为45°,则n=______.27.四边形的内角和为______.28.如图,一个零件的横截面是六边形,这个六边形的内角和为______.29.某正n边形的一个内角为108°,则n=______.30.正多边形的一个外角是72°,则这个多边形的内角和的度数是______.第11章三角形参考答案一、选择题(共15小题)1.C;2.B;3.C;4.C;5.C;6.C;7.C;8.D;9.B;10.C;11.A;12.D;13.D;14.B;15.C;二、填空题(共15小题)16.八;17.六;18.18;19.8;20.9;21.12;22.540°;23.360°;24.九;25.四;26.8;27.360°;28.720°;29.5;30.540°;先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
八年级上册数学第一章试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3, b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 下列哪个数是负数?A. -3B. 0C. 3D. 65. 下列哪个数是立方数?A. 8B. 9C. 10D. 11二、判断题(每题1分,共5分)1. 2是偶数。
()2. 1是质数。
()3. -5是正数。
()4. 4的平方根是2。
()5. 1千等于1000。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 6的平方是______。
3. 10的立方是______。
4. 2的平方根是______。
5. 3的立方根是______。
四、简答题(每题2分,共10分)1. 请简述偶数和奇数的区别。
2. 请简述质数和合数的区别。
3. 请简述正数和负数的区别。
4. 请简述平方和立方的区别。
5. 请简述因数和倍数的区别。
五、应用题(每题2分,共10分)1. 小明有5个苹果,他吃掉了2个,还剩下多少个?2. 一个长方形的长度是6米,宽度是3米,求这个长方形的面积。
3. 一个正方形的边长是4厘米,求这个正方形的面积。
4. 一个数的平方是36,求这个数。
5. 一个数的立方是27,求这个数。
六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个数的平方是64,这个数是正数还是负数?为什么?2. 请分析并解答以下问题:一个数的立方是8,这个数是正数还是负数?为什么?七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。
2. 请用直尺和圆规画一个直径为6厘米的圆。
八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上的滚动摩擦小于滑动摩擦。
2. 设计一个电路,当温度超过一定阈值时,自动报警。
八年级数学(上)第一单元自主学习达标检测B 卷(时间90分钟 满分100分)班级学号得分一、填空题(每题2分,共32分)1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“一定”或“不一定”或“一定不”)2.如图,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =______. 3.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =____. 4.如图,已知AE ∥BF ,∠E =∠F ,要使△ADE ≌△BCF ,可添加的条件是__________. 5.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”. 6.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.7.如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个. 8.如图4,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______. 9.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4 cm ,则△DE F 的边AD ECBADE C BADOCBFE第2题图 第4题图 第5题图 第6题图ADOCBDE第7题图 第8题图中必有一条边等于______.10.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.11.如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.12.如图,已知在ABC 中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △的周长为cm .13.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:____ __.14.如图,沿AM 折叠,使D 点落在BC 上,如果AD =7cm ,DM =5cm ,∠DAM =30°,则AN =_________cm ,∠NAM =_________. .15.在△ABC 中,∠C =90°,BC =4cm ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.16.在数学活动课上,小明提出这样一个问题:∠B =∠C =900,E 是BC 的中点,DE平分∠ADC ,∠CED =350,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.二、解答题(共68分)ADC BADCBEE 第10题图 第11题图 第12题图B图4ABC MN第14题图 第16题图17.(5分)如图,已知AB与CD相交于O,∠A=∠D,CO=BO,求证:△AOC≌△DOB.18.(5分)如图,∠C=∠D,CE=DE.求证:∠BAD=∠ABC.19.(5分)如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.20.(5分)如图,公园有一条“Z”字形道路ABCD,EABDFC其中AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =,M 为BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.21.(5分)已知:如图11,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .22.(6分)如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE =④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明. 已知:求证:证明:ABCDE23.(5分)如图,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BA C .24.(5分)如图,以等腰直角三角形ABC 的斜边AB 与边面作等边△ABD ,连结DC ,以DC 当边作等边△DCE ,B 、E 在C 、D 的同侧,若AB =2,求BE 的长.25.(6分)阅读下题与证明过程:已知:如图,D 是△ABC 中BC 边上一点,E 是AD上一点,EB =EC ,∠ABE =∠ACE ,求证:∠BAE =∠CAE . 证明:在△AEB 和△AEC 中, ∵EB =EC ,∠ABE =∠ACE ,AE =AE , ∴△AEB ≌△AEC ……第一步CABE∴∠BAE =∠CAE ……第二步问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.26.(6分)如下图,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .27.(7分)如图16,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.ABC DE FADECBA ′2128.(8分)如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,(1)试判断ABC △与AEG △面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?AGFC BDE(图1)八年级数学(上)第一单元自主学习达标检B 卷一、填空题1.一定,一定不 2.50度 3.40度 4.AD=BC 5.HL 6.∠A=∠C 7.4 8.∠A=∠D ,∠B=∠C 9.9.5或4 10.5 11.8 12.15 13.正确 14.5,30度 15.1.5cm 16.35度 二、解答题17.略 18.略 19.略 20.在同一直线上 21.略 22.情况一:已知:AD BC AC BD ==,求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠)情况二:已知:D C DAB CBA ∠=∠∠=∠,求证:AD BC =(或AC BD =或CE DE =)23略 24.BF= 1 25.上面证明过程不正确; 错在第一步。
一、选择题1.如图,下列结论中正确的是( )A .12A ∠>∠>∠B .12A ∠>∠>∠C .21A ∠>∠>∠D .21A ∠>∠>∠ 2.一个多边形的外角和是360°,这个多边形是( )A .四边形B .五边形C .六边形D .不确定 3.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是( )A .5边形B .6边形C .7边形D .8边形4.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( ) A .12 B .10 C .9 D .6 5.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .66.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为( ) A .8 B .9C .10D .117.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90° 8.若一个多边形的每个内角都等于160°,则这个多边形的边数是( ) A .18 B .19 C .20 D .21 9.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( ) A .10B .8C .6D .410.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°11.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA12.如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是( )A .两点之间线段最短B .长方形的对称性C .长方形四个角都是直角D .三角形的稳定性二、填空题13.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .14.设三角形三内角的度数分别为,,x y z ︒︒︒,如果其中一个角的度数是另一个角的度数的2倍、那我们称数对(,)()y z y z <是x 的和谐数对,当150x =时,对应的和谐数对有一个,它为(10,20);当66x =时,对应的和谐数对有二个,它们是__________.当对应的和谐数对(,)y z 有三个时,请写出此时x 的范围_______. 15.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD 折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.16.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.17.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.18.一个多边形的内角和比它的外角和的3倍还多180°,则它是___________边形,从该多边形的一个顶点,可以引__________条对角线.19.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.20.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.三、解答题21.已知:如图,在△ABC 中,∠ACB=90°,AE 是角平分线,CD 是高,AE 、CD 相交于点F .(1)若∠DCB=48°,求∠CEF 的度数; (2)求证:∠CEF=∠CFE .22.如图,四边形ABCD 中,ABC ∠和BCD ∠的平分线交于点O . (1)如果130A ∠=︒,110D ∠=︒,求BOC ∠的度数; (2)请直接写出BOC ∠与A D ∠+∠的数量关系.23.已知一个多边形的内角和比它的外角和的3倍还多180度. (1)求这个多边形的边数;(2)求这个多边形的对角线的总条数.24.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.25.阅读材料在平面中,我们把大于180︒且小于360︒的角称为优角.如果两个角相加等于360︒,那么称这两个角互为组角,简称互组.(1)若1∠,2∠互为组角,且1135∠=︒,则2∠=______. 习惯上,我们把有一个内角大于180︒的四边形俗称为镖形.(2)如图,在镖形ABCD 中,优角BCD ∠与钝角BCD ∠互为组角,试探索内角A ∠,B ,D ∠与钝角BCD ∠之间的数量关系,并至少用两种以上的方法说明理由.26.如图,AD ,AE 分别是△ABC 的高和角平分线. (1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β).请直接写出用α、β表示∠DAE 的关系式 .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【分析】三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.【详解】解:∵∠2是△BCD的外角,∴∠2>∠1,∵∠1是△ABC的外角,∴∠1>∠A,∠>∠>∠.∴21A故选D.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.2.D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D.【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.3.D解析:D【分析】设多边形的边数是n,根据多边形的外角和是360°,以及多边形的内角和公式列出方程即可求解.【详解】解:设多边形的边数是n,则180(n﹣2)=3×360,解得:n=8.故选:D.【点睛】本题考查了多边形的内角和公式以及外角和定理,根据多边形的内角和公式以及外角和定理列出方程是解题关键.4.D解析:D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍,如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答.5.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.6.B解析:B【分析】逐一探究在三角形,四边形,五边形一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,得到分割成的三角形的数量,再总结规律,运用规律列方程即可得到答案. 【详解】 解:如图,探究规律:在三角形的一边上任取一点(不是顶点),将这个点与三角形的各顶点连接起来,可以将三角形分割成2个三角形,在四边形的一边上任取一点(不是顶点),将这个点与四边形的各顶点连接起来,可以将四边形分割成3个三角形,在五边形的一边上任取一点(不是顶点),将这个点与五边形的各顶点连接起来,可以将五边形分割成4个三角形, 总结规律:在n 边形的一边上任取一点(不是顶点),将这个点与n 边形的各顶点连接起来,可以将n 边形分割成()1n -个三角形,应用规律: 由题意得:18,n -=9.n ∴=故选:.B 【点睛】本题考查的是规律探究及规律运用,探究“在n 边形的一边上任取一点(不是顶点),将这个点与n 边形的各顶点连接起来,把n 边形分割成的三角形的数量”是解题的关键.7.C解析:C 【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠. 【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠, ∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒, 解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒, ∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒. 故选:C . 【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.8.A解析:A 【分析】设多边形的边数为n ,然后根据多边形的内角和公式(n−2)•180°列方程求解即可. 【详解】设多边形的边数为n ,由题意得,(n−2)•180=160•n , 解得:n =18, 故选:A . 【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.9.A解析:A 【分析】设这个多边形的边数为n ,根据内角和公式以及多边形的外角和为360°即可列出关于n 的一元一次方程,解方程即可得出结论. 【详解】解:设这个多边形的边数为n ,则该多边形的内角和为(n-2)×180°, 依题意得:(n-2)×180°=360°×4, 解得:n=10,∴这个多边形的边数是10. 故选:A 【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.10.B解析:B 【分析】根据平行线和三角形外角的性质即可求出C ∠的大小. 【详解】如图,设AE 和CD 交于点F , ∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等), ∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B . 【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键.11.C解析:C 【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高. 【详解】A.线段AE 是△ABC 的边BC 上的高,故不符合题意;B.线段BA 不是任何边上的高,故不符合题意;C.线段BD 是△ABC 的边AC 边上的高,故符合题意;D.线段DA 是△ABD 的边BD 上的高,故不符合题意; 故选C . 【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.12.D解析:D 【分析】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,据此即可判断是利用了三角形的稳定性. 【详解】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,利用了三角形的稳定性,D 正确. 故答案选D . 【点睛】本题比较简单主要考查三角形稳定性的实际应用,通常要使一些图形具有稳定的结构,往往是将其转化为三角形而获得.二、填空题13.12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可【详解】∵F 是CE 的中点∴∵E 是BD 的中点∴∴∴△ABC 的面积=故答案为:12【点睛】本题考查了三角形的面积主要利用了三角形的中线解析:12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵ F 是CE 的中点,23AEF S cm ∆=∴ 226ACE AEF S S cm ∆∆== ,∵ E 是BD 的中点,∴ ADE ABE S S ∆∆= ,CDE BCE S S ∆∆= , ∴12ACE ABC S S ∆∆= , ∴△ABC 的面积=212cm .故答案为:12.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.14.(3876)(3381)【分析】根据和谐数对的定义求出当x=66时的两组数对;再分当时当时当时三种情况讨论从而得出结论【详解】解:当时180-66=114则114÷3=3838×2=76此时和谐数对解析:(38,76),(33,81) 060x ︒<<︒【分析】根据“和谐数对”的定义求出当x=66时的两组数对;再分当060x ︒<<︒时,当60120x ︒<︒时,当120180x ︒<︒时,三种情况讨论,从而得出结论.【详解】解:当66x =时,180-66=114,则114÷3=38,38×2=76,此时和谐数对为(38,76),或66÷2=33,114-33=81,此时和谐数对为(33,81),若对应的和谐数对(,)y z 有三个,当060x ︒<<︒时,它的和谐数对有(1803,2)x x ︒-,3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-; 当60120x ︒<︒时,它的和谐数对有3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-,当120180x ︒<︒时,它的和谐数对有180(3x ︒-,2(180))3x ︒-, ∴对应的和谐数对(,)y z 有三个时,此时x 的范围是060x ︒<<︒,故答案为:(38,76),(33,81);060x ︒<<︒.【点睛】本题考查三角形内角和定理,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.15.25°【分析】先求出∠A 的度数再根据折叠的性质可得∠E 的度数根据平行线的性质求出∠ADE 的度数进而即可求解【详解】∵∴∠A=40°∵沿折叠后点B 落在点E 处∴∠E=∠B=50°∵∴∠ADE=∠E=50解析:25°【分析】先求出∠A 的度数,再根据折叠的性质可得∠E 的度数,根据平行线的性质求出∠ADE 的度数,进而即可求解.【详解】∵90,50ACB B ︒︒∠=∠=,∴∠A=40°,∵BCD △沿CD 折叠后,点B 落在点E 处,∴∠E=∠B=50°,∵//CE AB ,∴∠ADE=∠E=50°,∴∠BDC=∠EDC=(180°-50°)÷2=65°,∴∠ACD=∠BDC-∠A=65°-40°=25°,故答案是:25°.【点睛】本题主要考查折叠的性质,三角形外角的性质,平行线的性质,直角三角形的性质,掌握平行线的性质以及三角形外角的性质,是解题的关键. 16.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.17.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠, ∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.18.九六【分析】设边数为n 建立方程即可n 边形一个顶点引的对角线为(n-3)条【详解】解:设多边形的边数为n 则:解得:n=9对角线条数为n-3=6故答案为:9;6【点睛】本题考查多边形内角和与外角和关系以解析:九 六【分析】设边数为n ,建立方程即可,n 边形一个顶点引的对角线为(n-3)条.【详解】解:设多边形的边数为n,则:n-•=⨯+(2)1803603180解得:n=9对角线条数为n-3=6故答案为:9;6【点睛】本题考查多边形内角和与外角和关系,以及对角线的条数,属于基础题.19.540°【分析】连接AGGD先根据∠H+∠K=∠HGA+∠KAG∠E+∠F=∠EDG+∠FGD最后根据多边形的面积公式解答即可【详解】解:连接AGGD∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG、GD,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG、GD,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=∠BAK+∠B+∠C+∠CDE+∠EDG+∠FGD+∠MGN+∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.20.343【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积再根据两三角形的倍数关系求解即可【详解】△ABC与△A1BB1底相等(AB=A1B)高为1:2(BB1=2BC)故面积比为1:2∵解析:343【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1,∴112A BB S =△,同理可得11112C B C A C A S S ==△△, ∴1112317A B C S =⨯+=△;同理可证222111749A B C A B C S S ==△△,所以333749343A B C S =⨯=△,故答案为:343.【点睛】本题考查了图形面积的规律探究,准确找到每变化一次之后图形面积的变化规律是解决问题的关键.三、解答题21.(1)66°;(2)见解析【分析】(1)依据CD 是高,∠DCB=48°,即可得到∠B=42°,进而得出∠BAC=48°,再根据AE 是角平分线,即可得到∠BAE=12∠BAC=24°,进而得出∠CEF 的度数; (2)根据已知条件可得∠ACD=∠B ,∠BAE=∠CAE ,再根据三角形外角性质,即可得到∠CFE=∠CEF .【详解】(1)∵CD 是高,∠DCB=48°,∴∠B=42°,又∵∠ACB=90°,∴∠BAC=48°,又∵AE 是角平分线,∴∠BAE=12∠BAC=24°, ∴∠CEF=∠B+∠BAE=42°+24°=66°;(2)∵∠ACB=90°,CD ⊥AB ,∴∠ACD+∠BAC=∠B+∠BAC=90°,∴∠ACD=∠B ,∵AE 平分∠BAC ,∴∠BAE=∠CAE ,∵∠CFE 是△ACF 的外角,∠CEF 是△ABE 的外角,∴∠CFE=∠ACD+∠CAE ,∠CEF=∠B+∠BAE ,∴∠CFE=∠CEF .【点睛】本题主要考查了三角形角平分线的定义,三角形内角和定理以及三角形的外角性质的运用,解题时注意:同角的余角相等.22.(1)120°;(2)1()2BOC A D ∠=∠+∠ 【分析】(1)先由四边形内角和定理求出∠ABC+∠DCB=120°,再由角平分线定义得出∠OBC+∠OCB=60°,最后根据三角形内角和定理求出∠O=120°即可;(2)方法同(1)【详解】解:(1)∵∠A+∠ABC+∠BCD+∠D=360°,且∠A+∠D=130°+110°=240°,∴∠ABC+∠BCD=360°-(∠A+∠D )=360°-240°=120°,∵OB ,OC 分别是∠ABC 和∠BCD 的平分线, ∴∠OBC+∠OCB=111(221)1206220AB ABC DC C BCD B ∠+∠=⨯+∠︒=∠=︒ , ∴∠O=180°-(∠OBC+∠OCB )=180°-60°=120°; (2)1()2BOC A D ∠=∠+∠ 证明:在四边形ABCD 中,360A B C D ∠+∠+∠+∠=︒∴360()ABC DCB A D ∠+∠=︒-∠+∠∵OB ,OC 分别是∠ABC 和∠BCD 的平分线,∴∠OBC+∠OCB=1111((222)180)2ABC BCD AB D A C D CB ∠+∠=︒-∠∠=+∠∠+ ∴180(1)()2O BOC BC OCB A D ∠+∠=︒-∠=∠+∠ 【点睛】 此题主要考查了四边形内角和定理,三角形的内角和定理以及角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;一个角的角平分线把这个角分成两个大小相等的角.23.(1)9;(2)27【分析】(1)利用多边形的外角和为360°,根据内角和与外角和的关系及多边形内角和公式求出边数即可得答案;(2)根据多边形对角线条数公式计算即可得答案.【详解】(1)设多边形的边数为n ,∵多边形的外角和为360°,内角和比它的外角和的3倍还多180度,∴此多边形的内角和为360°×3+180°=1260°,∴(n-2)×180°=1260,解得:n=9,答:这个多边形的边数是9.(2)由(1)可知此多边形为9边形,∴从一个顶点可引出对角线9-3=6(条),∴这个多边形的对角线的总条数为6×9÷2=27(条),答:这个多边形的对角线的总条数为27条.【点睛】本题考查了多边形的内角与外角、多边形的对角线,掌握多边形的内角和定理、多边形的对角线的条数的计算公式是解题的关键.24.10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.25.(1)225°;(2)钝角∠BCD=∠A+∠B+∠D ,理由见解析.【分析】(1)根据互为组角的定义可知∠2=360°-∠1,代入数据计算即可;(2)理由①:根据四边形内角和定理可得∠A+∠B+优角∠BCD+∠D=360°,根据周角的定义可得优角∠BCD+钝角∠BCD=360°´,再利用等式的性质得出钝角∠BCD=∠A+∠B+∠D ; 理由②:连接AC 并延长,根据三角形外角的性质即可得出结论.【详解】解:(1)∵∠1、∠2互为组角,且∠1=135°,∴∠2=360°-∠1=225°,故答案为:225°;(2)钝角∠BCD=∠A+∠B+∠D .理由如下:理由①:∵在四边形ABCD 中,∠A+∠B+优角∠BCD+∠D=360°,又∵优角∠BCD+钝角∠BCD=360°´,∴钝角∠BCD=∠A+∠B+∠D ;理由②:如下图,连接AC 并延长,∵∠BAC+∠B=∠BCE ,∠DAC+∠D=∠DCE (三角形外角的性质),∴钝角∠BCD=∠BCE+∠DCE=∠BAC+∠B+∠DAC+∠D=∠A+∠B+∠D .【点睛】本题考查三角形的外角,四边形内角和.能正确作出辅助线,将四边形分成两个三角形是理由②的关键.26.(1)10︒;(2)1122βα- 【分析】(1)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案;(2)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案.【详解】(1)∵∠B =40°,∠C =60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC , ∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-. 【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键.。
