学而思三年级-盈亏问题
- 格式:docx
- 大小:12.65 KB
- 文档页数:3
第五讲 盈亏问题本讲主要学习三种类型的盈亏问题:盈亏问题是一类生活中很常见的问题.按不同的方法分配物品时,经常发生不能均分的情况.如果一、直接计算型【例1】(★★奥数网题库)秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔收获的萝卜有多少个?计划吃多少天?分析:题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或 4×28+48=160(个).[巩固](★★奥数网题库)中关村一小合唱队的同学到会议室开会,若每条长椅上坐3人则多出9人,若每条长椅上坐4人则多出3人.问:合唱队有多少人?分析:“多9人”与“多3人”两者相差9-3=6(人),每条长椅要多座 4-3=1(人),因此就知道,共有6÷1=6(条)长椅,人数是6×3+9=27(人).[巩固](★★奥数网题库)有一批香蕉要分给动物园的小猩猩,如果每只猩猩发10个,还差9个,每只猩猩发9个,还差2个,请问有多少小猩猩?多少个香蕉?分析:“差9个”和“差2个”两者相差9-2=7(个),每个只猩猩要多发10-9=1(个),因此就知道,共有小猩猩7÷1=7(只)猩猩,香蕉有7×10-9=61(个).[总结] 以上是三道最基本的盈亏问题题目,要求老师在教学过程中引导学生理解掌握其解法并能让学生熟练运用公式,这对解答后面其他类型的盈亏问题的有帮助.二、条件转化型【例2】(★★★奥数网题库)学而思学校给参加秋游的同学租了几辆大轿车,若每辆车乘28人则有13名同学上不了车,若每辆车乘32人则还有3个空座.问:有多少名同学?多少辆车?分析:这种类型的题目不能直接计算,要将其中的一个条件转化,使之转化为基本的盈亏问题.已知若每辆车乘28人则有13名同学上不了车,可转化为:每辆车乘28人多出13名同学;若每辆车乘32人则还有3个空座,可转化为:每辆车乘32人少3人,问有多少名学生多少辆车?所以,车数:(13+3)÷(32-28)=4(辆),学生有:28×4+13=125(人).[巩固]猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:一共有多少只小猪,猪妈妈一共带了多少张餐布?分析:每张餐布周围多坐一只小猪就是坐5只小猪,余出4个空位子就是少4只小猪,所以原问题可以转化为:如果每张餐布周围坐4只小猪,则多出6只没处坐;如果每张餐布周围坐5只,还少4只,求有多少只小猪多少张餐布?所以餐布数是:(6+4)÷1=10(张),有小猪:10×4+6=46(只).[拓展]舞蹈队的同学到会议室开会,若每条长椅上坐3人则有9人没座,若每条长椅上坐4人则多3个座位.问:舞蹈队有多少人?分析:每条长椅上坐3人则有9人没座说明多9人,每条长椅上坐4人则多3个座位说明少3人,多座一人后相差9+3=12人,所以有长椅12÷1=12(条),舞蹈队有12×3+9=45(人).【例3】(★★★★奥数网题库)实验小学少先队员去植树.如果每人种5棵,还有3棵没人种;如果其中2人各种4棵,其余的人各种6棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?分析:这是一道较难的盈亏问题,主要难在对第二个已知条件的理解上:如果其中2人各种4棵,其余的人各种6棵,就恰好种完,这组条件中包含着两种种树的情况——2人各种4棵,其余的人各种6棵.如果我们把它统一成一种情况,让每人都种6棵,那么,就可以多种树(6-4)×2=4(棵).因此,原问题就转化为:如果每人各种5棵树苗,还有3棵没人种;如果每人种6棵树苗,还缺4棵.问有多少少先队员,一共种多少树苗?人数: [3+(6-4)×2]÷(6-5)=7(人),棵数:5×7+3=38(棵)或6×7-4=38(棵).[巩固]兔子妈妈分白菜:如果其中2只小兔子每只分4棵,其余每只分2棵,则多4棵白菜;如果其中一只小兔子分6棵,其余每只分4棵,则差12棵白菜,问:一共有多少只小兔子?一共有多少棵白菜?分析:由已知条件,第一种分配:其中2只每只分4棵,其余每只分2棵,则多4棵白菜,我们假设,如果所有的小兔子每只都分2棵,就会多出2×2=4(棵),这样将条件转化为:每只分2棵,则多出4+2×2=8(棵);第一种分配,如果假设每只小兔子分4棵,就会多出6-4=2(棵),这样将条件转化为:每只分4棵,则差12-2=10(棵),第一次与第二次分配相差8+10=18(棵),两次分配每只小兔子相差4-2=2(只),所以小兔子的总数为:18÷2=9(只),一共有白菜:2×9+8=26(棵).【例4】(★★★★奥数网题库)用一根绳子测井台到井水面的深度,把绳对折后垂到井水面,绳子超过井台9米;把绳子三折后垂到井水面,绳子超过井台2米.求绳长和井深.分析:把绳对折后垂到井水面,绳子超过井台9米,说明绳子余9×2=18(米),把绳子三折后垂到井水面,绳子超过井台2米,说明绳子余2×3=6(米),所以,井深:(18-6)÷(3-2)=12(米),绳子长:12×2+9×2=42(米).[巩固] 在桥上用绳子测桥离水面的高度.若把绳子对折垂到水面,则余8米;若把绳子三折垂到水面,则余2米.问:桥有多高?绳子有多长?分析:因为把绳子对折余8米,所以是余了8×2=16(米);同样,把绳子三折余2米,就是余了3×2=6(米).