数据结构图的存储结构及基本操作
- 格式:pdf
- 大小:207.68 KB
- 文档页数:13
数据结构中常用的逻辑结构和存储结构一、概念数据是指由有限的符号(比如,"0"和"1",具有其自己的结构、操作、和相应的语义)组成的元素的集合。
结构是元素之间的关系的集合。
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。
数据结构是信息的一种组织方式,其目的是为了提高算法的效率,它通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种操作。
它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。
数据结构有逻辑上的数据结构和物理上的数据结构之分。
逻辑上的数据结构反映成分数据之间的逻辑关系即逻辑结构,而物理上的数据结构反映成分数据在计算机内部的存储安排即存储结构。
数据结构是数据存在的形式。
数据结构作为一门学科主要研究数据的各种逻辑结构和存储结构,以及对数据的各种操作。
因此,主要有三个方面的内容:数据的逻辑结构;数据的物理存储结构;对数据的操作(或算法)。
通常,算法的设计取决于数据的逻辑结构,算法的实现取决于数据的物理存储结构。
因而研究数据结构的逻辑结构与存储结构显得十分重要。
二、结构分析(一)逻辑结构数据的逻辑结构是对数据之间关系的描述,有时就把逻辑结构简称为数据结构。
逻辑结构形式地定义为(K,R)(或(D,S)),其中,K是数据元素的有限集,R是K上的关系的有限集。
逻辑结构元素决定输入、存储、发送、处理和信息传递的基本操作功能,常将逻辑结构元素称为逻辑模块。
逻辑结构元素可以是计算机操作系统、终端模块、通信程序模块等。
逻辑结构元素还可以是相关的几个逻辑模块联合起来的更复杂的实体。
分析逻辑结构元素的相互作用,应考虑整个系统的操作,研究处理与信息流有关的进程(操作系统中的一个概念,表示程序的一次执行),并决定系统的逻辑资源。
逻辑结构有四种基本类型:集合结构、线性结构、树状结构和网络结构。
表和树是最常用的两种高效数据结构,许多高效的算法能够用这两种数据结构来设计实现。
中原工学院《数据结构》实验报告学院:计算机学院专业:计算机科学与技术班级:计科112姓名:康岩岩学号:201100814220 指导老师:高艳霞2012-11-22实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
【测试数据】由学生依据软件工程的测试技术自己确定。
三、实验前的准备工作1、掌握图的相关概念。
2、掌握图的逻辑结构和存储结构。
3、掌握图的两种遍历算法的实现。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
【设计思路】【代码整理】#include "stdafx.h"#include <iostream>#include <malloc.h>using namespace std;typedef int Status;#define OK 1#define ERROR 0#define OVERFLOW -1#define MAX_SIZE 20typedef enum{DG,DN,UDG,UDN}Kind;typedef struct ArcNode{int adjvex; //顶点位置struct ArcNode *nextarc; //下一条弧int *info; //弧信息};typedef struct{char info[10]; //顶点信息ArcNode *fistarc; //指向第一条弧}VNode,AdjList[MAX_SIZE];typedef struct{AdjList vertices;int vexnum,arcnum; //顶点数,弧数int kind; //图的种类,此为无向图}ALGraph;//这是队列的节点,仅用于广度优先搜索typedef struct Node{int num;struct Node* next;};//队列的头和尾typedef struct{Node * front;Node *rear;}PreBit;int LocateV ex(ALGraph G,char info[]);//定位顶点的位置Status addArcNode(ALGraph &G,int adjvex); //图中加入弧Status