八年级数学上册第一单元测试题(含答案)满分120分, 考试时间120分钟一、单选题(30分)1. 现有3cm、4cm、5cm、7cm长的四根木棒, 任选其中三根组成一个三角形, 那么可以组成三角形的个数是()A. 4B. 3C. 2D. 12. 如图, 工人师傅在安装木制门框时, 为防止变形常常钉上两根木条, 这样做的依据是()A.三角形具有稳定性B.两点之间, 线段最短C. 直角三角形的两个锐角互为余角D. 垂线段最短第2题图第3题图第4题图3. 如图, 在△ABC中, ∠1=∠2, G为AD的中点, BG的延长线交AC于点E, F为AB上的一点, CF与AD垂直, 交AD于点H, 则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 2个B. 3个C. 4个D. 1个4.如图, 若△ABC≌△DEF, 且BE=5, CF=2, 则BF的长为()A. 5B. 3C. 2D. 1.55.将一副常规的三角尺按如图方式放置, 则图中的度数为()A. B. C. D.第5题图第6题图第7题图6. 如图所示, △ABC≌△BAD, 点A与点B, 点C与点D是对应顶点, 如果∠DAB=50°, ∠DBA=40°, 那么∠DAC的度数为()A. 5°B. 10°C. 40°D. 50°7.如图, 若, 则添加下列一个条件后, 仍无法判定的是()A. B. C. D.8.如图, 、、分别是、、的中点, 若△BFD的面积是3, 则的面积是( )A. 6B. 18C. 24D. 12第8题图 第9题图 第10题图9. 如图, 点B.C.D 在同一直线上, AB CE, 若∠A =55°, ∠ACB =65°, 则∠1的值为( ) A. 80° B. 65° C. 55° D. 60° 10.如图, 在平面直角坐标系中, 点A(2, 0), B(0,4), 若以B, O, C 为顶点的三角形与△ABO 全等, 则点C 的坐标不能为( )A.(-2,0)B.(0,-4)C.(2,4)D.(-2,4) 二、填空题(24分)11. 如图, 七边形ABCDEFG 的对角线共有 ________条.第11题图 第13题图 第14题图 12. 已知BD 是 的中线, , , 且 的周长为16, 则 的周长为________. 13. 如图, 是直角三角形, , 是 的高, , , , 则AD 的长为_______.14. 如图, 在△ABC 中, D, E 分别是边AB, AC 上一点, 将△ABC 沿DE 折叠, 使点A 落在边BC 上, 若∠A =60°, 则∠1+∠2+∠3+∠4=______.15.如图, 点F 是△ABC 的边BC 延长线上一点, DF ⊥AB 于点D, ∠A =30°, ∠F =50°, ∠ACF 的度数是_____.第15题图 第16题图16. 如图, 一种测量工具, 点O 是两根钢条AC.BD 中点, 并能绕点O 转动.由三角形全等可得内槽宽AB 与CD 相等, 其中△OAB ≌△OCD 的依据是 (写出全等的简写)17.如图, ∠1, ∠2, ∠3是五边形ABCDE 的3个外角, 若 , 则 ________.第17题图 第18题图18. 如图, 方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上, 这样的三角形叫格点三角形, 图中与△ABC 全等的格点三角形共有__________个(不含△ABC). 三、解答题(66分)19. (8分)如图, 已知: AD 是△ABC 的角平分线, CE 是△ABC 的高, ∠BAC =60°, ∠BCE =40°, 求∠GABCD EFB C DAADB 的度数.20.(8分)如图, D 是AC 上一点, AB=DA,DE ∥AB, ∠B=∠DAE,求证: BC=AE21. (8分)如图所示, AC=AE, ∠1=∠2, AB=AD. 求证: BC=DE.22.(8分)如图所示, 是 的角平分线, 是 的外角平分线, 、 交于点 , 若 , 求的度数.23. (8分)如图, 四边形ABCD 中, BC=CD, CB ⊥AB 于B, CD ⊥AD 于D, 求证: AB=AD.24. (8分)某建筑测量队为了测量一栋居民楼ED 的高度, 在大树AB 与居民楼ED 之间的地面上选了一点C, 使B, C, D 在一直线上, 测得大树顶端A 的视线AC 与居民楼顶端E 的视线EC 的夹角为90°, 若AB=CD=24米, BD=64米, 请计算出该居民楼ED 的高度.DE A B C25. (9分)将一个凸边形剪去一个角得到一个新的多边形, 其内角和为1620°, 求的值.26.(9分)如图, 在四边形ABCD 中, AD∥BC, ∠ABC=90°, AD=12, BC=24, 动点 P 从点 A 出发以每秒1个单位的速度沿 AD 向点 D运动, 动点 Q 从点 C 出发以每秒 2 个单位的速度沿 CB 向点 B 运动, P, Q 同时出发, 当点 P 停止运动时, 点 Q 也随之停止, 连接PQ, DQ.设点 P 运动时间为 t 秒, 问当 t 为何值时, △PDQ ≌△CQD , 并证明△PDQ ≌△CQD答案一、单选题1. 现有3cm、4cm、5cm、7cm长的四根木棒, 任选其中三根组成一个三角形, 那么可以组成三角形的个数是()A. 4B. 3C. 2D. 1答案: B2.如图, 工人师傅在安装木制门框时, 为防止变形常常钉上两根木条, 这样做的依据是()A. 三角形具有稳定性B. 两点之间, 线段最短C. 直角三角形的两个锐角互为余角D. 垂线段最短答案: A第2题图第3题图第4题图3. 如图, 在△ABC中, ∠1=∠2, G为AD的中点, BG的延长线交AC于点E, F为AB上的一点, CF与AD垂直, 交AD于点H, 则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 2个B. 3个C. 4个D. 1个答案: A4.如图, 若△ABC≌△DEF, 且BE=5, CF=2, 则BF的长为()A. 5B. 3C. 2D. 1.5答案: D5.将一副常规的三角尺按如图方式放置, 则图中的度数为()A. B. C. D.答案: D第5题图第6题图第7题图6. 如图所示, △ABC≌△BAD, 点A与点B, 点C与点D是对应顶点, 如果∠DAB=50°, ∠DBA=40°, 那么∠DAC的度数为()A. 5°B. 10°C. 40°D. 50°答案: B7.如图, 若, 则添加下列一个条件后, 仍无法判定的是()A. B. C. D.答案: C8.如图, 、、分别是、、的中点, 若△BFD的面积是3, 则的面积是( )A. 6B. 18C. 24D. 12答案: C第8题图第9题图第10题图9. 如图, 点B.C.D在同一直线上, AB CE, 若∠A=55°, ∠ACB=65°, 则∠1的值为()A. 80°B. 65°C. 55°D. 60°答案: D10.如图, 在平面直角坐标系中, 点A(2, 0), B(0,4), 若以B, O, C为顶点的三角形与△ABO全等, 则点C的坐标不能为( )A.(-2,0)B.(0,-4)C.(2,4)D.(-2,4)答案: B二、填空题11. 如图, 七边形ABCDEFG的对角线共有________条.答案: 14第11题图第13题图第14题图12. 已知BD是的中线, , , 且的周长为16, 则的周长为________.答案: 1313.如图, 是直角三角形, , 是的高, , , , 则AD的长为_______.答案: 4.814.如图, 在△ABC中, D, E分别是边AB, AC上一点, 将△ABC沿DE折叠, 使点A 落在边BC上, 若∠A =60°, 则∠1+∠2+∠3+∠4=______.答案: 240°15.如图, 点F是△ABC的边BC延长线上一点, DF⊥AB于点D, ∠A=30°, ∠F=50°, ∠ACF的度数是_____.答案: 70°第15题图第16题图16. 如图, 一种测量工具, 点O是两根钢条AC.BD中点, 并能绕点O转动.由三角形全等可得内槽宽AB 与CD相等, 其中△OAB≌△OCD的依据是(写出全等的简写)答案: SAS17.如图, ∠1, ∠2, ∠3是五边形ABCDE的3个外角, 若, 则________.答案: 210°第17题图第18题图18. 如图, 方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上, 这样的三角形叫格点三角形, 图中与△ABC全等的格点三角形共有__________个(不含△ABC).答案: 7三、解答题19. 如图, 已知: AD是△ABC的角平分线, CE是△ABC的高, ∠BAC=60°, ∠BCE=40°, 求∠ADB的度数.【解析】∵CE是△ABC的高∴∠BEC=90°△BEC为直角三角形∵∠BCE=40°∴∠B=90°-∠BCE=90°-40°=50°∵∠BAC=60°, AD是△ABC的角平分线∴1302BAD BAC∠=∠=︒在△ADB 中, ∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°20.如图,D 是AC 上一点,AB=DA,DE ∥AB, ∠B=∠DAE,求证:BC=AE 【解析】 ∵DE ∥AB∴∠EDA=∠CAB在△ADE 和△BAC 中EDA CAB DA AB DAE B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BAC(ASA) ∴AE=BC21. 如图所示, AC=AE, ∠1=∠2, AB=AD. 求证: BC=DE. 【解析】 ∵∠1=∠2∴∠1+∠EAB=∠2+∠EAB 即∠CAB=∠EAD 在△CAB 和△EAD 中AC AE CAB EAD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CAB ≌△EAD(SAS) ∴BC=DE22.如图所示, 是 的角平分线, 是 的外角平分线, 、 交于点 , 若 , 求 .【解析】∵ACE A ABC ∠=∠+∠∵ ,∴12DCE A DBC ∠=∠+∠∵DCE D DBC ∠=∠+∠ ∴ , 即 . 【答案】35︒23. 如图, 四边形ABCD 中, BC=CD, CB ⊥AB 于B, CD ⊥AD 于D, 求证: AB=AD. 【解析】连接AC ∵CB ⊥AB, CD ⊥AD∴△CBA 和△CDA 为直角三角形 在Rt △CBA 和Rt △CDA 中AC AC BC DC =⎧⎨=⎩∴Rt △CBA ≌Rt △CDA (HL) ∴AB=AD24. 某建筑测量队为了测量一栋居民楼ED 的高度, 在大树AB 与居民楼ED 之间的地面上选了一点C, 使B, C, D 在一直线上, 测得大树顶端A 的视线AC 与居民楼顶端E 的视线EC 的夹角为90°, 若AB=CD=24米, BD=64米, 请计算出该居民楼ED 的高度.【解析】根据题意∠ABC=∠CDE=∠ACE=90°DEABC∴∠ACB+∠ECD=90°在Rt △ABC 中, ∠ACB+∠CAB=90° ∴∠CAB=∠ECD 在△ABC 和△CDE 中CAB ECD AB CDABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE(ASA) ∴BC=DE∵BC=BD-CD=64-24=40 ∴DE=4025. 将一个凸 边形剪去一个角得到一个新的多边形, 其内角和为1620°, 求 的值. 【解析】分三张情况,(1)剪去一个角后得到的新多边形边数少1, 如图所示:(3)1801620n -⋅︒=︒解得n=12(2)剪去一个角后得到的新多边形边数不变, 如图所示:(2)1801620n -⋅︒=︒解得n=11(3)剪去一个角后得到的新多边形边数多1, 如图所示:(21)1801620n -+⋅︒=︒解得n=10所以n 的值为12, 11或1026.如图, 在四边形ABCD 中, AD ∥BC, ∠ABC=90°, AD=12, BC=24, 动点 P 从点 A 出发以每秒1个单位的速度沿 AD 向点 D 运动, 动点 Q 从点 C 出发以每秒 2 个单位的速度沿 CB 向点 B 运动, P, Q 同时出发, 当点 P 停止运动时, 点 Q 也随之停止, 连接PQ, DQ 。
人教版八年级数学上册全册单元测试卷(含答案)第十一章三角形是初中数学中的重要概念之一,本章主要介绍三角形的定义、分类、性质以及相关定理。
首先,三角形是由三条线段组成的图形,其中每条线段都是三角形的一条边,而三条边的交点称为三角形的顶点。
根据三角形的边长和角度大小,我们可以将三角形分为不同的类型,如等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等。
其次,全等三角形是指在形状和大小上完全相同的两个三角形,它们的对应边和对应角都相等。
全等三角形有很多应用,比如在证明几何定理时经常会用到。
第十二章轴对称是初中数学中的一个重要概念,它是指一个图形关于某条直线对称后完全重合的情况。
轴对称可以分为水平轴对称和垂直轴对称两种情况,对称轴是指图形中被对称的那条直线。
轴对称有很多应用,比如在绘制图形、证明几何定理和解决实际问题时都会用到。
第十三章整式的乘法与因式分解是初中数学中的一个重要知识点,它涉及到多项式的基本运算和分解。
整式是由常数、变量和它们的乘积以及它们的各项次幂所构成的代数式,而整式的乘法和因式分解则是对多项式进行拆分和组合的过程,能够帮助我们更好地理解和应用代数式。
第十四章分式是初中数学中的一个重要概念,它是指由两个整式相除所得到的代数式。
分式可以分为真分式、带分式和整式三种情况,其中真分式是指分子次数小于分母次数的分式,带分式是指分子次数大于等于分母次数的分式,而整式则是指分母为常数的分式。
分式在数学中有着广泛的应用,比如在解方程、证明定理和计算实际问题时都会用到。
第十五章三角形单元测试是初中数学中的一种测试形式,它主要考察学生对于三角形相关知识和技能的掌握情况。
本测试共有10道选择题,每道题目有4个选项,只有一个选项是正确的。
测试时间为90分钟,满分为100分。
通过三角形单元测试,学生可以了解自己在三角形方面的薄弱环节,并及时进行补充和提高。
二、填空题11.x的取值范围是 1<x<312.可以构成 4 个三角形13.∠A+∠B+∠C+∠D+∠E+∠F等于 540°14.如果一个正多边形的内角和是900°,则这个正多边形是正 10 边形15.n=816.需要安排 3 种不同的车票17.得到的图形是正三角形,它的内角和(按一层计算)是 360°18.∠BOC的度数是 80°三、解答题19.因为BD平分∠ABC,所以∠CBD=∠ABD=40°又因为DA⊥AB,所以∠ADB=90°-∠ABD=50°所以∠C=∠CBD+∠ADB=40°+50°=90°20.(1) 画出△XXX的外角∠BCD后,再画出∠BCD的平分线CE,如图:image.png](/upload/image_hosting/edn2j1v0.png)2) 由于∠A=∠B,所以∠ACB=∠ABC,而∠BCD是△ABC的外角,所以∠BCD=∠ACB+∠ABC又因为CE是∠BCD的平分线,所以∠ECD=∠DCB,所以∠ECD+∠XXX∠BCD即∠ECD+∠XXX∠ACB+∠ABC又因为∠ACB=∠ABC,所以∠ECD=∠DCB所以CE∥AB21.(1) 如图:image.png](/upload/image_hosting/1a0z4h2p.png)ABC+∠ACB=30°+90°=120°XXX∠XXX∠ABC+∠XXX-∠XXX-∠XCB=120°-90°-30°=0°2) ∠ABX+∠ACX的大小不变,因为它们与三角板XYZ 的位置无关,只与△ABC的角度有关,而△XXX的角度没有变化。
一、选择题1.已知实数x 、y 满足|x -4|+ 8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .182.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒ 3.下列四组线段中,不可以构成三角形的是( )A .4,5,6B .1.5,2,2.5C .13,14,15D .1,2,3 4.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是( ) A .5边形 B .6边形 C .7边形 D .8边形 5.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°6.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .87.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 8.在ABC 中,若B 与C ∠互余,则ABC 是( )三角形 A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 9.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒ 10.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC 与直线b 交于点D ,若135∠=︒,则2∠的度数为( )A .35︒B .45︒C .65︒D .75︒ 11.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( ) A .4、5、6 B .3、4、5 C .2、3、4 D .1、2、3 12.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .40二、填空题13.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.14.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________15.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.16.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.17.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.18.如图,△ABC 中,D 为BC 边上的一点,BD :DC=2:3,△ABC 的面积为10,则△ABD 的面积是_________________19.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)20.把一副直角三角板按如图所示的方式摆放在一起,其中90C =∠,90F ∠=,30D ∠=,45A ∠=,则12∠+∠等于___________度.三、解答题21.△ABC 中,三个内角的平分线交于点O ,过点O 作OD ⊥OB ,交边BC 于点D .(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=35°,求∠BAC的度数.22.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2,∠B<∠C,则DAE、∠B,∠C之间的数量关系为___________;(3)如图3,延长AC到点F,∠CAE和∠BCF的角平分线交于点G,求∠G的度数.23.如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,FC的延长线与五边形ABCDE外角平分线相交于点P,求∠P的度数24.如图,△ABC中,D为AC上一点,且∠ADB=∠ABC=α(0°<α<180°),∠ACB的角平分线分别交BD、BA于点E、F.(1)若α=90°,判断∠BEF和∠BFE的大小关系并说明理由;(2)是否存在α,使∠BEF大于∠BFE?如果存在,求出α的范围,如果不存在,请说明理由.25.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式.26.平面内,四条线段AB,BC,CD,DA首尾顺次连接,∠ABC=24°,∠ADC=42°.(1)∠BAD和∠BCD的角平分线交于点M(如图1),求∠AMC的大小.(2)点E在BA的延长线上,∠DAE的平分线和∠BCD平分线交于点N(如图2),求∠ANC.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.2.C解析:C【分析】根据平行线的性质求出140∠=︒,根据三角形内角和定理计算,得到答案.【详解】解:∵//AB CD ,40B ∠=︒,50C ∠=︒,∴140B ∠=∠=︒,∴ 1801180405090E C ∠=︒-∠-∠=︒-︒-︒=︒.故选:C【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.3.D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形; ∵14+15>13, ∴能构成三角形;∵2<1+2=3,故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键. 4.D解析:D【分析】设多边形的边数是n ,根据多边形的外角和是360°,以及多边形的内角和公式列出方程即可求解.【详解】解:设多边形的边数是n ,则180(n ﹣2)=3×360,解得:n =8.故选:D .【点睛】本题考查了多边形的内角和公式以及外角和定理,根据多边形的内角和公式以及外角和定理列出方程是解题关键.5.A解析:A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.A【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC , ∴S △ABE +S △ACE =12S △ABC =12×20=10cm 2, ∴S △BCE =12S △ABC =12×20=10cm 2, ∵点F 是CE 的中点, ∴S △BEF =12S △BCE =12×10=5cm 2. 故选:A .【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.7.C解析:C【分析】根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.8.B解析:B【分析】由B 与C ∠互余,结合180A B C ∠+∠+∠=︒,求解A ∠,从而可得答案.∠互余,解:B与CB C∴∠+∠=︒,90∠+∠+∠=︒,A B C180A∴∠=︒,90∴是直角三角形,ABC故A、C、D不符合题意,B符合题意,故选:B.【点睛】本题考查的是两个角互余的概念,三角形的内角和定理的应用,二元一次方程组的解法,掌握以上知识是解题的关键.9.B解析:B【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA=60︒,∠BAE=45︒,∴∠ADE= 180︒−∠CEA−∠BAE=75︒,∴∠BDC=∠ADE=75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.10.C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.11.D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D 、4+5>6,能组成三角形,故此选项错误;B 、3+4>5,能组成三角形,故此选项错误;A 、2+3>4,能组成三角形,故此选项错误;D 、1+2=3,不能组成三角形,故此选项正确;故选:D .