最大公因数和最小公倍数的应用
- 格式:ppt
- 大小:227.50 KB
- 文档页数:14
一、最大公因数的应用1、有三根铁丝,长度分别为18、24、30。
现要把它们截成长度相等的小段若干段,每根都不允许有剩余,问每一小段最长是多少厘米?一共截了多少段?2、把20个梨和25个苹果平均分给若干个小朋友,分完后发现剩下2个梨,缺两个苹果,问最多有多少个小朋友?3、把一个2002×847的长方形分解成若干个完全相同的小正方形且没有剩余,则最少可以分解出多少个这样的小正方形?4、求435、783、928的最大公因数?5、将2004×1169×334的长方体,分成一些完全相同的小正方体,那么至少可以分成多少个?6、有三根铁丝分别长336厘米,444厘米,516厘米,把它们截成等长且尽可能长的整厘米小段(无剩余)。
若把这些整厘米小段铁丝焊接成正方体框架,能得到多少个这样的正方体框架?二、最小公倍数的应用1、动物园里的饲养员给三群猴子分花生。
如果只分给第一群猴子,则每只猴子可分得12粒;如果只分给第二群猴子,则每只猴子可分得15粒;如果只分给第三群猴子,则每只猴子可分得20粒;那么,把花生同时分给三群猴子,平均每只猴子最少可分得花生多少粒?2、文化补习班的教材不够,暂时每两人用一本语文课本,每三人用一本数学课本,每四人用一本英语课本,全班共用了91本课本,问全班有多少人?3、加工一种零件有三道工序,第一道工序每个工人每小时完成48个零件;第二道工序每个工人每小时完成32个零件;第三道工序每个工人每小时完成28个零件;问每道工序至少要安排多少名工人,才能搭配合适,使每道工序不产生积压和停工等等?4、A、B、C三匹马在一个环形跑马场上同时同地出发,A每2分钟跑一圈,B每3分钟跑一圈,C每4分钟跑一圈,那么它们多久以后能再同时经过出发点?5、有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子钟既响铃又亮灯,则下一次既响铃又亮灯是几点?6、甲、乙、丙三人在操场跑道上步行,甲每分钟走80米,乙每分钟走120米,丙每分钟走70米,已知操场跑道周长为400米,如果三个人同时同向从同一地点出发,问几分钟后三人可以首次相聚?。
最大公因数与最小公倍数在数学中,最大公因数与最小公倍数是两个非常常见且重要的概念。
它们在数论、代数以及其他许多数学领域都有广泛的应用。
本文将详细解释最大公因数与最小公倍数的概念及其性质,以及它们在实际问题中的应用。
一、最大公因数最大公因数(Greatest Common Divisor,简称GCD)是指能够同时整除两个或多个整数的最大正整数。
例如,对于整数12和18来说,它们的最大公因数是6,因为6既能整除12也能整除18,而且没有其他大于6的数同时能整除这两个数。
最大公因数有一些重要的性质:1. 任何整数都能被1整除,所以任何两个整数的最大公因数都至少是1。
2. 如果两个数中有一个为0,那么它们的最大公因数就是另一个数的绝对值。
3. 如果两个整数的最大公因数是1,我们称这两个数为互质(或互素)。
计算最大公因数有多种方法,其中最常用的方法是欧几里得算法,也称辗转相除法。
该方法基于一个简单的原理:如果a能整除b,那么a也一定能整除a和b的余数。
利用这个原理,我们可以迭代地求解出最大公因数。
二、最小公倍数最小公倍数(Least Common Multiple,简称LCM)是指能够被两个或多个整数整除的最小正整数。
例如,整数4和6的最小公倍数是12,因为12既能被4整除,也能被6整除,并且没有比12更小的数能同时能被4和6整除。
最小公倍数也有一些性质:1. 任何整数的最小公倍数与其最大公因数的乘积等于这两个整数的乘积。
即,对于任意整数a和b,有LCM(a, b) = (a * b) / GCD(a, b)。
2. 最小公倍数也可以通过计算数的因子来求解,但它需要考虑到数的所有因子。
最小公倍数与最大公因数之间有一个重要的关系,即LCM(a, b) =(a * b) / GCD(a, b)。
这个公式在求解最小公倍数时非常有用。
三、最大公因数和最小公倍数的应用最大公因数和最小公倍数在实际问题中有着广泛的应用。
最大公因数和最小公倍数基础知识与实际应用相关基础知识几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。
几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
最大公因数和最小公倍数的性质(1)两个数分别除以它们的最大公因数,所得的商一定是互质数。
(2)两个数的最大公因数的因数,都是这两个数的公因数,(3)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。
两个自然数的最大公因数与最小公倍数关系是:(a,b)x [a,b]=a x b。
6是12和18的最大公因数,记作(12,18)=6。
36是12和18的最小公倍数,记作[12,18]=36。