CreatGraph(ALGraph&G);//创建图的邻接表Status DFSTraverse(ALGraph G);//深度优先搜索Status BFSTraverse(ALGraph G);//广度优先搜索Status DFS(ALGraph G,int v);//深度优先搜索中的数据读取函数,用于递归bool visited[MAX_SIZE]; // 访问标志数组//初始化队列Status init_q(PreBit&P_B){P_B.front=P_B.rear=(Node*)malloc(sizeof(Node));if(!P_B.front){exit(OVERFLOW);}P_B.front->next=NULL;}//将数据入队Status en_q(PreBit & P_B,int num){Node *p=(Node*)malloc(sizeof(Node));if(!p){exit(OVERFLOW);}p->num=num;p->next=NULL;P_B.rear->next=p;P_B.rear=p;return OK;}//出队Status de_q(PreBit & P_B){if(P_B.front==P_B.rear){return ERROR;}Node* p=P_B.front->next;P_B.front->next=p->next;if(P_B.rear==p){P_B.rear=P_B.front;}free(p);return OK;}Status CreatGraph(ALGraph&G){cout<<"请输入顶点数目和弧数目"<<endl;cin>>G.vexnum>>G.arcnum;//依次输入顶点信息for(int i=0;i<G.vexnum;i++){cout<<"请输入顶点名称"<<endl;cin>>G.vertices[i].info;G.vertices[i].fistarc=NULL;}//依次输入弧信息for(int k=1;k<=G.arcnum;k++){char v1[10],v2[10]; //用于表示顶点名称的字符数组int i,j; //表示两个顶点的位置BACK: //返回点cout<<"请输入第"<<k<<"条弧的两个顶点"<<endl;cin>>v1>>v2;i=LocateV ex(G,v1); //得到顶点v1的位置j=LocateV ex(G,v2); //得到顶点v2的位置if(i==-1||j==-1){ //头信息不存在则返回重输cout<<"不存在该节点!"<<endl;goto BACK; //跳到BACK 返回点}addArcNode(G,i); //将弧的顶点信息插入表中addArcNode(G,j);}return OK;}//倒序插入弧的顶点信息Status addArcNode(ALGraph &G,int adjvex){ArcNode *p; //弧节点指针p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=adjvex;p->nextarc=G.vertices[adjvex].fistarc;//指向头结点的第一条弧G.vertices[adjvex].fistarc=p; //头结点的第一条弧指向p,即将p作为头结点的第一条弧return OK;}//定位顶点的位置int LocateV ex(ALGraph G,char info[]){for(int i=0;i<G.vexnum;i++){if(strcmp(G.vertices[i].info,info)==0){ //头结点名称与传入的信息相等,证明该头节点存在return i; //此时返回位置}}return -1;}//深度优先搜索Status DFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int i;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;i=LocateV ex(G,v1);if(i==-1){cout<<"不存在该节点!"