【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.12.D解析:D【分析】由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.二、填空题13.19【分析】根据从n 边形的一个顶点出发连接这个点与其余各顶点可以把一个n 边形分割成(n-2)个三角形的规律作答【详解】解:∵一个多边形从一个顶点出发连接其余各顶点可以把多边形分成(n-2)个三角形∴解析:19【分析】根据从n 边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n 边形分割成(n-2)个三角形的规律作答.【详解】解:∵一个多边形从一个顶点出发,连接其余各顶点,可以把多边形分成(n-2)个三角形, ∴n -2=17,∴19n =.故答案为:19.【点睛】本题主要考查多边形的性质,解题关键是熟记多边形顶点数与分割成的三角形个数的关系.14.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.15.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.16.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=1×90°=45°,2∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键.17.74°【分析】先根据三角形的内角和定理求得∠ACB的度数再根据CE平分∠ACB求得∠ACE的度数则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE再结合CD⊥ABDF⊥CE就可求解【详解】解:解析:74°【分析】先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【详解】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∵CD⊥AB,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=∠CED=74°,故答案为:74°.【点睛】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.18.4【分析】利用面积公式可得出△ABD与△ABC等高只需求出BD与BC的比值即可求出三角形ABD的面积【详解】解:∵BD:DC=2:3∴BD=BC△ABD 的面积=BD•h=× BC•h=△ABC的面积解析:4【分析】利用面积公式可得出△ABD与△ABC等高,只需求出BD与BC的比值即可求出三角形ABD 的面积.【详解】解:∵BD:DC=2:3,∴BD=25BC.△ABD的面积=12BD•h=12×25BC•h=25△ABC的面积=25×10=4.故答案为:4.【点睛】本题考查了三角形面积公式以及根据公式计算三角形面积的能力.19.直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数即可得出答案【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°答:这个三角形中最大的角是直角故答案为:直角解析:直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°,答:这个三角形中最大的角是直角.故答案为:直角.【点睛】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角的度数是解此题的关键,注意:三角形的内角和等于180°.20.210【分析】由题意得:∠1=∠D+∠DGA∠2=∠F+∠FHB然后由对顶角相等的性质得∠1=∠D+CGH∠2=∠F+∠CHG最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值【详解】解:如图给解析:210【分析】由题意得:∠1=∠D+∠DGA,∠2=∠F+∠FHB,然后由对顶角相等的性质得∠1=∠D+CGH,∠2=∠F+∠CHG,最后由直角三角形两锐角互余的性质可以算出∠1+∠2的值.【详解】解:如图,给两三角板的两个交点标上G、H符号,则∠1=∠D+∠DGA=∠D+CGH,∠2=∠F+∠FHB=∠F+∠CHG,∴∠1+∠2=∠D+CGH+∠F+∠CHG=∠D+∠F+(CGH+∠CHG)=30°+90°+90°=210°,故答案为210 .【点睛】本题考查直角三角形的应用,灵活运用直角三角形两锐角互余、三角形的外角性质和对顶角相等的定理求解是解题关键.三、解答题21.(1)∠AOC=∠ODC,理由见解析;(2)①见解析;②70°【分析】(1)根据角平分线的定义得到∠OAC+∠OCA=12(180°−∠ABC),∠OBC=12∠ABC,由三角形的内角和得到∠AOC=90°+∠OBC,∠ODC=90°+∠OBD,于是得到结论;(2)①由角平分线的性质得到∠EBF=90°−∠DBO,由三角形的内角和得到∠ODB=90°−∠OBD,于是得到结论;②由角平分线的性质得到∠FBE=12(∠BAC+∠ACB),∠FCB=12ACB,根据三角形的外角的性质即可得到结论.【详解】(1)∠AOC=∠ODC,理由:∵三个内角的平分线交于点O,∴∠OAC+∠OCA=12(∠BAC+∠BCA)=12(180°﹣∠ABC),∵∠OBC=12∠ABC,∴∠AOC=180°﹣(∠OAC+∠OCA)=90°+12∠ABC=90°+∠OBC,∵OD⊥OB,∴∠ODC=90°+∠OBD,∴∠AOC=∠ODC;(2)①∵BF平分∠ABE,∴∠EBF=12∠ABE=12(180°﹣∠ABC)=90°﹣∠DBO,∵∠ODB=90°﹣∠OBD,∴∠FBE=∠ODB,∴BF∥OD;②∵BF平分∠ABE,∴∠FBE=12∠ABE=12(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=12∠ACB,∵∠F=∠FBE﹣∠BCF=12(∠BAC+∠ACB)﹣12∠ACB=12∠BAC,∵∠F=35°,∴∠BAC=2∠F=70°.【点睛】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.22.(1)10°;(2)∠DAE=12(∠C−∠B);(3)45°.【分析】(1)根据三角形的内角和定理可求得∠BAC=80°,由角平分线的定义可得∠CAD的度数,利用三角形的高线可求∠CAE得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)设∠ACB=α,根据角平分线的定义得∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∵∠C=60°,∴∠CAE=90°−60°=30°,∴∠DAE=∠CAD−∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°−∠B−∠C,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°−∠C,∴∠DAE=∠CAD−∠CAE=12∠BAC−(90°−∠C)=12(180°−∠B−∠C)−90°+∠C=1 2∠C−12∠B,即∠DAE=12(∠C−∠B).故答案为:∠DAE=12(∠C−∠B).(3)设∠ACB=α,∵AE⊥BC,∴∠EAC=90°−α,∠BCF=180°−α,∵∠CAE和∠BCF的角平分线交于点G,∴∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,∵∠FCG=∠G+∠CAG,∴∠G=∠FCG −∠CAG=90°−12α−(45°−12α)=45°.【点睛】本题考查了三角形的内角和定理、三角形的高及角平分线等知识,熟练掌握三角形内角和定理并能灵活运用三角形的高、角平分线这些知识解决问题是关键.23.∠P=25°.【分析】延长ED,BC相交于点G.由四边形内角和可求∠G=50°,由三角形外角性质可求∠P度数.【详解】解:延长ED,BC相交于点G.在四边形ABGE中,∵∠G=360°-(∠A+∠B+∠E)=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=12∠G=12×50°=25°.【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.24.(1)∠BEF=∠BFE,理由见解析;(2)存在,90°<α<180°【分析】(1)根据余角的定义得到∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,根据角平分线的定义得到∠DCE=∠BCF,等量代换得到∠BEF=∠BFC,于是得到∠BEF=∠BFE;(2)根据角的和差和三角形的内角和定理即可得到结论.【详解】(1)∠BEF=∠BFE;理由:∵∠ADB=∠ABC=90°,∴∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,∵CF平分∠ACB,∴∠DCE=∠BCF,∴∠DEC=∠BFC,∵∠DEC=∠BEF,∴∠BEF=∠BFC,即∠BEF=∠BFE;(2)∵∠BEF=∠EBC+∠ECB,∠BFE=∠A+∠ACF,∠ECB=∠ACF,∴∠BEF-∠BFE=(∠EBC+∠ECB)-(∠A+∠ACF)=∠EBC-∠A,∵∠EBC=∠ABC-∠ABD=α-∠ABD ,∠A=180°-∠ADB-∠ABD=180°-α-∠ABD ,∴∠BEF-∠BFE=(α-∠ABD )-(180°-α-∠ABD )=2α-180°,若∠BEF >∠BFE ,则∠BEF ﹣∠BFE >0,即2α﹣180°>0,∴α>90°,∴90°<α<180°.【点评】本题考查了三角形的内角和定理,角平分线的定义,余角的性质,正确的理解题意是解题的关键.25.(1)10︒;(2)1122βα- 【分析】(1)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案;(2)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案.【详解】(1)∵∠B =40°,∠C =60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC ,∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-.【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键. 26.(1)33°;(2)123°【分析】(1)AM 与BC 交于E ,AD 与MC 交于F ,利用角平分线性质和三角形外角性质可得,BEM ∠是ABE △和MCE 的外角,MFD ∠是MAF △和FCD 的外角,列出关于AMC ∠的方程组,计算得出AMC ∠的度数.(2)AN 与BC 交于点G ,AD 与BC 交于点F ,根据角平分线性质和三角形外角性质可得,BFD ∠是ABF 和FCD 的外角,AGC ∠是NGC 和ABG 的外角,列出关于ANC ∠的方程组,计算得出ANC ∠的度数.【详解】解:(1)AM 与BC 相交于E ,AD 与MC 相较于F ,如图:∵MA 和MC 是∠BAD 和∠BCD 的角平分线,∴设∠BAM=∠MAD=a ,∠BCM=∠MCD=b ,∵∠BEM 是△ABE 和△MCE 的外角,∴∠M+∠BCM=∠B+∠BAM ,即:∠M+b=24°+a①,又∵∠MFD 是△MAF 和△CDF 的外角,可得∠M+a=42°+b②,①式+②式得2∠M=24°+42°,解得:∠M=33°,∴=33AMC ∠︒.(2)AN 与BC 相交于G ,AD 与BC 相较于F ,如图:∵NA 和NC 是∠EAD 和∠BCD 的角平分线,∴设∠EAN=∠NAD=m ,∠BCN=∠NCD=n ,∵∠BFD 是△ABF 和△FCD 的外角,∴∠B+∠BAD=∠D+∠BCD ,即:24°+(180°-2m )=42°+2n ,可得m+n=81°①,又∵∠AGC 是△NGC 和△ABG 的外角,可得∠N+n=24°+(180°-m ),得∠N=204°-(m+n )②,①式代入②式,得∠N=204°-81°=123°,∴123ANC ∠=︒.【点睛】本题考查了角平分线的性质和三角形外角性质,用设未知数列方程组的方法计算角度是解题关键.。
一、选择题1.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质( )A .三角形两边之和大于第三边B .三角形具有稳定性C .三角形的内角和是180D .直角三角形两个锐角互余 2.已知实数x 、y 满足|x -4|+ 8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .183.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 4.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个 5.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35°6.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 7.下列长度的三条线段能组成三角形的是( ) A .3,3,4 B .7,4,2 C .3,4,8 D .2,3,5 8.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒9.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC 与直线b 交于点D ,若135∠=︒,则2∠的度数为( )A .35︒B .45︒C .65︒D .75︒ 10.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm 11.正十边形每个外角等于( ) A .36°B .72°C .108°D .150° 12.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .8 二、填空题13.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.14.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.15.如图1,△ABC 中,有一块直角三角板PMN 放置在△ABC 上(P 点在△ABC 内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C .若∠A =52°,则∠1+∠2=__________;16.七边形的外角和为________.17.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.18.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.19.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.20.多边形每一个内角都等于90︒,则从此多边形一个顶点出发的对角线有____条.三、解答题21.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.22.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.23.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.24.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.25.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数. 26.如图,AB ∥CD ,点E 是CD 上一点,连结AE .EB 平分∠AED ,且DB ⊥BE ,AF ⊥AC ,AF 与BE 交于点M .(1)若∠AEC=100°,求∠1的度数;(2)若∠2=∠D,则∠CAE=∠C吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的稳定性可以解决.【详解】因为三角形具有稳定性,手机支架与桌面形成了一个三角形,所以是利用了三角形的稳定性.故选:B.【点睛】本题考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.3.D解析:D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D .【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.4.C解析:C【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,G60E ∠=︒,180306090AGE ∴∠=︒-︒-︒=︒,45,B C ∠=∠=︒4904545.AGE B ∴∠=∠-∠=︒-︒=︒4.C ∴∠=∠ 故④符合题意,综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.5.C解析:C【分析】根据三角形内角和求出∠ABC 的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC 中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∵BD 平分ABC ∠,∴∠ABD=∠CBD=12∠ABC=30°, ∵//DE BC ,∴BDE ∠=∠CBD=30°,故选C .【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键. 6.C解析:C【分析】根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.7.A解析:A【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A 、3+3>4,能构成三角形,故此选项正确;B 、4+2<7,不能构成三角形,故此选项错误;C 、3+4<8,不能构成三角形,故此选项错误;D 、2+3=5,不能构成三角形,故此选项错误.故选:A .【点睛】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.B解析:B【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.9.C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∵135∠=︒,∠B=30°∴∠3=∠1+∠B=35°+30°=65°∵//a b∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.10.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.11.A解析:A【分析】根据正十边形的外角和等于360︒,每一个外角等于多边形的外角和除以边数,即可得解.【详解】3601036︒÷=︒,∴正五边形的每个外角等于36︒,故选:A.【点睛】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形以上三者之间的关系是解题的关键.12.D解析:D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×3,解得n=8.故选:D.【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.二、填空题13.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C∴∠C=6解析:30︒【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.14.【分析】根据求出根据多边形内角和公式求出五边形的内角和即可得到答案【详解】∵∴∵五边形内角和=∴==故答案为:【点睛】此题考查两直线平行同旁内角互补多边形内角和公式熟记多边形内角和计算公式是解题的关键 解析:360︒【分析】根据//AE BC 求出180A B ∠+∠=︒,根据多边形内角和公式求出五边形ABCDE 的内角和,即可得到答案.【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.【点睛】此题考查两直线平行同旁内角互补,多边形内角和公式,熟记多边形内角和计算公式是解题的关键.15.38°【分析】根据三角形内角和定理易求∠ABC +∠ACB 的度数已知∠P =90°根据三角形内角和定理易求∠PBC +∠PCB 的度数进而得到∠1+∠2的度数【详解】∵∠A =52°∴∠ABC +∠ACB =18解析:38°【分析】根据三角形内角和定理易求∠ABC +∠ACB 的度数.已知∠P =90°,根据三角形内角和定理易求∠PBC +∠PCB 的度数,进而得到∠1+∠2的度数.【详解】∵∠A =52°,∴∠ABC +∠ACB =180°−52°=128°,∵∠P =90°,∴∠PBC +∠PCB =90°,∴∠ABP +∠ACP =128°−90°=38°,即∠1+∠2=38°.故答案为:38°.【点睛】本题考查的是三角形内角和定理以及直角三角形的性质等知识,注意运用整体法计算,解决问题的关键是求出∠ABC+∠ACB,∠PBC+∠PCB的度数.16.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键;17.125°【分析】求出O为△ABC的三条角平分线的交点求出∠OBC=∠ABC∠OCB=∠ACB根据三角形内角和定理求出∠ABC+∠ACB求出∠OBC+∠OCB再根据三角形内角和定理求出∠BOC的度数即解析:125°【分析】求出O为△ABC的三条角平分线的交点,求出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,再根据三角形内角和定理求出∠BOC的度数即可;【详解】∵在△ ABC中,点O是△ABC内的一点,且点O到△ ABC三边距离相等,∴ O为△ABC的三条角平分线的交点,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-∠OBC-∠OCB=125°,故答案为:125°.【点睛】本题考查了角平分线的有关计算,三角形内角和定理的应用,能正确掌握与角平分线有关的三角形内角和问题是解题的关键;18.35°【分析】先求出等边三角形正方形正五边形的内角度数再根据三角形的外角和为360°即可求解【详解】∵等边三角形的内角度数是60°正方形的度数是90°正五边形的度数是∴∠3=360°-60°-90°解析:35°【分析】先求出等边三角形,正方形,正五边形的内角度数,再根据三角形的外角和为360°,即可求解.【详解】∵等边三角形的内角度数是60°,正方形的度数是90°,正五边形的度数是(52)1801085-⨯︒=︒, ∴∠3=360°-60°-90°-108°-∠1-∠2=360°-60°-90°-108°-47°-20°=35°,故答案是:35°【点睛】本题主要考查正多边形的内角和以及外角和定理,准确分析图形中角的数量关系,是解题的关键.19.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.20.1【分析】先根据多边形内角和公式求出它是几边形就可以得到结果【详解】解:设这个多边形是n 边形解得∴是四边形∴从一个顶点出发的对角线有1条故答案是:1【点睛】本题考查多边形内角和公式解题的关键是掌握多 解析:1【分析】先根据多边形内角和公式求出它是几边形,就可以得到结果.【详解】解:设这个多边形是n 边形,()180290n n ︒-=︒,解得4n =,∴是四边形,∴从一个顶点出发的对角线有1条.故答案是:1.【点睛】本题考查多边形内角和公式,解题的关键是掌握多边形的内角和公式.三、解答题21.(1)72︒;(2)40︒.【分析】(1)根据角平分线的定义可得∠ADP=12ADC ∠ ,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF ,∠CBP=∠PBA ,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,所以∠A+∠C=2∠P ,即可得解.【详解】解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC ∠, ∵60ADC ∠=︒,∴30ADP ∠=︒,∴304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.22.(1)EG ⊥FG ,证明见解析;(2)A .45;B .2EOF EPF ∠=∠(在A 、B 两题中任选一题即可)【分析】(1)由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的定义可得90GEF GFE ∠+∠=︒,由三角形内角和定理可得∠G =90︒,则EG FG ⊥; (2)A .由(1)可知90BEG DFG ∠+∠=︒,根据角平分线的定义可得45MEG MFG ∠+∠=︒,故135MEF MFE ∠+∠=︒,根据三角形的内角和即可求出EMF ∠=45︒;B .设OEF α∠=,OFE β∠=,故EOF ∠=180αβ︒--,再得到180BEO DFO αβ∠+∠=--︒,根据角平分线的定义可得190122PEO PFO αβ︒-∠+∠=-,则119022PEF PFE αβ∠+∠=︒++,再求出EPF ∠,即可比较得到结论.【详解】解:(1)由题意可得,求证:“EG ⊥FG”,证明过程如下∵//AB CD∴∠BEF +∠EFD=180° EG 平分BEF ∠,FG 平分DFE ∠,12GEF BEF ∴∠=∠,12GFE DFE ∠=∠, 1111()180902222GEF GFE BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+⨯︒∠==︒. 在EFG 中,180GEF GFE G ∠+∠+∠=︒,180()1809090G GEF GFE ∴∠=-∠+∠=-︒=︒︒︒,EG FG ∴⊥.(2)A .由(1)可知=90BEG DFG GEF GFE ∠+∠=∠+∠︒,∵BEG ∠的平分线与DFG ∠的平分线交于点M∴∠MEG=12∠BEG ,∠MFG=12∠DFG ∴()111190452222MEG MFG BEG DFG BEG DFG ∠+∠=∠+∠=∠+∠=⨯︒=︒ 则4591350MEF MFE ︒+∠︒=+∠=︒, ∴EMF ∠=180135︒-︒=45︒故答案为:A ,45;B.设OEF α∠=,OFE β∠=,∴EOF ∠=180αβ︒--,∵//AB CD∴∠BEF +∠EFD=180°则180BEO DFO αβ∠+∠=--︒∵BEO ∠的平分线与DFO ∠的平分线交于点P ∴190122PEO PFO αβ︒-∠+∠=-, ∴111190902222PEF PFE αβαβαβ∠+∠=︒--++=︒++, ∴EPF ∠=111809022αβ⎛⎫︒-︒++ ⎪⎝⎭=121902αβ︒--, ∵EOF ∠=1118029022αβαβ⎛⎫︒--=︒-- ⎪⎝⎭, 故2EOF EPF ∠=∠故答案为:B ,2EOF EPF ∠=∠.(在A 、B 两题中任选一题即可)【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握平行线的性质和角平分线的定义是解题的关键. 23.21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 24.(1)120°;(2)36°.【分析】(1)根据角平分线的定义求出∠ACB ,再根据三角形的内角和定理列式计算即可得解; (2)设∠A=∠ACB=x ,根据直角三角形两锐角互余求出∠CDE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列方程求解即可.【详解】(1)∵CD 为△ABC 的角平分线,∴∠ACB=2∠DCB=2×15°=30°,∵∠A=∠ACB ,∴∠CBD=180°-∠A-∠ACB=180°-30°-30°=120°;(2)设∠A=∠ACB=x ,∵CE 是△ABC 的高,∠DCE=36°,∴∠CDE=90°-36°=54°,∵CD 为△ABC 的角平分线,∴∠ACD=12∠ACB=12x , 由三角形的外角性质得,∠CDE=∠A+∠ACD , ∴1542x x +=︒, 解得x =36°,即∠ACB=36°.【点睛】 本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 25.(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE ,根据平行线的性质得出∠2=∠ADE ,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE 的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B ,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE ,∴AC//DE ,∴∠2=∠ADE ,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF ;(2)∵∠1=∠BDE ,∠1=40°,∴∠BDE=40°,∵DA 平分∠BDE ,∴∠ADE=12∠BDE=20°, ∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE ⊥AF ,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.26.(1)40°;(2)∠CAE=∠C,理由见解析.【分析】(1)根据邻补角的定义可求∠AED,再根据角平分线的定义和平行线的性质可求∠1的度数;(2)根据三角形内角和定理可求∠BED=∠C,根据平行线的判定可知AC∥BE,根据平行线的性质可得∠CAE=∠AEB,根据角平分线的定义和等量关系即可求解.【详解】(1)∵∠AEC=100°,∴∠AED=80°,∵EB平分∠AED,∴∠BED=40°,∵AB∥CD,∴∠1=∠BED=40°;(2)∵DB⊥BE,AF⊥AC,∴∠EBD=∠CAF=90°,∵∠2=∠D,∴∠BED=∠C,∴AC∥BE,∴∠CAE=∠AEB,∵EB平分∠AED,∴∠AEB=∠BED,∴∠CAE=∠C.【点睛】本题考查平行线的判定和性质,邻补角的定义,角平分线的定义,三角形内角和定理.熟悉相应的性质和定义是解答本题的关键.。