这样,求两个数的最小公倍数的问题,即可转化成先求两个数的最大公因数,再用最大公因数除两个数的积,其结果就是这两个数的最小公倍数。
两个数A, B,①如果A是B的倍数,那么最大公因数就是B,最小公倍数是A; ②如果AB互质,那么最大公因数就是1,最小公倍数是A*B;欧几里得用辗转相除法求两个数的最大公因数。
《九章算术》更相减损术找最大公因数短除法找最大公因数与最小公倍数短除符号就是除号倒过来。
短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商, 之后再除,以此类推,直到结果互质为止 (两个数 互质,最大公因数是 1的两个数叫互质数,如8和9)。
而在用短除计算多个数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。
直到剩下每两个都是互质关系。
求最大公因数便乘一边,求最小公倍数便乘一圈。
(公因数:如果一个整数同时是几个整数的因数,称这个整数为它们的“公因数”;公因数中最大的称为最大公因数。
) 图1 图2实际应用例:有一个长方体的木头,长3.25米,宽1.75米,厚0.75米。
如果把这块木 头截成许多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个 数各是多少?2 1218 3 69 2 3最大公约数 2作6解:根据题意,小立方体一条棱长应是长方体长、宽、厚各数的最大公因数。
利用最大公因数和最小公倍数解决实际应用题。
利用最大公因数和最小公倍数解决实际应用题最大公因数和最小公倍数是数学中的重要概念,它们在解决实际应用题中起着重要的作用。
本文将介绍如何利用最大公因数和最小公倍数解决实际应用题,并提供一些示例。
最大公因数(GCD)利用最大公因数可以解决一些问题,例如:1. 求两个数的最大公因数:对于给定的两个数,可以使用辗转相除法或欧几里得算法来求它们的最大公因数。
2. 化简分数:将分数的分子和分母同时除以它们的最大公因数,可以得到最简分数。
3. 问题实例:假设甲、乙两个人分别有一些坚果,甲有a个坚果,乙有b个坚果,想要将这些坚果平分成相同的份额。
此时,需要确定最大公因数GCD(a, b),如果GCD(a, b)大于1,那么无法平分坚果。
最小公倍数(LCM)利用最小公倍数可以解决一些问题,例如:1. 求两个数的最小公倍数:对于给定的两个数,可以使用求解最大公因数的方法来求得最小公倍数。
2. 问题实例:假设甲、乙两个人分别有a本书和b本书,想要将这些书放在几个格子中,使得每个格子中放的书的数目相同且达到最小。
此时,可以使用最小公倍数LCM(a, b)来确定最小的格子数。
示例下面通过一些示例来说明利用最大公因数和最小公倍数解决实际应用题的方法。
示例一甲、乙两人分别有16本书和24本书,并想要将这些书放在几个格子中,使得每个格子中放的书的数目相同且达到最小。
求最小的格子数。
解题思路:首先,可以计算16本书和24本书的最大公因数GCD(16, 24)。
使用欧几里得算法可以求得GCD(16, 24) = 8。
然后,可以计算16本书和24本书的最小公倍数LCM(16, 24)。
可以通过最大公因数来求解,LCM(16, 24) = (16 × 24) / GCD(16, 24) = 48。
最后,最小的格子数即为最小公倍数LCM(16, 24)的值,即48。
因此,甲、乙两人需要将书放在48个格子中,才能使每个格子中放的书的数目相同且达到最小。
最小公倍数与最大公因数典型的应用题汇总一、解题技巧:最大公因数解题技巧:通常从问题入手,所求的数量处于小数(即处于除数、商、因数)的地位时,因为小数(即处于除数、商、因数)是大数(即处于被除数、被除数、积)的因数,此时,所求的数量就处于因数的地位。
如果出现相同的(公有的)/最长的所求数量,即求他们的公因数/最大公因数的应用题。
最小公倍数解题技巧:通常从问题入手,所求的数量处于大数(即处于被除数、被除数、积)的地位时,因为大数(即处于被除数、被除数、积)是小数(即处于除数、商、因数)的倍数,此时,所求的数量应处于倍数的地位。
如果出现相同的(公有的)/最小的所求数量,即求他们的公倍数/最小公倍数的应用题。
补充部分公式小长方形个数=(大正方形边长÷小长方形长)×(大正方形边长÷小长方形的宽)小正方形个数=(大长方形的长÷小正方形边长)×(大长方形的宽÷小正方形边长)小长方体个数=(大正方体边长÷小长方体长)×(大正方体边长÷小长方体的宽)×(大正方体边长÷小长方体高)小正方体个数=(大长方体边长÷小正方体边长)×(大长方体的宽÷小正方体边长)×(大长方体的高÷小正方体边长)剩余定理余数相同时,总数(被除数)=最小公倍数+余数缺数相同时,总数(被除数)=最小公倍数-缺数植树问题公式不封闭型:2、只有一端都栽1、两端都栽间隔个数=株数间隔个数=株数-1株数=间隔个数+1 株数=间隔个数距离=一个间隔的长度×间隔个数距离=一个间隔的长度×间隔个数3、两端都不栽间隔个数=株数+1株数=间隔个数-1封闭型:间隔个数=株数株数=间隔个数距离=一个间隔的长度×间隔个数封闭型再正方形边上栽,并且4个顶点都栽:株数=(每边株数-1)×4备注:上下多少层楼以及锯段数及敲钟问题等实际运用实质上是两端都栽树的植树问题,这类题通常先求一层/一段需要多少时间,再乘以段数即可二、经典题目1、一个大长方形长24厘米,宽18厘米,把它裁成若干个小正方形而没有剩余,如小正方形的边长最长,边长是多少厘米?