<<endl;goto BACK;}DFS(G,i);return OK;}//深度优先搜索递归访问图Status DFS(ALGraph G,int v){visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息ArcNode *p;p=G.vertices[v].fistarc; //向头节点第一条while(p) //当弧存在{if(!visited[p->adjvex]){DFS(G,p->adjvex); //递归读取}p=p->nextarc;}return OK;}//广度优先搜索Status BFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int v;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;v=LocateV ex(G,v1);if(v==-1){cout<<"不存在该节点!"<<endl;goto BACK;}PreBit P_B;init_q(P_B);ArcNode *p;visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息en_q(P_B,v); //将头位置v入队while(P_B.front!=P_B.rear){//当队列不为空时,对其进行访问int w=P_B.front->next->num;//读出顶点位置de_q(P_B);//顶点已经访问过,将其出队列p=G.vertices[w].fistarc;//得到与顶点相关的第一条弧while(p){if(!visited[p->adjvex]){en_q(P_B,p->adjvex);//将弧入队,但不读取,只是将其放在队尾}p=p->nextarc;}}return OK;}int _tmain(int argc, _TCHAR* argv[]){ALGraph G;CreatGraph(G);cout<<"深度优先搜索图:"<<endl;DFSTraverse(G);cout<<endl;cout<<"广度优先搜索图:"<<endl;BFSTraverse(G);cout<<endl;system("pause");return 0;}。
数据结构图知识点总结高中一、线性结构1. 线性表线性表是数据结构中最基本的一种结构,它是由零个或多个数据元素构成的有限序列。
其中每个数据元素都只有一个前驱元素和一个后继元素,除了第一个和最后一个元素外,其他元素都有且仅有一个前驱和一个后继。
线性表有两种基本的存储结构,分别是顺序存储结构和链式存储结构。
顺序存储结构是利用一组地址连续的存储单元来存放线性表的数据元素,而链式存储结构是通过指针来表示数据元素之间的逻辑关系。
2. 栈栈是一种特殊的线性表,它只能在表的一端进行插入和删除操作。
栈有一个被称为栈顶的元素,只能在栈顶进行插入和删除操作。
栈有两种经典的存储结构,分别是顺序栈和链式栈。
顺序栈是利用数组来实现栈的存储和操作,而链式栈则是利用链表来实现栈的存储和操作。
3. 队列队列也是一种特殊的线性表,它只能在表的两端进行插入和删除操作。
队列有一个被称为队头和队尾的元素,只能在队头进行删除操作,只能在队尾进行插入操作。
队列也有两种经典的存储结构,分别是顺序队列和链式队列。
顺序队列是利用数组来实现队列的存储和操作,而链式队列则是利用链表来实现队列的存储和操作。
4. 串串是线性表的一种特殊形式,它是由零个或多个字符构成的有限序列。
串的存储结构有两种常见的形式,分别是顺序存储结构和链式存储结构。
顺序存储结构是利用数组来存储串的字符序列,而链式存储结构是利用链表来存储串的字符序列。
二、非线性结构1. 树树是一种非线性结构,它是由n (n ≥ 1) 个节点组成的有限集合,这些节点之间存在着明确的层次关系。
树的存储结构通常有两种形式,分别是双亲表示法和孩子表示法。
双亲表示法通过数组来存储树的节点和节点之间的关系,而孩子表示法则通过链表来存储树的节点和节点之间的关系。
树有许多种特殊形式,如二叉树、平衡二叉树、多路查找树等。
其中,二叉树是一种特殊的树,它的每个节点最多有两个子节点,这两个子节点被称为左子树和右子树。
2. 图图是一种非线性结构,它是由一组顶点和一组边组成的数据结构。
数据结构流程图数据结构是计算机科学中非常重要的概念之一,它用于描述数据元素之间的关系和存储方式。
而流程图则是一种用于表示算法、操作过程或系统设计的图形化工具。
在计算机科学领域中,流程图常用于描述算法和程序设计过程。
本文将探讨数据结构流程图的相关概念和使用方法。
一、概述数据结构流程图是一种使用标准符号和连线来表示数据结构及其操作的图形化工具。
它包括了各种数据结构的表示方法和基本操作的实现流程。