一、选择题1.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( )A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm2.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF 3.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( )A .2.4B .3C .5D .8.54.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°5.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52α C .2α D .32α 6.用下列长度的三根木棒首尾相接,能做成三角形框架的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,6 7.如图,线段BE 是ABC 的高的是( )A .B .C .D .8.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( ) A .15 B .20 C .30 D .409.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④ 10.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA 11.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°12.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题13.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.14.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.15.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.16.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.17.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.18.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.19.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.20.如图,已知∠A =47°,∠B =38°,∠C =25°,则∠BDC 的度数是______.三、解答题21.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.22.如图,△ABC 中,∠ABC 的角平分线与外角∠ACD 的平分线交于A 1.(1)∵BA 1、CA 1是∠ABC 与∠ACD 的平分线,∴∠A 1BD =12∠ABD ,∠A 1CD =12∠ACD , ∴∠A 1CD ﹣∠A 1BD =12(∠ACD ﹣∠ABD ), ∵∠A 1CD ﹣∠A 1BD = ,∠ACD ﹣∠ABD =∠ ,∴∠A 1= .(2)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230°,求∠F 的度数.(3)如图3,△ABC 中,∠ABC 的角平分线与外角∠ACD 的平分线交于A 1,若E 为BA 延长线上一动点,连接EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q ﹣∠A 1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.23.如图,△ABC 中,D 为AC 上一点,且∠ADB=∠ABC=α(0°<α<180°),∠ACB 的角平分线分别交BD 、BA 于点E 、F .(1)若α=90°,判断∠BEF 和∠BFE 的大小关系并说明理由;(2)是否存在α,使∠BEF 大于∠BFE ?如果存在,求出α的范围,如果不存在,请说明理由.24.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.25.如图,ABC 中,AD 是高,,AE BF 是角平分线,它们相交于点,80O CAB ∠=︒,60C ∠=°,求DAE ∠和BOA ∠的度数.26.如图,175,2105,C D ∠=︒∠=︒∠=∠.(1)判断AC 与DF 的位置关系,并说明理由;(2)若C ∠比A ∠大25°,求F ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A 、1+2=3,故以这三根木棒不能构成三角形,符合题意;B 、2+3>4,故以这三根木棒能构成三角形,不符合题意;C 、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D 、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.2.B解析:B【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【详解】由图可知,过点A 作BC 的垂线段AD ,则ABC 中,BC 边上的高是AD . 故选:B【点睛】本题主要考查了三角形的高的定义,熟记概念是解题的关键.3.D解析:D【分析】先根据三角形的三边之间的关系求解1<x <7,从而可得答案.【详解】 解: 长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,43∴-<x <43+,1∴<x <7,x 的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键. 4.A解析:A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.5.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.6.B解析:B【分析】根据构成三角形的条件,分别进行判断,即可得到答案.【详解】解:A 、224+=,不能构成三角形,故A 错误;B 、345+>,能构成三角形,故B 正确;C 、123+=,不能构成三角形,故C 错误;D 、236+<,不能构成三角形,故D 错误;故选:B .【点睛】本题考查了构成三角形的条件,解题的关键是掌握构成三角形的条件进行判断. 7.D解析:D【分析】根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高,再结合图形进行判断.A 选项中,BE ⊥BC ,BE 与AC 不垂直,此选项错误;B 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;C 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;D 选项中,BE ⊥AC ,∴线段BE 是△ABC 的高,此选项正确.故选:D .【点睛】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.8.A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C 的外角=∠A+∠B ,∴x+40=2x+10+x ,解得x=15.故选:A .【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.9.C解析:C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C.【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.10.C解析:C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.【详解】A.线段AE是△ABC的边BC上的高,故不符合题意;B.线段BA不是任何边上的高,故不符合题意;C.线段BD是△ABC的边AC边上的高,故符合题意;D.线段DA是△ABD的边BD上的高,故不符合题意;故选C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.11.A解析:A【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,即可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-510°=30°.故选:A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.12.D解析:D【分析】根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】 本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题13.1800°【分析】根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9求出n 的值最后根据多边形内角和公式可得结论【详解】解:由题意得:n-3=9解得n=12则该n 边形的内角和是:(12-2解析:1800°【分析】根据n 边形从一个顶点出发可引出(n-3)条对角线,可得n-3=9,求出n 的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:n-3=9,解得n=12,则该n 边形的内角和是:(12-2)×180°=1800°,故答案为:1800°.【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n 边形从一个顶点出发可引出(n-3)条对角线是解题的关键.14.2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ∠D+∠E 再根据邻补角表示出∠CGF 然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2α【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B ,∠D+∠E ,再根据邻补角表示出∠CGF ,然后利用三角形的内角和定理列式整理即可得解.【详解】根据三角形的外角性质,∠1=∠A+∠B,∠2=∠D+∠E,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.15.【分析】根据三角形的面积公式列方程即可得到结论【详解】解:根据三角形面积公式可得∵AB=3BC=6CE=5∴解得故答案为:【点睛】本题考查了三角形的高以及三角形的面积熟记三角形的面积公式是解题的关键解析:2.5【分析】根据三角形的面积公式列方程即可得到结论.【详解】解:根据三角形面积公式可得,1122ABCS AB CE BC AD =⨯=⨯,∵AB=3,BC=6,CE=5,∴11356 22AD⨯⨯=⨯⨯,解得 2.5AD=.故答案为:2.5.【点睛】本题考查了三角形的高以及三角形的面积,熟记三角形的面积公式是解题的关键.16.2或6【分析】利用面积法求出BD即可求得CD再分AE在内部和外部求出DE即可【详解】解:为的高△ABD的面积为14AE=7∴∵为的中线∴CD=BD=4当AE在内部时∵CE=2∴DE=CD-CE=2当解析:2或6利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7, 1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线,∴CD=BD=4, 当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键. 17.110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB 根据角平分线的定义求出∠ABC +∠ACB 从而求出∠A 根据三角形高的定义可得∠AEC=∠FDC=90°然后根据三角形的内角和定理求出∠ACE解析:110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB ,根据角平分线的定义求出∠ABC +∠ACB ,从而求出∠A ,根据三角形高的定义可得∠AEC=∠FDC=90°,然后根据三角形的内角和定理求出∠ACE ,最后利用三角形外角的性质即可求出结论.【详解】解:∵=125CGB ∠︒∴∠GBC +∠GCB=180°-∠CGB=55°∵,ABC ACB ∠∠的角平分线交于点G ,∴∠ABC=2∠GBC ,∠ACB=2∠GCB∴∠ABC +∠ACB=2∠GBC +2∠GCB=2(∠GBC +∠GCB )=110°∴∠A=180°-(∠ABC +∠ACB )=70°∵,AB AC 边上的高,CE BD 相交于点F ,∴∠AEC=∠FDC=90°,∴∠ACE=180°-∠AEC -∠A=20°∴CFB ∠=∠FDC +∠ACE=110°故答案为:110°.【点睛】此题考查的是三角形内角和定理、三角形外角的性质、三角形的高和角平分线,掌握三角形内角和定理、三角形外角的性质、三角形的高的定义和角平分线的定义是解题关键. 18.74°【分析】先根据三角形的内角和定理求得∠ACB 的度数再根据CE 平分∠ACB 求得∠ACE 的度数则根据三角形的外角的性质就可求得∠CED =∠A+∠ACE 再结合CD ⊥ABDF ⊥CE 就可求解【详解】解:解析:74°【分析】先根据三角形的内角和定理求得∠ACB 的度数,再根据CE 平分∠ACB 求得∠ACE 的度数,则根据三角形的外角的性质就可求得∠CED =∠A +∠ACE ,再结合CD ⊥AB ,DF ⊥CE 就可求解.【详解】解:∵∠A =40°,∠B =72°,∴∠ACB =180°﹣40°﹣72°=68°,∵CE 平分∠ACB ,∴∠ACE =∠BCE =34°,∴∠CED =∠A +∠ACE =74°,∵CD ⊥AB ,DF ⊥CE ,∴∠CDF +∠ECD =∠ECD +∠CED =90°,∴∠CDF =∠CED =74°,故答案为:74°.【点睛】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.19.60°【分析】先根据折叠的性质得∠3=∠4∠5=∠6再利用平角的定义得∠3+∠4+∠1=180°∠5+∠6+∠2=180°根据等式的性质得到2∠4+∠1+2∠6=360°把∠1+∠2=120°代入得解析:60°【分析】先根据折叠的性质得∠3=∠4,∠5=∠6,再利用平角的定义得∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,根据等式的性质得到2∠4+∠1+2∠6=360°,把∠1+∠2=120°代入得到∠4+∠6=120°,然后根据三角形内角和定理可计算出∠B的度数.【详解】∵把△ABC的∠B折叠,点B落在P的位置,∴∠3=∠4,∠5=∠6,∵∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,∴2∠4+∠1+∠2+2∠6=360°,而∠1+∠2=120°,∴∠4+∠6=120°,∵∠4+∠6+∠B=180°,∴∠B=180°−120°=60°.故答案为60°.【点睛】本题考查了三角形内角和定理,也考查了折叠的性质,“数形结合”是关键.20.110°【分析】连接AD并延长根据三角殂的外角性质分别表示出∠3和∠4因为∠BDC是∠3和∠4的和从而不难求得∠BDC的度数【详解】解:连接AD 并延长∵∠3=∠1+∠B∠4=∠2+∠C∴∠BDC=∠解析:110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.∵∠3=∠1+∠B ,∠4=∠2+∠C .∴∠BDC=∠3+∠4=(∠1+∠B )+(∠2+∠C )=∠B+∠BAC+∠C .∵∠A =47°,∠B =38°,∠C =25°.∴∠BDC=47°+38°+25°=110°,故答案为 :110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.三、解答题21.28°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠BAD 的度数,在△ABD 中,利用三角形外角性质可求出∠PDE 的度数,再在△PDE 中利用三角形内角和定理可求出∠P 的度数.【详解】解:在ABC 中,80ACB ∠=︒,24B ∠=︒,18076BAC ACB B ∴∠=︒-∠-∠=︒. AD 平分BAC ∠,1382BAD BAC ∴∠=∠=︒. PDE ∠是ABD △的外角,243862PDE B BAD ∴∠=∠+∠=︒+︒=︒,PE BC ⊥于E ,90PED ∴∠=︒,906228P ∴∠=︒-︒=︒.【点睛】本题考查了三角形内角和定理、角平分线的定义以及对顶角,利用三角形内角和定理及角平分线的定义,求出∠ADC 的度数是解题的关键.22.(1)∠A 1,A ,12∠A ;(2)25°;(3)①的结论是正确的,且这个定值为180°. 【分析】(1)根据角平分线的定义可得∠A 1BD =12∠ABC ,∠A 1CD =12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1BC +∠A 1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.23.(1)∠BEF=∠BFE,理由见解析;(2)存在,90°<α<180°【分析】(1)根据余角的定义得到∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,根据角平分线的定义得到∠DCE=∠BCF,等量代换得到∠BEF=∠BFC,于是得到∠BEF=∠BFE;(2)根据角的和差和三角形的内角和定理即可得到结论.【详解】(1)∠BEF=∠BFE;理由:∵∠ADB=∠ABC=90°,∴∠DCE+∠DEC=90°,∠BCF+∠BFC=90°,∵CF平分∠ACB,∴∠DCE=∠BCF,∴∠DEC=∠BFC,∵∠DEC=∠BEF,∴∠BEF=∠BFC,即∠BEF=∠BFE;(2)∵∠BEF=∠EBC+∠ECB,∠BFE=∠A+∠ACF,∠ECB=∠ACF,∴∠BEF-∠BFE=(∠EBC+∠ECB)-(∠A+∠ACF)=∠EBC-∠A,∵∠EBC=∠ABC-∠ABD=α-∠ABD,∠A=180°-∠ADB-∠ABD=180°-α-∠ABD,∴∠BEF-∠BFE=(α-∠ABD)-(180°-α-∠ABD)=2α-180°,若∠BEF>∠BFE,则∠BEF﹣∠BFE>0,即2α﹣180°>0,∴α>90°,∴90°<α<180°.【点评】本题考查了三角形的内角和定理,角平分线的定义,余角的性质,正确的理解题意是解题的关键.24.(1)120°;(2)36°.【分析】(1)根据角平分线的定义求出∠ACB,再根据三角形的内角和定理列式计算即可得解;(2)设∠A=∠ACB=x,根据直角三角形两锐角互余求出∠CDE,然后利用三角形的一个外角等于与它不相邻的两个内角的和列方程求解即可.【详解】(1)∵CD为△ABC的角平分线,∴∠ACB=2∠DCB=2×15°=30°,∵∠A=∠ACB,∴∠CBD=180°-∠A-∠ACB=180°-30°-30°=120°;(2)设∠A=∠ACB=x,∵CE是△ABC的高,∠DCE=36°,∴∠CDE=90°-36°=54°,∵CD为△ABC的角平分线,∴∠ACD=12∠ACB=12x,由三角形的外角性质得,∠CDE=∠A+∠ACD , ∴1542x x +=︒, 解得x =36°,即∠ACB=36°.【点睛】 本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 25.10DAE ∠=︒,120BOA ∠=︒【分析】根据垂直的定义、角平分线的定义、三角形内角和定理及三角形的外角性质计算即可.【详解】解:80,CAB ∠=︒且AE 平分,CAB ∠1402CAE CAB ∴∠=∠=︒, 又60,C AD BC ∠=︒⊥,9030,CAD C ∴∠=︒-∠=︒10DAE CAE CAD ∴∠=∠-∠=︒;60,40C CAE ∠=︒∠=︒,100BEO C CAE ∴∠=∠+∠=︒,又180,ABC C CAB ∠+∠+∠=︒40,ABC ∴∠=︒ BF 平分,ABC ∠120,2OBE ABC ∴∠=∠=︒ 120BOA OBE BEO ∴∠=∠+∠=︒.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线的定义以及三角形的外角性质,掌握三角形内角和等于180°是解题的关键.26.(1)//AC DF ,理由见解析;(2)40︒.【分析】(1)先根据平行线的判定可得//BD CE ,再根据平行线的性质可得D CEF ∠=∠,然后根据等量代换可得C CEF ∠=∠,最后根据平行线的判定即可得;(2)设A x ∠=,从而可得25C x ∠=+︒,再根据三角形的外角性质可求出x 的值,然后根据平行线的性质即可得.【详解】(1)//AC DF ,理由如下:175,2105∠=︒∠=︒,12180∴∠+∠=︒,//BD CE ∴,D CEF ∴∠=∠,又C D ∠=∠,C CEF ∴∠=∠,//AC DF ∴;(2)设A x ∠=,则25C x ∠=+︒,由三角形的外角性质得:2A C ∠=∠+∠,即10525x x ︒=++︒,解得40x =︒,即40A ∠=︒,由(1)已证://AC DF ,40F A ∴∠=∠=︒.【点睛】本题考查了平行线的判定与性质、三角形的外角性质等知识点,熟练掌握平行线的判定与性质是解题关键.。