最多能裁成多少个小正方形?2、一个长方形的长6厘米,宽4厘米,至少要多少个这样的小长方形才能拼成一个大的正方形?此时,大的正方形的边长是多少厘米?3、一个大长方体长24厘米,宽18厘米,高12厘米,把它裁成若干个小正方体而没有剩余,如小正方体的边长最长,正方体的棱长是多少厘米?最多能裁成多少个小正方体?4、一个长方体的长6厘米,宽4厘米,高2厘米。
最大公因数和最小公倍数应用题公因数、公倍数问题,是指用求几个数的(最大)公因数或(最小)公倍数的方法来解答的应用题。
这类题一般都没有直接指明是求公因数或公倍数,要通过对已知条件的仔细分析,才能发现解题方法。
解答公因数或公倍数问题的关键是:从因数和倍数的意义入手来分析,把原题归结为求几个数的公因数问题。
【考点分析】最大公因数和最小公倍数的性质。
1)两个数分别除以它们的最大公因数,所得的商一定是互质数。
2)两个数的最大公因数的因数,都是这两个数的公因数,3)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。
【例题1】有一个两位数,除50余2,除63余3,除73余1。
求这个两位数是多少?【分析】这个两位数除50余2,则用他除48(52-2)恰好整除。
也就是说,这个两位数是48的约数。
同理,这个两位数也是60、72的约数。
所以,这个两位数只可能是48、60、72的公约数1、2、3、4、6、12,而满足条件的只有公约数12,即(48、60、72)=12。
答:这个两位数是12。
变式:有一个两位数,用它除58余2,除73余3,除85余1,那么这个两位数是多少?答:56=2x2x2x7 70=2x5x7 84=2x2x3x7两位公约数只有一个就是:2x7=14【例题2】有三根铁丝,一根长18米,一根长24米,一根长30米。
现在要把它们截成同样长的小段。
每段最长可以有几米?一共可以截成多少段?【分析】截成的小段一定是18、24、30的最大公因数。
先求这三个数的最大公因数,再求一共可以截成多少段。
解:(18、24、30)=6 (18+24+30)÷6=12段答:每段最长可以有6米,一共可以截成12段。
变式:有三根铁丝,一根长24米,一根长32米,还有一根长16米,把它们分成同样长的小段,每段最长几米?24、32、和16的最大公因数是8,24÷8=3(段);32÷8=4(段);16÷8=2(段);答:每段最长是8米.【例题3】一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?【分析】要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。
最大公因数与最小公倍数应用(一)一、知识要点:1、性质1:如果a、b两数的最大公因数为d,则a=md,b=nd,并且(m,n)=1。
例如:(24,54)=6,24=4×6,54=9×6,(4,9)=1。
2、性质2:两个数的最小公倍数与最大公因数的乘积等于这两个数的乘积.a与b的最小公倍数[a,b]是a与b的所有倍数的最大公因数,并且a×b=[a,b]×(a,b).例如:(18,12)= ,[18,12]= (18,12)×[18,12]=3、两个数的公因数一定是这两个数的最大公因数的因数。
3、辗转相除法二、热点考题:例1 两个自然数的最大公因数是6,最小公倍数是72.已知其中一个自然数是18,求另一个自然数。
练一练:甲数是36,甲、乙两数的最大公因数是4,最小公倍数是288,求乙数。
例2 两个自然数的最大公因数是7,最小公倍数是210.这两个自然数的和是77,求这两个自然数。
分析与解:如果将两个自然数都除以7,则原题变为:“两个自然数的最大公因数是1,最小公倍数是30。
这两个自然数的和是11,求这两个自然数。
"例3 已知a与b,a与c的最大公因数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。
分析与解:因为12,15都是a的因数,所以a应当是12与15的公倍数,即是[12,15]=60的倍数.再由[a,b,c]=120知, a只能是60或120。
[a,c]=15,说明c没有质因数2,又因为[a,b,c]=120=23×3×5,所以c=15。
练一练:已知两数的最大公因数是21,最小公倍数是126,求这两个数的和是多少?例4已知两个自然数的和是50,它们的最大公因数是5,求这两个自然数。
例5 已知两个自然数的积为240,最小公倍数为60,求这两个数。
习题四1.已知某数与24的最大公因数为4,最小公倍数为168,求此数。