通过使用数据结构流程图,人们可以清晰地了解数据元素之间的关系以及各种操作的执行过程。
二、符号表示数据结构流程图使用了一系列标准化的符号来表示不同类型的数据结构和操作。
下面是几种常用的符号表示:1. 开始/结束符号:用于表示程序的开始和结束点,通常使用圆角矩形来表示。
2. 输入/输出符号:用于表示输入或输出操作,通常使用矩形或平行四边形来表示。
3. 过程符号:用于表示具体的执行过程,通常使用矩形来表示。
4. 判断符号:用于表示条件分支和判断操作,通常使用菱形来表示。
5. 箭头线:用于表示不同符号之间的流向,表示数据或控制信息的传输方向。
三、使用方法数据结构流程图的使用方法可以分为以下几个步骤:1. 定义数据结构:根据实际需求,确定所需的数据结构类型,例如数组、链表、栈、队列等。
2. 设计算法流程:根据数据结构的特点和需求,设计相应的算法流程,包括数据的插入、删除、查找等操作。
3. 表示数据结构:使用符号表示数据结构及其属性,例如使用方框表示数组,使用箭头表示指针等。
4. 表示算法流程:使用符号表示算法流程,包括条件判断、循环操作、数据的移动等。
5. 绘制流程图:根据之前的设计,将数据结构和算法流程以符号形式绘制在图形界面上,使用箭头线表示数据流向。
6. 调试和改进:通过对流程图的分析和调试,发现问题并进行改进,保证算法的正确性和高效性。
四、实例演示以下是一个使用数据结构流程图描述数组插入操作的示例:思路:1. 输入待插入的元素和插入位置;2. 检查插入位置是否合法;3. 如果合法,将插入位置后的元素依次向后移动一个位置;4. 将待插入的元素放入插入位置处;5. 输出修改后的数组。
数据结构图的存储结构及基本操作数据结构图的存储结构及基本操作1·引言数据结构图是一种用来描述数据元素之间关系的图形结构,它可以表示实体之间的联系和依赖关系。
本文将介绍数据结构图的存储结构及基本操作。
2·存储结构2·1 邻接矩阵邻接矩阵是使用二维数组来表示数据结构图中各个节点之间的关系。
矩阵的行和列代表节点,如果两个节点之间存在边,则矩阵相应位置的值为1,否则为0。
2·2 邻接表邻接表是使用链表来表示数据结构图中各个节点之间的关系。
每个节点都有一个链表,链表中的每个元素表示与该节点相邻的节点。
2·3 十字链表十字链表是使用链表来表示数据结构图中各个节点之间的关系。
每个节点都有两个链表,一个表示该节点指向的节点,另一个表示指向该节点的节点。
2·4 邻接多重表邻接多重表是使用链表来表示数据结构图中各个节点之间的关系。
每个节点都有一个链表,链表中的每个元素表示与该节点相邻的边。
3·基本操作3·1 创建图创建一个空的数据结构图,根据需要选择适当的存储结构。
3·2 插入节点在数据结构图中插入一个节点,并建立与其他节点的关系。
3·3 删除节点从数据结构图中删除一个节点,并删除与其他节点的关系。
3·4 插入边在数据结构图中插入一条边,连接两个节点。
3·5 删除边从数据结构图中删除一条边,断开两个节点的连接。
3·6 遍历图按照某种规则遍历整个数据结构图,访问每个节点。
本文档涉及附件:无本文所涉及的法律名词及注释:1·邻接矩阵:用于表示图的存储结构,矩阵的行和列代表图的节点,矩阵的值表示节点之间的连接关系。
2·邻接表:用于表示图的存储结构,每个节点都有一个链表,链表中的每个元素表示与该节点相邻的节点。
3·十字链表:用于表示图的存储结构,每个节点都有两个链表,一个表示该节点指向的节点,另一个表示指向该节点的节点。
第5章图●图的定义①图由顶点集V和边集E组成,记为G=(V,E),V(G)是图G中顶点的有穷非空集合,E(G)是图G中顶点之间变得关系集合,|V|表示顶点个数,也称图的阶,|E|表示边数(线性表和树都可以是空的,但图可以只有一个顶点没有边)②有向图:弧是顶点的有序对,记为<v,w>,v,w是顶点,v是弧尾,w是弧头,从顶点v到顶点w的弧。
无向图:边是顶点的无序对,记为(v,w)③简单图:一个图满足:不存在重复边;不存在顶点到自身的边。
多重图相对于简单图定义④完全图:无向图中,任意两顶点之间存在边,称为完全无向图。
N个顶点的无向完全图有n(n-1)/2条边。
在有向图中,任意两顶点之间存在方向相反的两条弧,称为有向完全图,N 个顶点的有向完全图有n(n-1)条边。
⑤连通图:在无向图中任意两顶点都是连通的。
无向图中的极大连通子图称为连通分量。
极大要求连通子图包含其所有的边和顶点,极小连通子图既要保持图连通,又要保持边数最少⑥在有向图中任意两顶点v,w,存在从顶点v到顶点w和从顶点w到顶点v两条路径,这种图称为强连通图。