最新人教版八年级数学上册单元测试题全套(含答案)(含期中期末试题,共7套)第十一章检测卷(满分:120分时间90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个 B.2个 C.3个 D.4个2.下列判断:①有两个内角分别为50°和20°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中不可以有三个锐角;④有一个外角是锐角的三角形一定是钝角三角形,其中正确的有( ) A.1个 B.2个 C.3个 D.4个3.图中能表示△ABC的BC边上的高的是( )A B C D4.如图,在△ABC中,∠A=40°,点D为AB延长线上一点,且∠CBD=120°,则∠C的度数为( )A.40° B.60° C.80° D.100°(第4题图) (第7题图) (第9题图) (第10题图)5.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为( )A.7 cm B.3 cm C.9 cm D.5 cm6.八边形的内角和为( )A.180° B.360° C.1 080° D.1 440°7.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是( )A.60° B.65° C.70° D.80°8.若一个多边形的内角和小于其外角和,则这个多边形的边数是( )A.3 B.4 C.5 D.69.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,则∠AFB 的度数是( )A.126° B.120° C.116° D.110°10.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为( )A.30° B.36° C.38° D.45°二、填空题(每题3分,共30分)11.若一个三角形的三个内角的度数之比为4:3:2,则这个三角形的最大内角为________°.12.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有_______性.(第12题图) (第14题图) (第15题图)13.已知△ABC的两条边长分别为3和5,且第三边的长c为整数,则c的取值可以为________.14.如图,在Rt△ABC中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD是AC边上的高,则BD的长为________cm.15.如图,点D在△ABC的边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是______°.16.如果一个多边形的内角和为其外角和的4倍,那么从这个多边形的一个顶点出发共有________条对角线.(第17题图) (第18题图) (第20题图)17.如图是一副三角尺拼成的图案,则∠CEB=________°.18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.19.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为________.20.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.(第21题图)22.如图.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________;(3)若AB =CD =2 cm ,AE =3 cm ,求△AEC 的面积及CE 的长.(第22题图)23.如图,将六边形纸片ABCDEF 沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=440°,求∠BGD 的度数.(第23题图)24.在等腰三角形ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为18和15两部分,求这个等腰三角形的底边长.25.如图,在△ABC 中,∠1=100°,∠C =80°,∠2=12∠3,BE 平分∠ABC.求∠4的度数.(第25题图)26.已知等腰三角形的三边长分别为a,2a-1,5a-3,求这个等腰三角形的周长.27.已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图(1),若AB∥ON,则①∠ABO的度数是________;②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图(2),若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第27题图)参考答案一、1.B 2.C 3.D4.C 分析:∵∠CBD是△ABC的外角,∴∠CBD=∠C+∠A.又∵∠A=40°,∠CBD=120°,∴∠C=∠CBD-∠A=120°-40°=80°. 5.B6.C 分析:八边形的内角和为(8-2)×180°=1 080°. 7.C8.A 分析:设这个多边形的边数为n ,依题意有(n -2)×180°<360°,即n <4.所以n =3.9.A 分析:在△ABC 中,∠CAB =52°,∠ABC =74°,∴∠ACB =180°-∠CAB -∠ABC =180°-52°-74°=54°.在四边形EFDC 中,∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =90°,∠BEC =90°,∴∠DFE =360°-∠DCE -∠FDC -∠FEC =360°-54°-90°-90°=126°.∴∠AFB =∠DFE =126°.10.B 分析:∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°÷5=108°.∴∠AEB =(180°-108°)÷2=36°.∵l ∥BE ,∴∠1=∠AEB =36°.故选B. 二、11. 80 12. 稳定 13. 3,4,5,6,714.6013 分析:由题意可知AB ·BC =BD ·AC ,所以BD =AB ·BC AC =12×513=6013(cm). 15.60 分析:∵∠ACD 是△ABC 的外角,∴∠ACD =∠A +∠B =80°+40°=120°.又∵CE 平分∠ACD ,∴∠ACE =12∠ACD =12×120°=60°. 16.7 17. 10518.360° 分析:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.(第18题答图)19.120°20.2 分析:∵E 为BC 的中点,∴S △ABE =S △ACE =12S △ABC =3.∵AG ∶GE =2∶1,△BGA 与△BEG 为等高三角形,∴S △BGA ∶S △BEG =2∶1,∴S △BGA =2.又∵D 为AB 的中点,∴S △BGD =12S △BGA =1.同理得S △CGF =1.∴S 1+S 2=2.三、21.解:∵DE ∥BC ,∴∠ACB =∠AED =70°.∵CD 平分∠ACB ,∴∠BCD =12∠ACB =35°.又∵DE ∥BC ,∴∠EDC=∠BCD =35°.22.解:(1)AB ;(2)CD ;(3)∵AE =3 cm , CD =2 cm ,∴S △AEC =12AE ·CD =12×3×2=3(cm 2).∵S △AEC =12CE ·AB =3 cm 2,AB =2 cm ,∴CE =3 cm.23.解:∵六边形ABCDEF 的内角和为180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC +∠C +∠CDG =720°-440°=280°,∴∠BGD =360°-(∠GBC +∠C +∠CDG)=80°. 24.解:设这个等腰三角形的腰长为a ,底边长为b. ∵D 为AC 的中点, ∴AD =DC =12AC =12a.根据题意得⎩⎪⎨⎪⎧32a =18,12a +b =15,或⎩⎪⎨⎪⎧32a =15,12a +b =18.解得⎩⎪⎨⎪⎧a =12,b =9,或⎩⎪⎨⎪⎧a =10,b =13.又∵三边长为12,12,9和10,10,13均可以构成三角形. ∴这个等腰三角形的底边长为9或13.25.解:∵∠1=∠3+∠C ,∠1=100°,∠C =80°,∴∠3=20°.∵∠2=12∠3,∴∠2=10°,∴∠BAC =∠2+∠3=10°+20°=30°,∴∠ABC =180°-∠C -∠BAC =180°-80°-30°=70°.∵BE 平分∠ABC ,∴∠ABE =35°.∵∠4=∠2+∠ABE ,∴∠4=45°.26.解:当底边长为a 时,2a -1=5a -3,即a =23,则三边长为23,13,13,不满足三角形的三边关系,不能构成三角形;当底边长为2a -1时,a =5a -3,即a =34,则三边长为12,34,34,满足三角形的三边关系.能构成三角形,此时三角形的周长为12+34+34=2;当底边长为5a -3时,2a -1=a ,即a =1,则三边长为2,1,1,不满足三角形的三边关系,不能构成三角形. 所以这个等腰三角形的周长为2. 27.解:(1)①20° ②120;60(2)①当点D 在线段OB 上时,若∠BAD =∠ABD ,则x =20.若∠BAD =∠BDA ,则x =35.若∠ADB =∠ABD ,则x =50. ②当点D 在射线BE 上时,因为∠ABE =110°,且三角形的内角和为180°,所以只有∠BAD =∠BDA ,此时x =125,综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x =20,35,50或125.第十二章检测卷 (120分,90分钟)题 号 一 二 三 总 分 得 分一、选择题(每题3分,共30分)1.下列判断不正确的是( )A.形状相同的图形是全等图形 B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同 D.全等三角形的对应角相等2.如图,△ABC≌△CDA,∠BAC=85°,∠B=65°,则∠CAD度数为()A.85°B.65°C.40°D.30°(第2题图) (第3题图) (第4题图) (第5题图)3.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB 和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS4.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为E.若AB=10 cm,AC=6 cm,则BE 的长度为( )A.10 cm B.6 cm C.4 cm D.2 cm5.如图所示,AB=CD,∠ABD=∠CDB,则图中全等三角形共有( )A.5对 B.4对 C.3对 D.2对6.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列选项正确的是( ) A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤57.在△ABC中,∠B=∠C,与△ABC全等的△DEF中有一个角是100°,那么在△ABC中与这100°角对应相等的角是( )A.∠A B.∠B C.∠C D.∠B或∠C8.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则不正确的是( )A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE(第8题图) (第9题图) (第10题图)9.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.两处 C.三处 D.四处10.已知:如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,连接CD,C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是( )A.1 B.2 C.3 D.4二、填空题(每题3分,共30分)11.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是:________.(填上你认为适当的一个条件即可) 12.如图,点O在△ABC内,且到三边的距离相等.若∠A=60°,则∠BOC=________°.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是________.(第11题图) (第12题图) (第15题图) (第16题图)14.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC≌△A′B′C′,则△A′B′C′的腰长等于________.15.如图,BE⊥AC,垂足为D,且AD=CD,BD=ED.若∠ABC=54°,则∠E=________°.16.如图,△ABC≌△DCB,AC与BD相交于点E,若∠A=∠D=80°,∠ABC=60°,则∠BEC等于________.17.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中共有________对全等三角形.18.如图,已知P(3,3),点B,A分别在x轴正半轴和y轴正半轴上,∠APB=90°,则OA+OB=________.(第17题图) (第18题图) (第19题图) (第20题图)19.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是________.20.如图,已知点P到BE,BD,AC的距离恰好相等,则点P的位置:①在∠DBC的平分线上;②在∠DAC的平分线上;③在∠ECA的平分线上;④恰是∠DBC,∠DAC,∠ECA的平分线的交点,上述结论中,正确的有________.(填序号)三、解答题(21,22题每题7分,23,24题每题8分,25~27题每题10分,共60分)21.如图,按下列要求作图:(1)作出△ABC的角平分线CD;(2)作出△ABC的中线BE;(3)作出△ABC的高AF.(不写作法)(第21题图)22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出所有相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.(第22题图) 23.如图,AD⊥AE,AB⊥AC,AD=AE,AB=AC.求证:△ABD≌△ACE.(第23题图)24.如图,AC∥BE,点D在BC上,AB=DE,∠ABE=∠CDE.求证:DC=BE-AC.(第24题图)25.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF =EB;(2)AB=AF+2EB.(第25题图)26.如图,A,B两建筑物位于河的两岸,要测得它们之间的距离,可以从点B出发在河岸上画一条射线BF,在BF 上截取BC=CD,过D作DE∥AB,使E,C,A在同一直线上,则DE的长就是点A,B之间的距离,请你说明道理.(第26题图)27.如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,连接CF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图(2),线段CF,BD所在直线的位置关系为______,线段CF,BD的数量关系为________;②当点D在线段BC的延长线上时,如图(3),①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.(第27题图)参考答案一、1.A 2.D 3.D 4.C 5.C 6.B7.A 8.D9.D 分析:如图,在△ABC内部,找一点到三边距离相等,根据到角的两边距离相等的点在角的平分线上,可知,此点在各内角的平分线上,作∠ABC,∠BCA的平分线,交于点O1,由角平分线的性质可知,O1到AB,BC,AC的距离相等.同理,作∠ACD,∠CAE的平分线,交于点O2,则O2到AC,BC,AB的距离相等,同样作法得到点O3,O4.故可供选择的地址有四处.故选D.(第9题答图)10.D二、11.∠B=∠C(答案不唯一)12.120 13. 4∶3 14. 8 cm或5 cm15.27 16. 100°17.3 分析:因为△OPE≌△OPF,△OPA≌△OPB,△AEP≌△BFP,所以共有3对全等三角形.18.6 分析:过点P作PC⊥OB于C,PD⊥OA于D,则PD=PC=DO=OC=3,可证△APD≌△BPC,∴DA=CB,∴OA +OB=OA+OC+CB=OA+OC+DA=OC+OD=6.19.50 分析:由题意易知,△AFE≌△BGA,△BGC≌△CHD.∴FA=BG=3,AG=EF=6,CG=HD=4,CH=BG=3.∴S =S 梯形EFHD -S △EFA -S △AGB -S △BGC -S △CHD =12(4+6)×(3+6+4+3)-12×3×6×2-12×3×4×2=80-18-12=50. 20.①②③④三、21.解:(1)角平分线CD 如图①.(2)中线BE 如图②.(3)高AF 如图③.(第21题答图)22.解:(1)EF =MN ,EG =HN ,FG =MH ,FH =GM ,∠F =∠M ,∠E =∠N ,∠EGF =∠MHN , ∠FHN =∠EGM.(2)∵△EFG ≌△NMH ,∴MN =EF =2.1 cm ,GF =HM =3.3 cm , ∵FH =1.1 cm ,∴HG =GF -FH =3.3-1.1=2.2 (cm). 23.证明:∵AD ⊥AE ,AB ⊥AC ,∴∠CAB =∠DAE =90°. ∴∠CAB +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE. 在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE , ∴△ABD ≌△ACE.24.证明:∵AC ∥BE ,∴∠DBE =∠C.∵∠CDE =∠DBE +∠E ,∠ABE =∠ABC +∠DBE , ∠ABE =∠CDE ,∴∠E =∠ABC.在△ABC 与△DEB 中,⎩⎪⎨⎪⎧∠C =∠DBE ,∠ABC =∠E ,AB =DE ,∴△ABC ≌△DEB(AAS).∴BC =BE ,AC =BD.∴DC =BC -BD =BE -AC. 25.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC , ∴DE =DC. 又∵BD =DF ,∴Rt △CDF ≌Rt △EDB(HL). ∴CF =EB.(2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE. ∴AC =AE.∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB.点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离=点D 到AC 的距离,即CD =DE.再根据Rt △CDF ≌Rt △EDB ,得CF =EB.(2)利用角平分线的性质证明Rt △ADC ≌Rt △ADE ,∴AC =AE ,再将线段AB 进行转化. 26.解:∵DE ∥AB ,∴∠A =∠E.∵E ,C ,A 在同一直线上,B ,C ,D 在同一直线上,∴∠ACB =∠ECD. 在△ABC 与△EDC 中,⎩⎪⎨⎪⎧∠A =∠E ,∠ACB =∠ECD ,BC =CD ,∴△ABC ≌△EDC(AAS). ∴AB =DE.27.解:(1)①CF ⊥BD ;CF =BD②当点D 在线段BC 的延长线上时,①中的结论仍然成立.理由:由正方形ADEF 得AD =AF ,∠DAF =90°. ∵∠BAC =90°,∴∠DAF =∠BAC. ∴∠DAB =∠FAC.又∵AB =AC ,∴△DAB ≌△FAC. ∴CF =BD ,∠ACF =∠ABD. ∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形.∴∠ABC =∠ACB =45°. ∴∠ACF =45°.∴∠BCF =∠ACB +∠ACF =90°.即CF ⊥BD.(第27题答图)(2)当∠ACB =45°时,CF ⊥BC(如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°.∵∠ACB =45°,∠AGC =90°-∠ACB ,∴∠AGC =90°-45°=45°,∴∠ACB =∠AGC =45°,∴△AGC 是等腰直角三角形,∴AC =AG.又∵∠DAG =∠FAC(同角的余角相等),AD =AF ,∴△GAD ≌△CAF ,∴∠ACF =∠AGC =45°,∴∠BCF =∠ACB +∠ACF =45°+45°=90°,即CF ⊥BC.第十三章检测卷 (120分,90分钟)题 号 一 二 三 总 分 得 分一、选择题(每题3分,共30分)1.下列图标是轴对称图形的是( )(第1题图)A.(1)(4) B.(2)(4) C.(2)(3) D.(1)(2)2.下列图形的对称轴最多的是( )A.正方形 B.等边三角形 C.等腰三角形 D.线段3.和点P(-3,2)关于y轴对称的点是( )A.(3,2) B.(-3,2) C.(3,-2) D.(-3,-2)4.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )(第4题图)A.50° B.60° C.70° D.80°5.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有( )A.1个 B.2个 C.3个 D.4个6.已知∠AOB=30°,点P在∠AOB的内部,点P1与点P关于OB对称,点P2与点P关于OA对称,则以点P1,O,P2为顶点的三角形是( )A.直角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形(第7题图) (第8题图) (第10题图)7.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD =24°,则∠ACF的度数为( )A.48° B.36° C.30° D.24°8.如图,先将正方形纸片对折然后展开,折痕为MN,再把点B折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下得到△ADH,则下列选项正确的是( )A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD9.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为( )A.30°或60° B.75° C.30° D.75°或15°10.如图,△ABC是等腰三角形(AB=AC≠BC),在△ABC所在平面内有一点P,且使得△ABP,△ACP,△BCP均为等腰三角形,则符合条件的点P共有( )A.1个 B.4个 C.5个 D.6个二、填空题(每题3分,共30分)11.已知点A(a,-2)和B(3,2),当满足条件________时,点A和点B关于x轴对称.12.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是________.13.已知等腰三角形的一个内角是80°,则它的底角是________.14.如图,在△ABC中,若BC=6 cm,AC=4 cm,AB边的垂直平分线交AB于点E,交BC于点D,则△ADC的周长是________.(第12题图) (第14题图) (第15题图) (第16题图)15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=________.16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形有________个.17.如图,点E是正方形ABCD的边DC上一点,在AC上找一点P,使PD+PE的值最小,则这个最小值就是线段________的长度.18.如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC,其中正确的有________(填序号即可).(第17题图) (第18题图) (第19题图) (第20题图)19.如图,两块相同的三角尺完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D=________.20.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…;这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.三、解答题(21,22,23题每题6分,24题8分,25题10分,26,27题每题12分,共60分)21.如图,已知在△ABC中,D为BC上的一点,DA平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.(第21题图)22.如图,校园内有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮忙画出灯柱的位置P,并说明理由.(第22题图)23.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.(第23题图)24.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第24题图)25.如图,过等边△ABC的顶点A,B,C依次作AB,BC,CA的垂线MG,MN,NG,三条垂线围成△MNG.求证:△MNG 是等边三角形.(第25题图)26.如图,在△ABC中,∠ACB=90°,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,延长DF交AB于点E,连接CE.(1)求证:AE=CE=BE;(2)若AB=15 cm,P是直线DE上的一点.则当P在何处时,PB+PC最小?并求出此时PB+PC的值.(第26题图)27.已知:在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点. (1)直线BF 垂直于CE 交CE 于点F ,交CD 于点G(如图①),求证:AE =CG ;(2)直线AH 垂直于CE ,垂足为H ,交CD 的延长线于点M(如图②),找出图中与BE 相等的线段,并说明理由.(第27题图)参考答案一、1.D 2.A 3.A 4.D5.D 分析:本题利用分类讨论思想.当OA 为等腰三角形的腰时,以O 为圆心,OA 长为半径的圆弧与y 轴有两个交点,以A 为圆心,OA 长为半径的圆弧与y 轴除点O 外还有一个交点;当OA 为等腰三角形的底时,作线段OA 的垂直平分线,与y 轴有一个交点. ∴符合条件的点一共有4个.故选D. 6.D 7.A 8.B 9.D 10.D 二、11.a =3 12.2013.50°或80° 14. 10 cm 15. 2 16. 5 17.BE 18.①②③19.52 分析:∵∠A =30°,AC =10,∠ABC =90°,∴∠C =60°,BC ′=BC =12AC =5.∴△BCC ′是等边三角形,∴CC ′=5,∴AC ′=5.∵∠A ′C ′B =∠C ′BC =60°,∴C ′D ∥BC.∴∠ABC =∠ADC ′=90°,∴C ′D =12AC ′=52.20. 9 分析:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A ,….∵∠BOC =9°,∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°(n +1)≤90°,解得n ≤9.故答案为9.三、21.证明:∵DA 平分∠EDC ,∴∠ADE =∠ADC.又∵DE =DC ,AD =AD ,∴△AED ≌△ACD(SAS).∴∠E =∠C.又∵∠E =∠B ,∴∠B =∠C.∴AB =AC.22.解:如图,连接CD ,灯柱的位置P 在∠AOB 的平分线OE 和线段CD 的垂直平分线的交点处. 理由如下:∵点P 在∠AOB 的平分线上,∴点P 到∠AOB 的两边OA ,OB 的距离一样远. ∵点P 在线段CD 的垂直平分线上,∴点P 到点C 和点D 的距离相等.∴点P 符合题意.(第22题答图)23.解:(1)如图.(第23题答图)(2)A1(0,-4),B1(-2,-2),C1(3,0).(3)724.解:(1)∵DE垂直平分AC,∴AE=CE,∴∠ECD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵∠BEC=∠A+∠ACE=72°,∴∠B=∠BEC,∴BC=CE=5.25.证明:∵△ABC是等边三角形,∴∠BAC=∠ABC=∠BCA=60°.又∵AB⊥MG,∴∠BAG=90°.∴∠CAG=30°.∵AC⊥NG,∴∠ACG=90°.∴∠G=60°.同理,∠M=60°,∠N=60°.∴△MNG是等边三角形.26.(1)证明:∵△ACD为等边三角形,DE垂直于AC,∴DE垂直平分AC,∴AE=CE.∴∠AEF=∠FEC.∵∠ACB=∠AFE=90°,∴DE∥BC.∴∠AEF=∠EBC,∠FEC=∠ECB.∴∠ECB=∠EBC.∴CE=BE.∴AE=CE=BE.(2)解:连接PA,PC.∵DE垂直平分AC,点P在DE上,∴PC=PA.∵两点之间线段最短,∴当P与E重合时PA+PB 最小,为15 cm,即PB+PC最小为15 cm.27.(1)证明:∵点D是AB的中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,∴△AEC≌△CGB,∴AE=CG.(2)解:BE=CM.理由:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.又∵CA=BC,∠ACM=∠CBE=45°,∴△BCE≌△CAM,∴BE=CM.期中检测卷时间:120分钟满分:120分题号一二三总分得分一、选择题(每小题3分,共30分)1.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm2.下列图形中不是轴对称图形的是()3.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M,N是边AD上的两点,连接MO,NO,并分别延长交边BC于两点M′,N′,则图中的全等三角形共有()(第3题图)A.2对 B.3对 C.4对 D.5对4.正n边形的每个内角的大小都为108°,则n的值为()A.5 B.6 C.7 D.85.在△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40° B.50° C.65° D.80°6.如图,AD是△ABC的角平分线,且AB∶AC=3∶2,则△ABD与△ACD的面积之比为()A.3∶2 B.9∶4 C.2∶3 D.4∶9(第6题图)(第7题图)7.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.48.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm(第8题图)(第9题图)(第10题图)9.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90° B.120° C.150° D.180°10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE =2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.点A(3,-2)关于x轴对称的点的坐标是________.12.已知三角形两边长分别是3cm,5cm,设第三边的长为x cm,则x的取值范围是________.13.如图是某零件的平面图,其中∠B=∠C=30°,∠A=40°,则∠ADC的度数为________.(第13题图)(第14题图)(第15题图)14.如图,△ABC≌△DFE,CE=6,FC=2,则BC=________.15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为________.16.如图,已知正方形ABCD中,CM=CD,MN⊥AC,连接CN,则∠MNC=________.(第16题图)(第17题图)(第18题图)17.如图是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,设较长直角边的中点为M,绕点M转动△ABC,使其直角顶点C恰好落在三角板A1B1C1的斜边A1B1上,当∠A=30°,AC=10时,两直角顶点C,C1的距离是________.18.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=________.三、解答题(共66分)19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.(第19题图)20.(8分)解答下面2个小题:(1)已知等腰三角形的底角是顶角的2倍,求这个三角形各个内角的度数;(2)已知等腰三角形的周长是12,一边长为5,求它的另外两边长.21.(8分)图①、图②是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,A、B、C三点均在小正方形的顶点上.(第21题图)(1)在图①中画出凸四边形ABCD,点D在小正方形的顶点上,且使四边形ABCD是只有一条对称轴的轴对称图形;(2)在图②中画出凸四边形ABCE,点E在小正方形的顶点上,且使四边形ABCE是有四条对称轴的轴对称图形.22.(10分)如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.(第22题图)23.(10分)已知等腰三角形一腰上的中线将三角形的周长分为9 cm和15 cm两部分,求这个等腰三角形的底边长和腰长.24.(10分)如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.(第24题图)25.(12分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)若AC=10,求四边形ABCD的面积.(2)求证:CE=2AF.(第25题图)参考答案1.C 2.C 3.C 4.A 5.D 6.A 7.A 8.C9.D 解析:∵图中有三个等边三角形,∴∠1=180°-60°-∠ABC=120°-∠ABC,∠2=180°-60°-∠ACB =120°-∠ACB,∠3=180°-60°-∠BAC=120°-∠BAC.∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°-180°=180°.故选D.(第9题答图)10.A 解析:∵BF ∥AC ,∴∠C =∠CBF.∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC.∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确;在△CDE 与△BDF 中,⎩⎪⎨⎪⎧∠C =∠CBF ,CD =BD ,∠EDC =∠FDB ,∴△CDE ≌△BDF(ASA),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A. 11.(3,2) 12. 2<x <8 13. 100° 14.8 15. 108° 16. 67.5°17.5 解析:如图,连接CC 1.∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC =A 1C 1,∴CM =A 1M =C 1M =12AC =5,∴∠A 1CM =∠A 1=30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM =5.(第17题答图)18.1.5 解析:如图,连接CD ,BD.∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE ,∠F =∠DEA =∠DEB =90°.又∵AD =AD ,∴Rt △ADF ≌Rt △ADE(HL),∴AE =AF.∵DG 是BC 的垂直平分线,∴CD =BD.在Rt △CDF 和Rt △BDE 中,⎩⎪⎨⎪⎧CD =BD ,DF =DE ,∴Rt △CDF ≌Rt △BDE(HL),∴BE =CF ,∴AB =AE +BE =AF +BE =AC +CF +BE =AC +2BE.∵AB =6,AC =3,∴BE =1.5.(第18题答图)19.证明:∵AB ∥CD ,∴∠B =∠C.(2分)在△ABE 和△DCF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,AE =DF ,∴△ABE ≌△DCF(AAS),(6分)∴AB =CD.(8分)20.解:(1)设等腰三角形的顶角为x °,则底角为2x °.由题意得x +2x +2x =180,解得x =36,∴这个三角形三个内角的度数分别为36°、72°、72°.(4分)(2)∵等腰三角形的一边长为5,周长为12,∴当5为底边长时,其他两边长都为3.5,5,3.5,3.5可以构成三角形;(6分)当5为腰长时,其他两边长为5和2,5,5,2可以构成三角形.(7分)∴另外两边长是3.5,3.5或5,2.(8分)21.解:(1)图①中两个图形画出一个即可.(4分) (2)如图②所示.(8分)(第21题答图)22.解:∵∠A =40°,∠B =72°,∴∠ACB =180°-40°-72°=68°.(2分)∵CE 是∠ACB 的平分线,∴∠BCE =12∠ACB =12×68°=34°.(4分)∵CD ⊥AB ,∴∠CDB =90°,∴∠BCD =180°-90°-72°=18°,∴∠DCE =∠BCE -∠BCD =34°-18°=16°.(8分)∵DF ⊥CE ,∴∠DFC =90°,∴∠CDF =180°-90°-16°=74°.(10分) 23.解:如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线,则有AB +AD =9(cm )或AB +AD =15(cm ).(2分)设△ABC 的腰长为x cm ,分下面两种情况:(1)x +12x =9,∴x =6.∵三角形的周长为9+15=24(cm),∴三边长分别为6 cm ,6 cm ,12 cm.6+6=12,不符合三角形的三边关系,舍去.(6分)(第23题答图)(2)x +12x =15,∴x =10.∵三角形的周长为24 cm ,∴三边长分别为10 cm ,10 cm ,4 cm ,符合三边关系.(9分)综上所述,这个等腰三角形的底边长为4 cm ,腰长为10 cm.(10分)24.(1)证明:∵AE ∥BC ,∴∠B =∠DAE ,∠C =∠CAE.(2分)∵AE 平分∠DAC ,∴∠DAE =∠CAE.(3分)∴∠B =∠C.∴△ABC 是等腰三角形.(4分)(2)解:∵点F 是AC 的中点,∴AF =CF.(5分)在△AEF 和△CGF 中,⎩⎪⎨⎪⎧∠FAE =∠C ,AF =FC ,∠AFE =∠CFG ,∴△AEF ≌△CGF(ASA).∴AE=GC =8.∵GC =2BG ,∴BG =4,∴BC =12.(9分)∴△ABC 的周长为AB +AC +BC =10+10+12=32.(10分)25.(1)解:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =∠EAD +∠CAD ,∴∠BAC =∠EAD.(2分)在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).∴S △ABC =S △ADE ,∴S四边形ABCD=S △ABC +S △ACD =S △ADE +S △ACD =S △ACE =12×102=50.(6分)(2)证明:∵△ACE 是等腰直角三角形,∴∠ACE =∠AEC =45°.由△ABC ≌△ADE 得∠ACB =∠AEC =45°,∴∠ACB =∠ACE ,∴AC 平分∠ECF.(8分)过点A 作AG ⊥CG ,垂足为点G ,∵AC 平分∠ECF ,AF ⊥CB ,∴AF =AG.又∵AC =AE ,∴∠CAG =∠EAG =45°,∴∠CAG =∠EAG =∠ACE =∠AEC ,∴CG =AG =GE ,(11分)∴CE =2AG =2AF.(12分)(第25题答图)第十四章检测卷 (120分,90分钟)题 号 一 二 三 总 分 得 分一、选择题(每题3分,共30分) 1.计算(-a 3)2的结果是( ) A .a 5B .-a 5C .a 6D .-a 62.下列运算正确的是( )A .x 2+x 2=x 4B .(a -b)2=a 2-b 2C .(-a 2)3=-a 6D .3a 2·2a 3=6a 63.下列从左边到右边的变形,是因式分解的是( ) A .(3-x)(3+x)=9-x 2B .(y +1)(y -3)=-(3-y)(y +1)C .4yz -2y 2z +z =2y(2z -yz)+z D .-8x 2+8x -2=-2(2x -1)24.多项式a(x 2-2x +1)与多项式(x -1)(x +1)的公因式是( ) A .x -1 B .x +1 C .x 2+1 D .x 25.下列计算正确的是( )A .-6x 2y 3÷2xy 3=3x B .(-xy 2)2÷(-x 2y)=-y 3C .(-2x 2y 2)3÷(-xy)3=-2x 3y 3D .-(-a 3b 2)÷(-a 2b 2)=a 46.计算⎝ ⎛⎭⎪⎫232 017×⎝ ⎛⎭⎪⎫322 018×(-1)2 019的结果是( ) A.23 B.32 C .-23 D .-32 7.若a m=2,a n=3,a p=5,则a 2m +n -p的值是( )A .2.4B .2C .1D .08.若9x 2+kxy +16y 2是完全平方式,则k 的值为( ) A .12 B .24 C .±12 D .±249.把多项式-3x 2n-6x n分解因式,结果为( )A .-3x n(x n+2) B .-3(x 2n+2x n) C .-3x n(x 2+2) D .3(-x 2n-2x n)10.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪开后拼成一个长方形,上述操作能验证的等式是( )(第10题图)A .(a +b)(a -b)=a 2-b 2B .(a -b)2=a 2-2ab +b 2 C .(a +b)2=a 2+2ab +b 2D .a 2+ab =a(a +b)二、填空题(每题3分,共30分)11.(1)计算:(2a)3·(-3a 2)=____________; (2)若a m=2,a n=3,则am +n=__________,am -n=__________.12.已知x +y =5,x -y =1,则式子x 2-y 2的值是________. 13.若(a 2-1)0=1,则a 的取值范围是________. 14.计算:2 017×2 019-2 0182=__________.15.若|a +2|+a 2-4ab +4b 2=0,则a =________,b =________. 16.若一个正方形的面积为a 2+a +14,则此正方形的周长为________.17.分解因式:m 3n -4mn =__________.18.计算:(1+a)(1-2a)+a(a -2)=________.19.将4个数a ,b , c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab c d ,定义⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________.20.根据(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1,…的规律,可以得出22 018+22 017+22 016+…+23+22+2+1的末位数字是________.三、解答题(21,22,24,25题每题6分,23,26题每题8分,27,28题每题10分,共60分) 21.计算.(1)5a 2b ÷⎝ ⎛⎭⎪⎫-13ab ·(2ab 2)2; (2)(a -2b -3c)(a -2b +3c).22.先化简,再求值:(1)已知x =-2,求(x +5)(x -1)+(x -2)2的值. (2)已知x(x -1)-(x 2-y)=-3,求x 2+y 2-2xy 的值.23.把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x); (4)4m2n2-(m2+n2)2.24.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.25.老师在黑板上布置了一道题:已知x=-2,求式子(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)的值.小亮和小新展开了下面的讨论:小亮:只知道x的值,没有告诉y的值,这道题不能做;小新:这道题与y的值无关,可以求解;根据上述说法,你认为谁说的正确?为什么?26.已知a,b,c是△ABC的三边长,且a2+2b2+c2-2b(a+c)=0,你能判断△ABC的形状吗?请说明理由.27.如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分的面积,并求出当a+b=16,ab=60时阴影部分的面积.(第27题图)28.已知x≠1,(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.(1)根据以上式子计算:①(1-2)×(1+2+22+23+24+25);②2+22+23+…+2n(n为正整数);③(x-1)(x99+x98+x97+…+x2+x+1).(2)通过以上计算,请你进行下面的探索:①(a-b)(a+b)=____________;②(a-b)(a2+ab+b2)=____________;③(a-b)(a3+a2b+ab2+b3)=____________.参考答案一、1.C 2.C 3.D 4.A 5.B 6.D 7.A 8.D 9.A 10.A二、11.(1)-24a 5(2)6;23 12. 5 13.a ≠±1 14.-1 15.-2;-116.|4a +2| 17.mn(m +2) (m -2) 18.-a 2-3a +1 19. 2 20.7 分析:由题意可知22 018+22 017+…+22+2+1=(2-1)×(22 018+22 017+…+22+2+1)=22 019-1,而21=2,22=4, 23=8,24=16,25=32,26=64,…,可知2n(n 为正整数)的末位数字按2,4,8,6的顺序循环,而2 019÷4=504……3,所以22 019的末位数字是8,则22 019-1的末位数字是7.三、21.解:(1)原式=5a 2b ÷⎝ ⎛⎭⎪⎫-13ab ·4a 2b 4=-60a 3b 4.(2)原式=[(a -2b)-3c][(a -2b)+3c]=(a -2b)2-(3c)2=a 2-4ab +4b 2-9c 2. 22.解:(1)原式=x 2-x +5x -5+x 2-4x +4=2x 2-1. 当x =-2时,原式=2×(-2)2-1=7.(2)∵x(x -1)-(x 2-y)=-3,∴x 2-x -x 2+y =-3.∴x -y =3.∴x 2+y 2-2xy =(x -y)2=32=9. 23.解:(1)原式=6ab(b 2-4a 2)=6ab(b +2a)(b -2a). (2)原式=(x 2-4)2=(x -2)2(x +2)2.(3)原式=(x +y)(a 2-b 2)=(x +y)(a +b)(a -b). (4)原式=(2mn +m 2+n 2)(2mn -m 2-n 2)=-(m +n)2(m -n)2. 24.解:(x 2+px +8)(x 2-3x +q)=x 4-3x 3+qx 2+px 3-3px 2+pqx +8x 2-24x +8q =x 4+(p -3)x 3+(q -3p +8)x 2+(pq -24)x +8q. 因为展开式中不含x 2和x 3项, 所以p -3=0,q -3p +8=0, 解得p =3,q =1.25.解:小新的说法正确.∵(2x -y)(2x +y)+(2x -y)(y -4x)+2y(y -3x)=4x 2-y 2-8x 2+6xy -y 2+2y 2-6xy =-4x 2,∴小新的说法正确.26.解:△ABC 是等边三角形.理由如下:∵a 2+2b 2+c 2-2b(a +c)=0,∴a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b)2+(b -c)2=0.∴a -b =0,且b -c =0,即a =b =c.故△ABC 是等边三角形.27.解:S 阴影=a 2+b 2-12a(a +b)-12b 2=12a 2-12ab +12b 2,当a +b =16,ab =60时,原式=12[(a +b)2-3ab]=12(162-180)=38. 28.解:(1)①原式=-63; ②原式=2n +1-2;③原式=x 100-1.(2)①a 2-b 2;②a 3-b 3;③a 4-b 4.第十五章检测卷 (120分,90分钟)题 号 一 二 三 总 分 得 分一、选择题(每题3分,共30分) 1.下列式子是分式的是( ) A.a -b 2 B.5+y π C.x +3x D .1+x2.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=19C .(a -12)2=a 14D .(-a -1b -3)-2=-a 2b 63.当x =1时,下列分式中值为0的是( ) A.1x -1 B.2x -2x -2 C.x -3x +1 D.|x|-1x -14.分式①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b ),④1x -2中,最简分式有( ) A .1个 B .2个 C .3个 D .4个 5.下列各式正确的是( ) A .--3x 5y =3x -5y B .-a +b c =-a +bcC.-a -b c =a -b c D .-a b -a =a a -b6.化简⎝ ⎛⎭⎪⎫1+a 21+2a ÷1+a 1+2a 的结果为( ) A .1+a B.11+2a C.11+aD .1-a7.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.000 000 000 34 m ,这个数用科学记数法表示正确的是( )A .3.4×10-9B .0.34×10-9C .3.4×10-10D .3.4×10-118.方程2x +1x -1=3的解是 ( )A .-45 B.45 C .-4 D .49.若xy =x -y ≠0,则1y -1x =( )A.1xyB .y -xC .1D .-1kg 所用时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运x kg 货物,则可列方程为( ) A.5 000x -600=8 000x B.5 000x =8 000x +600 C.5 000x +600=8 000x D.5 000x =8 000x -600二、填空题(每题3分,共30分) 11.计算:3m 2n ·⎝ ⎛⎭⎪⎫p 3n -2÷mnp 2=________.12.若|a|-2=(a -3)0,则a =________.13.把分式a +13b 34a -b 的分子、分母中各项系数化为整数的结果为________.14.禽流感病毒的形状一般为球形,直径大约为0.000 000 102 m ,该直径用科学记数法表示为________m. 15.若分式|y|-55-y的值为0,则y =________.16.如果实数x 满足x 2+2x -3=0,那么式子⎝ ⎛⎭⎪⎫x 2x +1+2÷1x +1的值为________.17.若分式方程2+1-kx x -2=12-x有增根,则k =________.18.一列数:13,26,311,418,527,638,…,它们按一定的规律排列,则第n 个数(n 为正整数)为________.19.小成每周末要到离家5 km 的体育馆打球,他骑自行车前往体育馆比乘汽车多用10 min ,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km/h ,根据题意列方程为____________________.20.数学家们在研究15 ,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________. 三、解答题(22题6分,21题,26题每题12分,其余每题10分,共60分)21.(1)计算:(-3)2-⎝ ⎛⎭⎪⎫15-1+(-2)0; (2)计算:1x -4-2x x 2-16;(3)化简:x2x -2-x -2;(4)化简:⎝ ⎛⎭⎪⎫a a -b -2b a -b ·ab a -2b ÷⎝ ⎛⎭⎪⎫1a +1b .。