有向图的极大强连通子图称为有向图的强连通分量。
⑦生成树:①包含图中所有顶点n,②生成树有n-1条边, ③任意两点连通。
对生成树而言,砍去一条边变成非连通图,加上一条边形成一个回路。
在非连通图中,连通分量的生成树构成了非连通图的生成森林。
⑧顶点的度:以该顶点为端点的边的数目。
无向图的全部顶点的度之和等于边数的两倍。
有向图的度等于出度和入度之和,入度是以该顶点为终点的有向边的数目,出度是以该顶点为起点的有向边的数目。
有向图的全部顶点的入度之和和出度之和相等且等于边数。
⑨图中每条边可以标上具有某种含义的数值,该数值称为边的权值。
带有权值的图称为网。
○10对于无向图G=(V, {E}),如果边(v,v’)∈E,则称顶点v,v’互为邻接点,即v,v’相邻接。
边(v,v’)依附于顶点v 和v’,或者说边(v, v’)与顶点v 和v’相关联。
实验报告课程名称:数据结构与算法课程类型:必修实验项目:图型结构及应用实验题目:图的存储结构的建立与搜索一、实验目的1.了解图的两种存储方式:邻接矩阵和邻接表。
2.掌握邻接矩阵和邻接表的建立算法。
3.掌握图的深度优先搜索和广度优先搜索算法。
4.更加熟练文件的相关操作。
二、实验要求及实验环境实验要求:1.分别实现图的邻接矩阵、邻接表存储结构的建立算法,分析和比较各建立算法的时间复杂度以及存储结构的空间占用情况;2.实现图的邻接矩阵、邻接表两种存储结构的相互转换算法;3.在上述两种存储结构上,分别实现图的深度优先搜索(递归和非递归)和广度优先搜索算法。
并以适当的方式存储和显示相应的搜索结果(深度优先或广度优先生成森林(或生成树)、深度优先或广度优先序列和编号);4.分析搜索算法的时间复杂度;5.以文件形式输入图的顶点和边,并显示相应的结果。
要求顶点不少于10个,边不少于13个;6.软件功能结构安排合理,界面友好,便于使用。
实验环境:codeblocks/Dev-C++三、设计思想(本程序中的用到的所有数据抽象数据性ADT的定义,主程序的流程图及各程序模块之间的调用关系)1. 所用的抽象数据性ADT的定义1)逻辑结构:栈:是一种特殊形式的线性表,所有的插入和删除操作都在栈顶。
栈的置空操作:void makenull(stack* s)判断栈是否为空:int empty(stack* s)返回栈顶元素:btree* top(stack* s)入栈操作:void push(btree* x, stack* s)出栈操作:void pop(stack* s)队列:是一种特殊形式的线性表,队尾入队,队首出队。
将队列置空:void makenull_q(queue* duilie)在队列后面插入T:void enqueue_q(btree* T, queue* duilie)判断队列是否为空:int empty_q(queue* duilie)返回队列的第一个元素:btree* front_q(queue* duilie)删除队列的第一个元素:void dequeue_q(queue* duilie)2) 存储结构:定义了一个邻接矩阵结构体mtgraph,一个边表节点结构体edgenode,一个顶点表结点结构体vertexnode,一个邻接表结构体adjgraph,一个栈结构体stack,一个队列节点结构体node2,一个队列结构体queue,邻接表先深递归访问标记数组visited_1[20],邻接表先深递归顶点的先深标号数组dfn_1[20],邻接矩阵先深递归访问标记数组visited_2[20],邻接矩阵先深递归顶点的先深标号数组dfn_2[20],邻接表先深非递归访问标记数组visited_5[20],邻接表先深非递归顶点的先深标号数组dfn_5[20],邻接矩阵先深非递归访问标记数组visited_6[20],邻接矩阵先深非递归顶点的先深标号数组dfn_6[20],邻接表先广访问标记数组visited_3[20],邻接表先广顶点的先深标号数组dfn_3[20],邻接矩阵先广访问标记数组visited_4[20],邻接矩阵先广顶点的先深标号数组dfn_4[20]。
以下2024年考研数据结构大纲供参考:
一、绪论
1. 数据结构的基本概念
2. 算法与数据结构的关系
3. 算法分析基础
二、线性表
1. 线性表的定义和基本操作
2. 线性单链表、双向链表与循环链表
3. 一维数组和广义表
三、栈和队列
1. 栈和队列的基本概念
2. 栈和队列的顺序存储及其基本操作
3. 栈和队列的链式存储及其基本操作