最新人教版八年级数学上册单元测试题附答案全套第十一章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.2、2、4 B.8、6、3C.2、6、3 D.11、4、62.如图,∠1的度数是()A.40° B.50°C.60° D.70°3.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒4.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是() A.9 B.14C.16 D.不能确定5.如图,在△ABC 中,∠A =46°,∠C =74°,BD 平分∠ABC ,交AC 于点D ,则∠BDC 的度数是( ) A .76° B .81° C .92° D .104°6.在下列条件中:①∠A +∠B =∠C ;②∠A =∠B =2∠C ;③∠A ∶∠B ∶∠C =1∶2∶3.能确定△ABC 为直角三角形的条件有( )A .1个B .2个C .3个D .0个7.一个正多边形的内角和为540°,则这个正多边形的每一个外角的度数是( ) A .108° B .90° C .72° D .60°8.若a 、b 、c 是△ABC 三边的长,则化简|a -b -c |-|b -c -a |+|a +b -c |的结果是( ) A .a +b +c B .-a +3b -c C .a +b -c D .2b -2c9.小明同学在用计算器计算某n 边形的内角和时,不小心多输入一个内角,得到和为2016°,则n 的值为( )A .11B .12C .13D .1410.在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30°C .∠ADE =12∠ADCD .∠ADE =13∠ADC二、填空题(每小题3分,共24分)11.如图,以∠E 为内角的三角形共有________个.12.若n边形的内角和为900°,则边数n的值为________.13.一个三角形的两边长分别是3和8,若周长是偶数,则第三边的长是________.14.将一副三角板按如图所示的方式叠放,则∠α的度数是________.15.如图,在△ABC中,CD是AB边上的中线,E是AC的中点,已知△DEC的面积是4cm2,则△ABC 的面积是________.16.如图,把三角形纸片ABC沿DE折叠,使点A落在四边形BCDE的内部.已知∠1+∠2=80°,则∠A的度数是________.17.如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2的度数是________.18.如图,已知在△ABC中,∠A=155°.第一步:在△ABC的上方确定点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB;第二步:在△A1BC的上方确定点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA……则∠A1的度数是________,照此继续,最多能进行________步.三、解答题(共66分)19.(8分)如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.20.(8分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.21.(8分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.22.(10分)如图,点E在AC上,点F在AB上,BE,CF交于点O,且∠C=2∠B,∠BFC-∠BEC =20°,求∠C的度数.23.(10分)如果多边形的每个内角都比与它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.24.(10分)如图,在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分成12cm 和15cm 两部分,求△ABC 各边的长.25.(12分)如图①,在平面直角坐标系中,A (0,1),B (4,1),C 为x 轴正半轴上一点,且AC 平分∠OAB . (1)求证:∠OAC =∠OCA ;(2)如图②,若分别作∠AOC 的三等分线及∠OCA 的外角的三等分线交于点P ,即满足∠POC =13∠AOC ,∠PCE =13∠ACE ,求∠P 的大小;(3)如图③,若射线OP 、CP 满足∠POC =1n ∠AOC ,∠PCE =1n ∠ACE ,猜想∠P 的大小,并证明你的结论(用含n 的式子表示).参考答案与解析1.B 2.D 3.C 4.A 5.A 6.B 7.C 8.B9.C 解析:n 边形的内角和为(n -2)·180°,并且每一个内角的度数都小于180°.∵(13-2)×180°=1980°,(14-2)×180°=2160°,1980°<2016°<2160°,∴n =13.故选C.10.D 解析:如图,在△AED 中,∠AED =60°,∴∠ADE =180°-∠A -∠AED =120°-∠A .在四边形ABCD 中,∵∠A =∠B =∠C ,∴∠ADC =360°-∠A -∠B -∠C =360°-3∠A =3(120°-∠A ),∴∠ADC =3∠ADE .∴∠ADE =13∠ADC .故选D.11.3 12.7 13.7或9 14.75° 15.16cm 2 16.40° 17.28° 18.130° 6 解析:∵在△ABC 中,∠A =155°,∴∠ABC +∠ACB =25°.又∵∠A 1BA =∠ABC ,∠A 1CA =∠ACB ,∴∠A 1BC +∠A 1CB =50°,∴在△A 1BC 中,∠A 1=180°-50°=130°.∵25°+25°×6=175°<180°,25°+25°×7=200°>180°,∴最多能进行6步.19.解:(1)AB (1分) (2)CD (2分)(3)∵AE =3cm ,CD =2cm ,∴S △AEC =12AE ·CD =12×3×2=3(cm 2).(5分)∵S △AEC =12CE ·AB =3cm 2,AB=2cm ,∴CE =3cm.(8分)20.解:(1)∵在△BCD 中,BC =4,BD =5,∴1<CD <9.(4分)(2)∵AE ∥BD ,∠BDE =125°,∴∠AEC =180°-∠BDE =55°.又∵∠A =55°,∴∠C =180°-∠A -∠AEC =70°.(8分)21.(1)解:∵六边形ABCDEF 的内角都相等,内角和为(6-2)×180°=720°,∴∠B =∠A =∠BCD =720°÷6=120°.(1分)∵CF ∥AB ,∴∠B +∠BCF =180°,∴∠BCF =60°,∴∠FCD =∠BCD -∠BCF =60°.(4分)(2)证明:∵CF ∥AB ,∴∠A +∠AFC =180°,∴∠AFC =180°-120°=60°,∴∠AFC =∠FCD ,∴AF ∥CD .(8分)22.解:由三角形外角的性质,得∠BFC =∠A +∠C ,∠BEC =∠A +∠B .(2分)∵∠BFC -∠BEC =20°,∴(∠A +∠C )-(∠A +∠B )=20°,即∠C -∠B =20°.(5分)∵∠C =2∠B ,∴∠B =20°,∠C =40°.(10分)23.解:设这个多边形的一个外角为x °.依题意有x +4x +30=180,解得x =30.(3分)∴这个多边形的边数为360°÷30°=12,(5分)∴这个多边形的内角和为(12-2)×180°=1800°,(7分)对角线的总条数为(12-3)×122=54(条).(10分)24.解:设AB =x cm ,BC =y cm ,则AD =CD =12x cm.有以下两种情况:(1)当AB +AD =12cm ,BC +CD =15cm 时,⎩⎨⎧x +12x =12,y +12x =15,解得⎩⎪⎨⎪⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三角形的三边关系;(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎨⎧x +12x =15,y +12x =12,解得⎩⎪⎨⎪⎧x =10,y =7.即AB =AC =10cm ,BC =7cm ,符合三角形的三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分)25.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE =13×(180°-45°)=45°.∴∠P =∠PCE -∠POC =15°.(7分)(3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n ·90°=90°n .∵∠PCE =1n∠ACE ,∴∠PCE =1n (180°-45°)=135°n .(10分)∴∠P =∠PCE -∠POC =45°n .(12分)第十二章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.在下列每组图形中,是全等形的是( )2.如图,△AOC ≌△BOD ,点A 与点B 是对应点,则下列结论中错误的是( ) A .∠A =∠B B .AO =BO C .AB =CD D .AC =BD3.如图,已知AB =AC ,BD =CD ,则可推出( ) A .△ABD ≌△BCD B .△ABD ≌△ACD C .△ACD ≌△BCD D .△ACE ≌△BDE4.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若要证△ABC≌△A′B′C′,则还需从下列条件中补选一个,错误的选法是()A.∠B=∠B′ B.∠C=∠C′C.BC=B′C′ D.AC=A′C′5.已知∠AOB的平分线上一点P到OA的距离为5,Q是OB上任意一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤56.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=12,AC=8,则CD 的长为()A.5.5 B.4 C.4.5 D.37.如图,MP⊥NP,MQ为∠PMN的平分线,MT=MP,连接TQ,则下列结论中不正确的是() A.TQ=PQ B.∠MQT=∠MQPC.∠QTN=90° D.∠NQT=∠MQT8.如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=54°,则∠E的度数为()A.25° B.27° C.30° D.45°9.如图,已知AB∥CD,AD∥BC,AD=BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,则图中的全等三角形有()A.5对B.6对C.7对D.8对10.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P 旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN恒成立;②OM+ON 的值不变;③四边形PMON的面积不变;④MN的长不变.其中正确的个数为() A.4 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是__________.12.如图,在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若CD=4,则点D到斜边AB的距离为________.13.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,OB与A′B′交于点C,则∠A′CO的度数是________.14.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.15.如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________cm.16.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是________.17.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是__________时,它们也会全等;当这两个三角形中的一个是锐角三角形,另一个是__________时,它们一定不全等.18.如图,在平面直角坐标系中,已知点A(0,3),B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为________.三、解答题(共66分)19.(8分)如图,点C是AE的中点,∠A=∠ECD,AB=CD.求证:∠B=∠D.20.(8分)如图,点D在BC上,∠1=∠2,AE=AC,下面有三个条件:①AB=AD;②BC=DE;③∠E=∠C.请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.21.(8分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并证明你的猜想.22.(10分)如图,在△ABC中,点O是∠ABC、∠ACB的平分线的交点,AB+BC+AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.23.(10分)如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.(1)求证:BC=DE;(2)若∠A=40°,求∠BCD的度数.24.(10分)如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)求证:BE=CF;(2)若AB=8,AC=6,求AE,BE的长.25.(12分)在解决线段数量关系的问题时,如果条件中有角平分线,经常采用下面构造全等三角形的解题思路,如:在图①中,若C 是∠MON 的平分线OP 上一点,点A 在OM 上,此时,在ON 上截取OB =OA ,连接BC ,根据三角形全等判定(SAS),容易构造出全等三角形△OBC 和△OAC ,参考上面的方法,解答下列问题:如图②,在非等边△ABC 中,∠B =60°,AD ,CE 分别是∠BAC ,∠BCA 的平分线,且AD ,CE 交于点F .求证:AC =AE +CD .参考答案与解析1.C 2.C 3.B 4.C 5.B 6.B 7.D 8.B 9.C10.B 解析:如图,作PE ⊥OA 于E ,PF ⊥OB 于F ,则∠PEO =∠PFO =90°,∴∠EPF +∠AOB =180°.∵∠MPN +∠AOB =180°,∴∠EPF =∠MPN ,∴∠EPM =∠FPN .∵OP 平分∠AOB ,∴∠POE =∠POF .在△POE 和△POF 中, ⎩⎪⎨⎪⎧∠POE =∠POF ,∠PEO =∠PFO ,PO =PO ,∴△POE ≌△POF ,∴PE =PF ,OE =OF .在△PEM 和△PFN 中, ⎩⎪⎨⎪⎧∠MPE =∠NPF ,PE =PF ,∠PEM =∠PFN ,∴△PEM ≌△PFN ,∴EM =NF ,PM =PN ,故①正确.∴S △PEM =S △PFN ,∴S 四边形PMON =S 四边形PEOF =定值,故③正确.∵OM +ON =OE +ME +OF -NF =2OE =定值,故②正确.MN的长度是变化的,故④错误.故选B.11.DC =BC (或∠DAC =∠BAC ) 12.4 13.82° 14.3 15.9 16.20°17.钝角三角形或直角三角形 钝角三角形18.(6,6) 解析:如图,过点C 作CE ⊥OA ,CF ⊥OB ,垂足分别为E ,F .则∠OEC =∠OFC =90°.∵∠AOB =90°,∴∠ECF =90°.∵∠ACB =90°,∴∠ACE =∠BCF .在△ACE 和△BCF 中,⎩⎪⎨⎪⎧∠AEC =∠BFC ,∠ACE =∠BCF ,AC =BC ,∴△ACE ≌△BCF (AAS),∴AE =BF ,CE =CF ,∴点C 的横、纵坐标相等,∴OE =OF .∵AE =OE -OA=OE -3,BF =OB -OF =9-OF ,∴OE =OF =6,∴点C 的坐标为(6,6).19.证明:∵点C 是AE 的中点,∴AC =CE .(2分)在△ABC 和△CDE 中,⎩⎪⎨⎪⎧AC =CE ,∠A =∠ECD ,AB =CD ,∴△ABC ≌△CDE (SAS),(7分)∴∠B =∠D .(8分)20.解:选②BC =DE .(1分)如图,∵∠1=∠2,∠3=∠4,∴∠E =∠C .(3分)在△ADE 和△ABC 中,⎩⎪⎨⎪⎧AE =AC ,∠E =∠C ,DE =BC ,∴△ADE ≌△ABC (SAS).(8分)21.解:猜想BF ⊥AE .(2分)理由如下:∵∠ACB =90°,∴∠ACE =∠BCD =90°.又BC =AC ,BD =AE ,∴Rt △BDC ≌Rt △AEC (HL).∴∠CBD =∠CAE .(5分)又∵∠CAE +∠E =90°,∴∠EBF +∠E =90°.∴∠BFE =90°,即BF ⊥AE .(8分)22.解:如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .(2分)∵点O 是∠ABC ,∠ACB 的平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO +S △BCO +S △ACO =12AB ·OE+12BC ·OD +12AC ·OF =12×2·(AB +BC +AC )=12×2×12=12.(10分) 23.(1)证明:∵AC ∥DE ,∴∠ACB =∠E ,∠ACD =∠D .∵∠ACD =∠B .∴∠D =∠B .(2分)在△ABC 和△CDE 中,⎩⎪⎨⎪⎧∠ACB =∠E ,∠B =∠D ,AC =CE ,∴△ABC ≌△CDE (AAS),∴BC =DE .(5分)(2)解:由(1)知△ABC ≌△CDE ,∴∠DCE =∠A =40°,∴∠BCD =180°-40°=140°.(10分)24.(1)证明:如图,连接DB ,DC .∵DG ⊥BC 且平分BC ,∴∠DGB =∠DGC =90°,BG =CG .又DG =DG ,∴△DGB ≌△DGC ,∴DB =DC .∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠DAE=∠DAF ,∠BED =∠AED =∠DFC =90°.(3分)在Rt △DBE 和Rt △DCF 中,⎩⎪⎨⎪⎧DB =DC ,DE =DF ,∴Rt △DBE ≌Rt △DCF (HL),∴BE =CF .(5分)(2)解:在△ADE 和△ADF 中,⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF .(7分)∵AC +CF =AF ,AE =AB -BE ,∴AC +CF =AB -BE ,即6+BE =8-BE ,∴BE =1,∴AE =8-1=7.(10分)25.证明:如图,在AC 上截取AG =AE ,连接FG .(1分)∵AD 是∠BAC 的平分线,CE 是∠BCA 的平分线,∴∠1=∠2,∠3=∠4.(2分)在△AEF 和△AGF 中, ⎩⎪⎨⎪⎧AE =AG ,∠1=∠2,AF =AF ,∴△AEF ≌△AGF (SAS),∴∠AFE=∠AFG .(6分)∵∠B =60°,∴∠BAC +∠ACB =120°,∴∠2+∠3=12(∠BAC +∠ACB )=60°.∵∠AFE =∠2+∠3,∴∠AFE =∠CFD =∠AFG =60°,∴∠CFG =180°-∠CFD -∠AFG =60°,∴∠CFD =∠CFG .(9分)在△CFG 和△CFD 中,⎩⎪⎨⎪⎧ ∠CFG =∠CFD ,FC =FC ,∠3=∠4,∴△CFG ≌△CFD (ASA),∴CG =CD .∴AC =AG+CG=AE+CD.(12分)第十三章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列瑜伽动作中,可以看成轴对称图形的是()2.已知等腰三角形的一边长为6,一个内角为60°,则它的周长是()A.12 B.15 C.18 D.203.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为() A.40海里B.60海里C.70海里D.80海里4.如图,在△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是()A.DE=DC B.AD=DBC.AD=BC D.BC=AE5.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30° B.36°C.54° D.72°6.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( )A .(-2,1)B .(-1,1)C .(1,-2)D .(-1,-2)7.如图,△ABC 是等边三角形,AB =6,BD 是∠ABC 的平分线,延长BC 到E ,使CE =CD ,则BE 的长为( )A .7B .8C .9D .108.如图,∠A =80°,点O 是AB ,AC 垂直平分线的交点,则∠BCO 的度数是( ) A .40° B .30° C .20° D .10°9.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4……若∠A =70°,则∠A n -1A n B n -1的度数为( )A.70°2nB.70°2n +1C.70°2n -1D.70°2n +210.已知△ABC 中,AB =6,AC =8,BC =11,任作一条直线将△ABC 分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A .3条B .5条C .7条D .8条二、填空题(每小题3分,共24分)11.一个正五边形的对称轴共有________条.12.如图,等边△ABC中,AD为高,若AB=6,则CD的长度为________.13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为________.14.如图,树AB垂直于地面,为测树高,小明在C处测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,则计算出树的高度是________米.15.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE 的周长为________.16.如图,小明上午在理发店理发时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时时间是__________.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为________.18.如图,在△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P.若∠BAC =84°,则∠BDC的度数为________.三、解答题(共66分)19.(7分)如图,已知AB=AC,AE平分∠BAC的外角,那么AE∥BC吗?为什么?20.(8分)如图,在△ABC中,∠C=∠ABC,BE⊥AC于点E,D为AB上一点,△BDE是正三角形.求∠C的度数.21.(9分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴对称的图形△A1B1C1;(3)写出点A1,B1,C1的坐标.22.(10分)如图,从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).23.(10分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14cm,AC=6cm,求DC长.24.(10分)如图,△ABC是等边三角形,点D是直线BC上一点,以AD为一边向右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变,请求出其大小;若变化,请说明理由.25.(12分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边向下侧作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边向下侧作等边△CBD,连接DA并延长,交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?参考答案与解析1.A 2.C 3.D 4.C 5.B 6.B 7.C8.D 解析:如图,连接OA ,OB .∵∠BAC =80°,∴∠ABC +∠ACB =100°.∵O 是AB ,AC 垂直平分线的交点,∴OA =OB ,OA =OC ,∴OB =OC ,∠OAB =∠OBA ,∠OCA =∠OAC ,∴∠OBA +∠OCA =80°,∴∠OBC +∠OCB =100°-80°=20°.∴∠BCO =∠CBO =10°,故选D.9.C 解析:在△ABA 1中,∠A =70°,AB =A 1B ,∴∠BA 1A =70°.∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角,∴∠B 1A 2A 1=∠BA 1A 2=35°.同理可得∠B 2A 3A 2=∠B 1A 2A 12=17.5°=70°22,∠B 3A 4A 3=12×17.5°=70°23,∴∠A n -1A n B n -1=70°2n -1.故选C.10.C 解析:分别以AB ,AC 为腰的等腰三角形有4个,如图①所示,分别为△ABD ,△ABE ,△ABF ,△ACG ,∴满足条件的直线有4条;分别以AB ,AC ,BC 为底的等腰三角形有3个,如图②所示,分别为△ABH ,△ACM ,△BCN ,∴满足条件的直线有3条.综上可知满足条件的直线共有7条,故选C.11.5 12.3 13.-10 14.10 15.13 16.10:45 17.21° 解析:∵AB =AC ,∠A =32°,∴∠ABC =∠ACB =74°.依题意可知BC =EC ,∴∠BEC =∠EBC =53°,∴∠ABE =∠ABC -∠EBC =74°-53°=21°.18.96° 解析:如图,过点D 作DE ⊥AB 交AB 的延长线于点E ,DF ⊥AC 于点F .∵AD 是∠BAC 的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt △DEB 和Rt △DFC 中,⎩⎪⎨⎪⎧DB =DC ,DE =DF ,∴Rt △DEB ≌Rt △DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DF A =90°,∠BAC=84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.19.解:AE ∥BC .(1分)理由如下:∵AB =AC ,∴∠B =∠C .由三角形外角的性质得∠DAC =∠B +∠C =2∠B .(4分)∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE ,∴AE ∥BC .(7分)20.解:∵△BDE 是正三角形,∴∠DBE =60°.(2分)∵BE ⊥AC ,∴∠BEA =90°,∴∠A =90°-60°=30°.(4分)∵∠ABC +∠C +∠A =180°,∠C =∠ABC ,∴∠C =180°-30°2=75°.(8分) 21.解:(1)依题意,S △ABC =12×5×3=152.(3分) (2)△A 1B 1C 1如图所示.(6分)(3)A 1(1,5),B 1(1,0),C 1(4,3).(9分)22.解:选择的条件是:①∠B =∠C ;②∠BAD =∠CDA (或①③,①④,②③).(2分)证明:在△BAD 和△CDA 中,∵⎩⎪⎨⎪⎧∠B =∠C ,∠BAD =∠CDA ,AD =DA ,∴△BAD ≌△CDA (AAS),∴∠ADB =∠DAC ,(8分)∴AE =DE ,∴△AED 为等腰三角形.(10分)23.解:(1)∵AD ⊥BE ,BD =DE ,EF 垂直平分AC ,∴AB =AE =EC ,∴∠AED =∠B ,∠C =∠CAE .∵∠BAE =40°,∴∠AED =180°-∠BAE 2=70°,(3分)∴∠C =12∠AED =35°.(5分) (2)∵△ABC 的周长为14cm ,AC =6cm ,∴AB +BE +EC =8cm ,(8分)即2DE +2EC =8cm ,∴DC =DE +EC =4cm.(10分)24.解:(1)∠BAD =∠CAE .(2分)(2)∠DCE =60°,不发生变化.(3分)理由如下:∵△ABC 和△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD =120°,∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD=∠CAE .(6分)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS),∴∠ACE =∠B =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°.(10分)25.解:(1)△OBC ≌△ABD .(1分)证明:∵△AOB ,△CBD 都是等边三角形,∴OB =AB ,CB =DB ,∠ABO =∠DBC =60°,∴∠OBC =∠ABD .(3分)在△OBC 和△ABD 中,⎩⎪⎨⎪⎧OB =AB ,∠OBC =∠ABD ,CB =DB ,∴△OBC ≌△ABD (SAS).(5分)(2)由(1)知△OBC ≌△ABD ,∴∠BOC =∠BAD =60°.又∵∠OAB =60°,∴∠OAE =180°-60°-60°=分)∵在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,(9分)∴AC=AE=2,∴OC=1+2=3,∴当点C 的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.(12分)第十四章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.(-2)0的值为()A.-2 B.0 C.1 D.22.计算(-x2y)2的结果是()A.x4y2B.-x4y2C.x2y2D.-x2y23.下列运算正确的是()A.a-(b+c)=a-b+c B.2a2·3a3=6a5C.a3+a3=2a6D.(x+1)2=x2+14.下列四个多项式中,能因式分解的是()A.a2+b2B.a2-a+2C.a2+3b D.(x+y)2-45.若关于x的代数式x2-(m-1)x+1是一个完全平方式,则m的值为()A.-1 B.1C.-1或3 D.1或36.若(x+4)(x-2)=x2+mx+n,则常数m,n的值分别是()A.2,8 B.-2,-8C.-2,8 D.2,-87.若m=2100,n=375,则m、n的大小关系是()A.m>n B.m<nC.m=n D.大小关系无法确定8.若a、b、c为一个三角形的三边长,则式子(a-c)2-b2的值()A.一定为正数B.一定为负数C.可能是正数,也可能是负数D.可能为09.如图①所示是一个长为2a、宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按如图②所示方式拼成一个正方形,则中间空的部分的面积是()A.abB.(a+b)2C.(a-b)210.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S =1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得6S =6+62+63+64+65+66+67+68+69+610②,②-①得6S -S =610-1,即5S =610-1,所以S =610-15.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a ”(a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2016的值?你的答案是( )A.a 2016-1a -1B.a 2017-1a -1C.a 2016-1a D .a 2016-1 二、填空题(每小题3分,共24分)11.计算:-x 2·x 3=________;⎝⎛⎭⎫12a 2b 3=________; ⎝⎛⎭⎫-122017×22016=________.12.已知a +b =3,a -b =5,则代数式a 2-b 2的值是________.13.若关于x 的代数式x +m 与x -4的乘积中一次项是5x ,则常数项为________.14.因式分解:(1)xy 2-9x =____________;(2)4x 2-24x +36=____________.15.计算2016×512-2016×492的结果是________.16.已知2a 2+2b 2=10,a +b =3,则ab 的值为________.17.若3m =2,3n =5,则32m +3n -1的值为________.18.请看杨辉三角①,并观察下列等式②:根据前面各式的规律,则(a +b )6=______________________.三、解答题(共66分)19.(8分)计算:(1)x ·x 7; (2)a 2·a 4+(a 3)2;(3)(-2ab 3c 2)4; (4)(-a 3b )2÷(-3a 5b 2).20.(8分)化简:(1)(a+b-c)(a+b+c);(2)(2a+3b)(2a-3b)-(a-3b)2.21.(7分)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)-(x+1)2+2x=x2+2xy-x2+2x+1+2x第一步=2xy+4x+1第二步(1)小颖的化简过程从第________步开始出现错误;(2)对此整式进行化简.22.(8分)因式分解:(1)6xy2-9x2y-y3;(2)(p-4)(p+1)+3p.23.(8分)先化简,再求值:(1)(9x3y-12xy3+3xy2)÷(-3xy)-(2y+x)(2y-x),其中x=1,y=-2;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎪⎨⎪⎧m +2n =1,3m -2n =11.24.(9分)(1)已知a -b =1,ab =-2,求(a +1)(b -1)的值;(2)已知(a +b )2=11,(a -b )2=7,求ab ;(3)已知x -y =2,y -z =2,x +z =5,求x 2-z 2的值.25.(8分)小红家有一块L 形菜地,要把L 形菜地按如图所示方式分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a 米,下底都是b 米,高都是(b -a )米.(1)请你算一算,小红家的菜地面积共有多少平方米?(2)当a =10,b =30时,面积是多少平方米?材料:因式分解:(x +y )2+2(x +y )+1.解:将“x +y ”看成整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2.再将“A ”还原,得原式=(x +y +1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x -y )+(x -y )2=____________;(2)因式分解:(a +b )(a +b -4)+4;(3)求证:若n 为正整数,则式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.参考答案与解析1.C 2.A 3.B 4.D 5.C 6.D7.B 解析:m =2100=(24)25=1625,n =375=(33)25=2725.∵16<27,∴1625<2725,即m <n .故选B.8.B9.C 解析:依题意可知每个小长方形的长是a ,宽是b ,则拼成的正方形的边长为a +b ,中间空的部分的面积为(a +b )2-4ab =(a -b )2.故选C.10.B 解析:设S =1+a +a 2+a 3+a 4+…+a 2016①,在①式的两边都乘以a ,得aS =a +a 2+a 3+a 4+a 5+…+a 2017②,②-①得aS -S =a 2017-1,即(a -1)S =a 2017-1,所以S =a 2017-1a -1.故选B. 11.-x 5 18a 6b 3 -1212.15 13.-36 14.(1)x (y +3)(y -3) (2)4(x -3)215.403200 16.2 17.500318.a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 619.解:(1)原式=x 8.(2分)(2)原式=a 6+a 6=2a 6.(4分)(3)原式=16a 4b 12c 8.(6分)(4)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分) 20.解:(1)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(4分)(2)原式=4a 2-9b 2-(a 2-6ab +9b 2)=3a 2+6ab -18b 2.(8分)21.解:(1)一(3分) 解析:括号前面是负号,去掉括号应变号,故第一步出错,故答案为一.(2)x (x +2y )-(x +1)2+2x =x 2+2xy -x 2-2x -1+2x =2xy -1.(7分)22.解:(1)原式=-y (y 2-6xy +9x 2)=-y (3x -y )2.(4分)(2)原式=p 2+p -4p -4+3p =p 2-4=(p +2)(p -2).(8分)23.解:(1)原式=-3x 2+4y 2-y -4y 2+x 2=-2x 2-y .当x =1,y =-2时,原式=-2+2=0.(3分) (2)⎩⎪⎨⎪⎧m +2n =1①,3m -2n =11②,由①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.故方程组的解是⎩⎪⎨⎪⎧m =3,n =-1.(5分)(m -n )(m +n )+(m +n )2-2m 2=m 2-n 2+m 2+2mn +n 2-2m 2=2mn .当m =3,n =-1时,原式=2×3×(-1)=-6.(8分)24.解:(1)∵a -b =1,ab =-2,∴原式=ab -(a -b )-1=-2-1-1=-4.(3分)(2)∵(a +b )2=a 2+2ab +b 2=11①,(a -b )2=a 2-2ab +b 2=7②,由①-②得4ab =4,∴ab =1.(6分)(3)由x -y =2,y -z =2,得x -z =4.又∵x +z =5,∴原式=(x +z )(x -z )=20.(9分)25.解:(1)依题意,小红家的菜地面积共有2×12(a +b )(b -a )=(b 2-a 2)(平方米).(4分) (2)当a =10,b =30时,面积为900-100=800(平方米).(8分)26.(1)(x -y +1)2(2分)(2)解:令A =a +b ,则原式=A (A -4)+4=A 2-4A +4=(A -2)2,再将“A ”还原,得原式=(a +b -2)2.(6分)(3)证明:(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1.令n 2+3n =A ,则原式=A (A +2)+1=A 2+2A +1=(A +1)2,∴原式=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(10分)第十五章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.在a -b 2,x (x +3)x ,5+x π,a +b a -b,a +1m 中,是分式的有( ) A .1个 B .2个C .3个D .4个2.若分式x 2-1x -1的值为零,则x 的值为( ) A .0 B .1C .-1D .±13.下列计算错误的是( )A.0.2a +b 0.7a -b =2a +b 7a -bB.x 3y 2x 2y 3=x yC.a -b b -a=-1 D.1c +2c =3c 4.人体中红细胞的直径约为0.0000077m ,将数0.0000077用科学记数法表示为( )A .77×10-5B .0.77×10-7C .7.7×10-6D .7.7×10-75.化简x 2x -1+x 1-x的结果是( ) A .x +1 B .x -16.如果把分式2n m -n中的m 和n 都扩大到原来的2倍,那么分式的值( ) A .不变 B .扩大到原来的2倍C .缩小为原来的12D .扩大到原来的4倍 7.化简⎝⎛⎭⎫1a +1b ÷⎝⎛⎭⎫1a 2-1b 2·ab 的结果是( )A.a 2b 2a -bB.a 2b 2b -aC.1a -bD.1b -a8.若1x -1=1,则3x -1-1+x 的值为( ) A .0 B .2 C .3 D .49.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13.小丽家去年12月份的水费是15元,而今年5月份的水费是30元.已知小丽家今年5月份的用水量比去年12月份的用水量多5m 3.求该市今年居民用水的价格.设去年居民用水价格为x 元/m 3,根据题意列方程,正确的是( )A.30⎝⎛⎭⎫1+13x -15x =5B.30⎝⎛⎭⎫1-13x -15x=5 C.30x -15⎝⎛⎭⎫1+13x =5 D.30x -15⎝⎛⎭⎫1-13x=5 10.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m ≠32C .m >-94D .m >-94且m ≠-34二、填空题(每小题3分,共24分)11.当x ________时,分式5x -2有意义. 12.方程12x =1x +1的解是________. 13.若3x -1=127,则x 的值为______. 14.计算⎝⎛⎭⎫a -2ab -b 2a ÷a -b a 的结果是________. 15.已知a 2-6a +9与(b -1)2互为相反数,则式子⎝⎛⎭⎫a b -b a ÷(a +b )的值是________.16.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,则甲每天铺设管道________米.17.若关于x 的方程2a x -1=a -1无解,则a 的值是________.18.若1(2n -1)(2n +1)=a 2n -1+b 2n +1(a ,b 为常数),对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________. 三、解答题(共66分)19.(9分)计算或化简:(1)(-2016)0-2-2-⎝⎛⎭⎫-12-3-(-3)2;(2)⎝⎛⎭⎫1x 2-4+4x +2÷1x -2;(3)⎝⎛⎭⎫a +1a +2÷⎝⎛⎭⎫a -2+3a +2.20.(8分)解方程:(1)2x +1-1x =0;(2)x -2x +2-16x 2-4=1.21.(10分)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1+x 2-4x 2-4x +4÷x 2x -2,其中x =1;(2)⎝⎛⎭⎪⎫1x -3-x +1x 2-1·(x -3),从不大于4的正整数中,选择一个合适的值代入x 求值.22.(8分)以下是小明同学解方程1-x x -3=13-x-2的过程. 解:方程两边同时乘(x -3),得1-x =-1-2. …………………………第一步解得x =4. ……………………………………第二步检验:当x =4时,x -3=4-3=1≠0. ………第三步所以,原分式方程的解为x =4. …………………第四步(1)小明的解法从第______步开始出现错误;(2)写出解方程1-x x -3=13-x-2的正确过程.23.(10分)某新建的商场有3000m 2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的工程.甲工程队平均每天比乙工程队多铺50m 2,甲工程队单独完成该工程的工期是乙工程队单独完成该工程所需工期的34.求甲、乙两个工程队完成该工程的时间.24.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车的速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分);(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家的时间的2倍,那么小明家与图书馆之间的路程最多是多少米?25.(11分)观察下列方程的特征及其解的特点.①x +2x=-3的解为x 1=-1,x 2=-2; ②x +6x=-5的解为x 1=-2,x 2=-3; ③x +12x=-7的解为x 1=-3,x 2=-4. 解答下列问题:(1)请你写出一个符合上述特征的方程为____________,其解为____________;(2)根据这类方程的特征,写出第n 个方程为________________,其解为____________;(3)请利用(2)的结论,求关于x 的方程x +n 2+n x +3=-2(n +2)(n 为正整数)的解.参考答案与解析1.C 2.C 3.A 4.C 5.D 6.A 7.B 8.D 9.A10.B 解析:去分母得x +m -3m =3x -9,整理得2x =-2m +9,解得x =-2m +92.∵关于x 的方程x +m x -3+3m 3-x=3的解为正数,∴-2m +9>0,解得m <92.由x ≠3得-2m +92≠3,解得m ≠32,故m 的取值范围是m <92且m ≠32.故选B. 11.≠2 12.x =1 13.-2 14.a -b 15.2316.20 17.1或0 解析:方程两边乘(x -1),得2a =(a -1)(x -1),即(a -1)x =3a -1.当a -1=0且3a -1≠0时,方程无解,此时a =1;当a -1≠0时,x =3a -1a -1,若x =1,则方程无解,此时3a -1a -1=1,解得a =0.综上所述,若关于x 的方程2a x -1=a -1无解,则a 的值是1或0. 18.12 -12 1021 解析:1(2n -1)(2n +1)=a 2n -1+b 2n +1=a (2n +1)+b (2n -1)(2n -1)(2n +1)=2n (a +b )+a -b (2n -1)(2n +1).∵等式对于任意自然数n 都成立,∴⎩⎪⎨⎪⎧a +b =0,a -b =1,解得⎩⎨⎧a =12,b =-12.∴1(2n -1)(2n +1) =122n -1+-122n +1=12⎝⎛⎭⎫12n -1-12n +1,∴m =11×3+13×5+15×7+…+119×21=12×⎝⎛1-13+13-15+15-17+…⎭⎫+119-121=12×⎝⎛119.解:(1)原式=1-14+8-9=-14.(3分) (2)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2.(6分) (3)原式=a 2+2a +1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1.(9分) 20.解:(1)方程两边同乘x (x +1),得2x -(x +1)=0,解得x =1.(3分)检验:当x =1时,x (x +1)≠0.所以原分式方程的解为x =1.(4分)(2)方程两边同乘(x +2)(x -2),得(x -2)2-16=x 2-4,解得x =-2.(7分)检验:当x =-2时,(x +2)(x -2)=0,因此x =-2不是原分式方程的解.所以原分式方程无解.(8分)21.解:(1)原式=⎝ ⎛⎭⎪⎫1+x +2x -2·x -2x 2=2x x -2·x -2x 2=2x.(3分)当x =1时,原式=2.(5分) (2)原式=⎝⎛⎭⎫1x -3-1x -1·(x -3)=x -1-x +3(x -3)(x -1)·(x -3)=2x -1.(8分)∵x 从不大于4的正整数中选取,∴x =1,2,3,4.∵要使原式有意义,则x ≠±1,3,∴可取x =4,则原式=23.(10分) 22.解:(1)一(2分)(2)方程两边同时乘(x -3),得1-x =-1-2x +6,解得x =4.(7分)检验:当x =4时,x -3≠0.所以原分式方程的解为x =4.(8分)23.解:设乙工程队平均每天铺x m 2,则甲工程队平均每天铺(x +50)m 2.由题意得3000x +50=3000x ·34,解得x =150.(5分)经检验,x =150是原分式方程的解.(6分)3000x =20(天),20×34=15(天).(9分) 答:甲工程队完成该工程需15天,乙工程队完成该工程需20天.(10分)24.解:(1)设小明步行的速度是x 米/分.由题意得900x =9003x+10,解得x =60.(4分)经检验,x =60是原分式方程的解.(5分)答:小明步行的速度是60米/分.(6分)(2)设小明家与图书馆之间的路程是y 米.由(1)知小明骑自行车的速度为3×60=180(米/分),根据题意可得y 60≤900180×2,解得y ≤600.(9分) 答:小明家与图书馆之间的路程最多是600米.(10分)25.解:(1)答案不唯一,如x +20x=-9 x 1=-4,x 2=-5(3分) (2)x +n 2+n x=-(2n +1) x 1=-n ,x 2=-n -1(6分) (3)∵x +n 2+n x +3=-2(n +2),∴x +3+n 2+n x +3=-2(n +2)+3,∴(x +3)+n 2+n x +3=-(2n +1),∴x +3=-n 或x +3=-n -1,即x 1=-n -3,x 2=-n -4.(10分)检验:当x =-n -3时,x +3=-n ≠0,当x =-n -4时,x +3=-n -1≠0,∴原分式方程的解是x 1=-n -3,x 2=-n -4.(11分)。
八年级上册数学第一章测试题一、选择题( 本大题共 11 小题,每题3 分,共 33 分. ? 在每题所给出的四个选项中,只有一项为哪一项符合题目要求的)1.以以下各组线段为边,能构成三角形的是()A .2cm ,3cm , 5cmB .5cm , 6cm ,10cmC .1cm ,1cm , 3cmD .3cm , 4cm ,9cm2.等腰三角形的一边长等于 4,一边长等于 9,则它的周长是()A .17B .22C .17或 22D .13 3.合适条件∠ A=1 ∠B=1∠ C 的△ ABC 是( )2 3A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形4.已知等腰三角形的一个角为 75°,则其顶角为()A .30°B .75°C .105°D .30°或 75°5.一个多边形的内角和比它的外角的和的 2 倍还大 180°,这个多边形的边数是()A .5B.6C.7D .86.三角形的一个外角是锐角,则此三角形的形状是()A .锐角三角形B.钝角三角形 C .直角三角形D.无法确立7.以下命题正确的选项是()A .三角形的角均分线、中线、高均在三角形内部B .三角形中最罕有一个内角不小于 60°C .直角三角形仅有一条高D .直角三角形斜边上的高等于斜边的一半8. 能把一个三角形分红两个面积相等的三角形是三角形的()A. 高线B. 中线C. 角均分线D. 以上都不对9.已知等腰△ ABC 的底边 BC=8cm ,│AC-BC │=2cm ,则腰 AC 的长为( )A .10cm 或 6cmB . 10cmC .6cmD . 8cm 或 6cm10、在一个四边形中,假如有两个内角是直角,那么其他两个内角 ( ) .(A) 都是钝角 (B) 都是锐角 (C) 一个是锐角,一个是直角(D) 互为补角11.以以下图形中,是正多边形的是 ( )A .三条边都相等的三角形B .四个角都是直角的四边形C .四边都相等的四边形D .六条边都相等的六边形(14 题)(18 题)二、填空题 (本大题共 8 小题,每题 3 分,共 24 分.把答案填在题中横线上)12.三角形的三边长分别为 5,1+2x ,8,则 x 的取值范围是 ________.13.四条线段的长分别为5cm、6cm、8cm、13cm,? 以此中随意三条线段为边能够构成 ___个三角形.14.如图:∠ A+∠B+∠ C+∠D+∠ E+∠F 等于 ________.15.假如一个正多边形的内角和是900°,则这个正多边形是正 ______边形.16.n 边形的每个外角都等于45°,则 n=________.17.将一个正六边形纸片对折,并完满重合,那么,获得的图形是________边形, ? 它的内角和(按一层计算)是_______度.18.如图,已知∠ 1=20°,∠ 2=25°,∠ A=55°,则∠ BOC的度数是 _____.19.假如一个角的两边分别垂直于另一个角的两边,此中一个角为65°,则另一个角为 ______度.三、解答题(本大题共 4 小题,共 43 分,解答应写出文字说明,? 证明过程或演算步骤)20.( 10 分)如图, BD均分∠ ABC, DA⊥AB,∠ 1=60°,∠ BDC=80°,求∠ C的度数.(1)画△ ABC的外角∠ BCD,再画∠ BCD的均分线 CE.(2)作出 AC边上的高。
人教版八年级上册数学第一单元测试卷人教版八年级上册数学第一单元测试卷一、选择题(每题3分,共24分)1、下列说法中正确的是()A、两个直角三角形全等B、两个等腰三角形全等C、两个等边三角形全等D、两条直角边对应相等的直角三角形全等2、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDBB.∠BAC=∠DACC.∠XXX∠DCADD.∠B=∠D=90º3.如图所示,将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB,那么判定△OAB≌△OA’B’的理由是()A.边角边B.角边角C.边边边D.角角边4、如图,△ABC中,∠C=90º,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且CD=6cm,则DE的长为()A、4cmB、6cmC、8cmD、10cm5、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有(。
)A、3个B、2个C、1个D、0个6、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配。
A.①B.②C.③D.①和②7.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③8、如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PBB.PO平分∠APBXXX垂直平分OP二、填空题(每题3分,共24分)9、如图,若△ABC≌△A1B1C1,且∠A=110º,∠B=40º,则∠C1=30º。
八年级数学(上)第一单元自主学习达标检测
B 卷
(时间90分钟 满分100分)
班级 学号 姓名 得分
一、填空题(每题2分,共32分)
1.如果△ABC 和△DE F全等,△DEF 和△GHI 全等,则△AB C和△G HI ______全等, 如果△ABC 和△DEF 不全等,△DEF和△GHI 全等,则△ABC 和△GHI ______全等.(填“一定”或“不一定”或“一定不”)
2.如图,△A BC≌△A DE,∠B =100°,∠B AC=30°,那么∠AED =______. 3.△ABC 中,∠BA C∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△D EF ,则∠DEF =____.
4.如图,已知AE ∥BF , ∠E =∠F,要使△ADE ≌△BC F,可添加的条件是__________.
5.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BC D≌△CBE 的依据是“______”.
6.如图,AB ,CD 相交于点O ,A D=C B,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.
7.如图,△AB C是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,
A
D E
C
B
A
D
E C B
A
D
O
C
B
F
E
第2题图 第4题图 第5题图 第6题图
A
D
O
C
B
D
E
第7题图 第8题图
使所作的三角形与△ABC全等,这样的三角形最多可以画出_____个.
8.如图4,AC,BD 相交于点O ,AC=BD ,AB =CD ,写出图中两对相等的角______. 9.已知△D EF ≌△A BC ,AB =AC ,且△ABC 的周长为23cm ,B C=4 cm ,则△DE F 的边中必有一条边等于______.
10.如图,△A BC 中,∠C =90°,AD 平分∠B AC,AB =5,CD=2,则△A BD 的面积
是______.
11.如图,直线AE ∥BD ,点C 在BD 上,若AE =4,B D=8,△A BD 的面积为16,则ACE △的面积为______.
12.如图,已知在ABC 中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若
15cm BC =,则DEB △的周长为 cm .
13.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对
乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的
那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:____ __.
14.如图,沿AM 折叠,使D点落在BC 上,如果A D=7c m,DM=5c m,∠DA M=30°,
则AN =_________cm ,∠NAM =_________. .
15.在△ABC 中,∠C=90°,BC =4cm,∠BAC 的平分线交B C于D ,且B D︰DC =5︰3,
则D 到AB 的距离为_____________.
16.在数学活动课上,小明提出这样一个问题:∠B =∠C =900
,E是BC 的中点,DE
A
D
C B
A
D
C
B
E
E 第10题图 第11题图 第12题图
图4
A
B
D
C M
N
第14题图 第16题图。