4. 栈和队列的应用
四、树与二叉树
1. 树的基本概念
2. 二叉树的定义及其性质
3. 二叉树的存储结构及其基本操作
4. 二叉树的遍历
5. 线索二叉树
6. 哈夫曼树及其应用
7. 平衡二叉树
8. B-树和B+树
9. 并查集
五、图
1. 图的基本概念
2. 图的存储结构及其基本操作
3. 图的遍历
4. 最小生成树(MST)
5. 最短路径问题
6. 拓扑排序
7. 关键路径
8. AOV网与拓扑排序
9. AOE网与关键路径
10. 有向无环图(DAG)及相关算法
11. 二分图匹配问题
12. 网络流问题
13. 动态规划在图论中的应用
14. 图的着色问题。
数据结构笔记基础:数据结构与算法(一)数据结构基本概念数据(data):是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号总称数据元素(data element):是数据的基本单位,在计算机中通常被当做一个整体进行考虑和处理数据对象(data object):性质相同的数据元素的集合,是数据的一个子集数据结构(data structure):相互之间存在一种或多种特定关系的数据元素的集合4类基本结构:集合、线性结构、树形结构、图形(网状)结构数据结构的形式定义为数据结构是一个二元组Data Structure = (D,S),其中D是数据元素的有限集,S是D上关系的有限集数据结构定义中的“关系"描述的是数据元素之间的逻辑关系,因此又称为数据的逻辑结构数据结构在计算机中的表示(映像)称为物理结构(存储结构)计算机中表示信息的最小单位是二进制中的一位,叫做位(bit),一到若干位组成一个位串表示一个数据元素,这个位串称为元素或结点数据结构之间关系在计算机中的表示有两种:顺序映像、非顺序映像,并由此得到两种存储结构:顺序存储、链式存储,前者运用相对位置表示数据元素间的逻辑结构,后者借助指针任何一个算法的设计取决于数据(逻辑)结构,而实现依赖于存储结构数据类型是一个值的集合和定义在这个值集上的一组操作的总称数据类型分两种:原子类型、结构类型,前者不可分解(例如int、char、float、void ),后者结构类型由若干成分按某种结构组成,可分解,成分既可以是非结构的也可以是结构的(例:数组)抽象数据类型(Abstract Data Type ):是指一个数学模型及定义在该模型上的一组操作(P8)抽象数据类型格式如下:ADT抽象数据类型名{数据对象:<数据对象的定义>数据关系:<数据关系的定义>数据操作:〈数据操作的定义>}ADT抽象数据类型名基本操作格式如下:基本操作名(参数表)初始条件:〈初始条件描述〉操作结果:〈操作结果描述>多形数据类型(polymorphic data type):是指其值得成分不确定的数据类型(P9)抽象数据类型可由固有数据类型来表示和实现(二)算法(概念)和算法分析(时、空性能)算法(algorithm):对特定问题求解步骤的一种描述算法5特性:有穷、确定、可行、输入、输出1、有穷性:算法必须在可接受的时间内执行有穷步后结束2、确定性:每条指令必须要有确切含义,无二义性,并且只有唯一执行路径,即对相同的输入只能得相同输出3、可行性:算法中的操作都可通过已实现的基本运算执行有限次来完成4、输入:一个算法有一到多个输入,并取自某个特定对象合集5、输出:一个算法有一到多个输出,这些输出与输入有着某些特定关系的量算法设计要求(好算法):正确性、可读性、健壮性、效率与低存储需求健壮性是指对于规范要求以外的输入能够判断出这个输入不符合规范要求,并能有合理的处理方式.算法效率的度量:(1)事后统计:程序运行结束后借助计算机内部计时功能,缺点一是必须先运行依据算法编制的程序,二是受限于计算机软硬件,导致掩盖了算法本身的优劣(2)事前分析估计:消耗时间影响因素:算法策略、问题规模、编程语言、编译程序产生的机器码质量、机器执行指令的速度撇开各种影响因素只考虑问题的规模(通常用整数量n表示),记为问题规模的函数算法时间取决于控制结构(顺序,分支,循环)和固有数据类型操作的综合效果书写格式:T(n)= O(f(n))f(n)为n的某个函数时间复杂度:算法的渐近时间复杂度(asymptotic time complexity),它表示随问题规模的增大,算法执行时间的增长率和f(n)的增长率相同以循环最深层原操作为度量基准频度:该语句重复执行的次数算法的存储空间需求:空间复杂度(space complexity):算法所需存储空间度量,记作S(n)= O(f(n)),其中n为问题规模的大小一、线性表(一)线性表基本概念线性表(linear_list):n个数据元素的有限序列结构特点:存在唯一的被称作“第一个”、“最后一个"的数据元素,且除了第一个以外每个元素都有唯一前驱,除最后一个以外都有唯一后继在复杂线性表中存在:数据项-〉记录-〉文件,例如每个学生情况为一个记录,它由学号、性别。
数据结构图实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构图的基本概念、原理和操作方法,通过实际编程和操作,提高对数据结构的应用能力和解决问题的能力。
二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。
三、实验内容(一)线性表1、顺序表实现顺序表的创建、插入、删除、查找等基本操作。
分析顺序表在不同操作下的时间复杂度。
2、链表实现单链表、双向链表的创建、插入、删除、查找等基本操作。
比较单链表和双向链表在操作上的优缺点。
(二)栈和队列1、栈实现顺序栈和链式栈。
用栈解决表达式求值问题。
2、队列实现顺序队列和链式队列。
用队列模拟银行排队问题。
(三)树1、二叉树实现二叉树的创建、遍历(前序、中序、后序)。
计算二叉树的深度和节点数。
2、二叉搜索树实现二叉搜索树的插入、删除、查找操作。
分析二叉搜索树的性能。
(四)图1、图的存储实现邻接矩阵和邻接表两种图的存储方式。
比较两种存储方式的优缺点。
2、图的遍历实现深度优先遍历和广度优先遍历算法。
用图的遍历解决最短路径问题。
四、实验步骤(一)线性表1、顺序表定义一个数组来存储顺序表的元素,并使用一个变量记录当前表的长度。
插入操作时,需要判断插入位置是否合法,如果合法则将插入位置后的元素依次向后移动一位,然后将新元素插入指定位置。
删除操作时,先判断删除位置是否合法,合法则将删除位置后的元素依次向前移动一位,并更新表的长度。
查找操作通过遍历数组来实现。
分析不同操作的时间复杂度,插入和删除操作在最坏情况下为O(n),查找操作在平均情况下为 O(n/2)。
2、链表对于单链表,定义一个节点结构体,包含数据域和指向下一个节点的指针域。
通过操作指针来实现插入、删除和查找操作。
双向链表则在节点结构体中增加指向前一个节点的指针,使得操作更加灵活,但也增加了空间复杂度。
比较单链表和双向链表在插入、删除操作中指针的调整过程,得出双向链表在某些情况下更方便,但空间开销较大的结论。
第四章图4.1图的概念1.图的定义图是由一个顶点集V和一个弧集R构成的数据结构。
2.图的重要术语;(1)无向图:在一个图中,如果任意两个顶点构成的偶对(v,w)∈E是无序的,即顶点之间的连线是没有方向的,则称该图为无向图。
(2)有向图:在一个图中,如果任意两个顶点构成的偶对(v,w)∈E是有序的,即顶点之间的连线是有方向的,则称该图为有向图。
(3)无向完全图:在一个无向图中,如果任意两顶点都有一条直接边相连接,则称该图为无向完全图。
在一个含有n个顶点的无向完全图中,有n(n-1)/2条边。
(4)有向完全图:在一个有向图中,如果任意两顶点之间都有方向互为相反的两条弧相连接,则称该图为有向完全图。
在一个含有n个顶点的有向完全图中,有n(n-1)条边。
(5)稠密图、稀疏图:若一个图接近完全图,称为稠密图;称边数很少(e<nlogn)的图为稀疏图。
(6)顶点的度、入度、出度:顶点的度(degree)是指依附于某顶点v的边数,通常记为TD(v)。
在有向图中,要区别顶点的入度与出度的概念。
顶点v的入度是指以顶点为终点的弧的数目,记为ID(v);顶点v出度是指以顶点v为始点的弧的数目,记为OD(v)。
TD(v)=ID(v)+OD(v)。
(7)边的权、网图:与边有关的数据信息称为权(weight)。
在实际应用中,权值可以有某种含义。
边上带权的图称为网图或网络(network)。
如果边是有方向的带权图,则就是一个有向网图。
(8)路径、路径长度:顶点vp到顶点vq之间的路径(path)是指顶点序列vp,vi1,vi2,…,vim,vq.。
其中,(vp,vi1),(vi1,vi2),…,(vim,.vq)分别为图中的边。
路径上边的数目称为路径长度。
(9)简单路径、简单回路:序列中顶点不重复出现的路径称为简单路径。
除第一个顶点与最后一个顶点之外,其他顶点不重复出现的回路称为简单回路,或者简单环。
(10)子图:对于图G=(V,E),G’=(V’,E’),若存在V’是V的子集,E’是E的子集,则称图G’是G的一个子图。