两种方案都是“盈”,故盈亏总额为16-6=10(米),两次分配数之差为3-2=1(折).所以,桥高(8×2-2×3)÷(3-2)=10(米),绳子的长度为2×10+8×2=36(米).[总结] 这部分的题目不能直接运用公式计算,首先需要将一定的条件转化,使之成为跟第一部分相类似的题型,在运用公式计算.四、关系互换型【例5】(★★★★奥数网题库)钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角.问小明带了多少钱?分析:此题的关键在于条件的转换,要么都转换成钢笔,要么都转换成圆珠笔.(方法一)都转换成钢笔;买5支钢笔差15角,买8支钢笔差(12×8-6)90角,这是双亏:分差是8-5=3支,总差是90-15=75角,就是说多买3支,就多差75角;这样就可求出1支钢笔多少钱;继而求出小明带了多少钱.钢笔的价钱:[(12×8-6)-15]÷(8-5)=75÷3=25(角)小明带的钱数:25×5-15=125-15=110(角)=11(元)(方法二)都转换成圆珠笔;买5支圆珠笔多12×5-15=45角,买8支圆珠笔多6角.圆珠笔的价钱[(12×5-15)-6]÷(8-5)=39÷3=13(角)小明带的钱数13×8+6=104+6==110(角)=11(元).[巩固]食堂管理员带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:食堂管理员带了多少钱?分析:因为“每千克牛肉比猪肉贵3元”,所以同样买10千克猪肉的话,就剩了3×10-6=24元,这样化成普通的盈亏问题,猪肉的价钱是:(24-4)÷(12-10)=10,所以食堂管理员带的钱数是:12×10+4=124元.【例6】(★★★★奥数网题库)有48个香蕉分给两个笼子的小猩猩,已知第二个笼子比第一个笼子多5只猩猩.如果把香蕉全部分给第一个笼子的猩猩,那么每只猩猩4个,有剩余;每只猩猩5个,香蕉不够.如果把香蕉全分给第二个笼子,那么每只猩猩3个,有剩余;每只猩猩4个,香蕉不够.问第二个笼子有多少只猩猩?分析:如果把香蕉全部分给第一个笼子,那么每只猩猩4个,有剩余;每只猩猩5个,香蕉不够.说明第一个笼子猩猩数少于48÷4=12只猩猩,多于48÷5=9……3,即多于9只猩猩;如果把香蕉全分给第二组,那么每只猩猩3本,有剩余;每只猩猩4本,香蕉不够.说明第二组只猩猩数少于48÷3=16只猩猩,多于48÷4=12只猩猩;因为已知第二组比第一组多5只猩猩,所以,第一组只能是10只猩猩,第二组15只猩猩.[前铺]幼儿园将一筐苹果分给小朋友.如果分给大班的小朋友每人5个则余10个;如果分给小班的小朋友每人8个则缺2个.已知大班比小班多3个小朋友,问这筐苹果共有多少个?分析:这样的题型需要将对象统一,分给大班的小朋友每人5个则余10个,大班比小班多3个小朋友,相当于分给小班的小朋友每人5个则余10+3×5=25(个),盈亏总数=25+2=27(个),小班人数=27÷(8-5)=9(人),苹果有9×5+25=70(个).【例7】(★★★★奥数网题库)李涵的妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋,并且没有剩余的钱.问:李妈妈带了多少钱?分析:(法1)“李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋”,这三袋洗衣粉多花8×3=24(元),又因为花的钱总数一样多,所以在买碧浪洗衣粉的时候要把这些钱补上,而碧浪比雕牌每袋贵2元,所以要买碧浪洗衣粉袋数24÷2=12(件).这样李妈妈带的钱数是10×12=120(元).(法2)如果买雕牌与碧浪洗衣粉数量一样多,则买雕牌洗衣粉以后还剩3×8=24(元),根据普通的盈亏问题解法,买碧浪洗衣粉的数量是:24÷(10-8)=24÷2=12(件),所以李妈妈带的钱数是:12×10=120(元).[拓展]"六一"儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等.花球原价1元钱2个,白球原价1元钱3个.因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球?分析:花球原价1元钱2个,白球原价1元钱3个.即花球原价10元钱20个,白球原价10元钱30个.那么,同样买花球和白球各30个,花球要比白球多花10÷2=5(元),共需要30÷2+30÷3=25(元).现在两种球的售价都是2元钱5个,花球和白球各买30个需要(30÷5)×2×2=24(元),说明花球和白球各买30个能省下25-24=1(元).现在共省了4元,说明花球和白球各有30×4=120(个),共买了120×2=240(个).[评注] 老师在最后计算出买乙种商品数量的时候要重点解释为什么不是甲种商品的数量,这也是此类盈亏问题的难点.【例8】(★★★★奥数网题库)卧龙自然保护区管理员把一些竹子分给若干只大熊猫,每只大熊猫分5个还多余10棵竹子,如果大熊猫数增加到3倍还少5个大熊猫,那么每只大熊猫分2棵竹子还缺少8棵竹子,问有大熊猫多少只,竹子多少棵?分析:使大熊猫感到困难的是条件“3倍还少5只大熊猫”.先要转化这一条件,假设还有 10个棵竹子,10=2×5,就可以多有 5个大熊猫,把“少5大熊猫”这一条件暂时搁置一边,只考虑3倍大熊猫数,也相当于按原大熊猫数每只大熊猫给2×3=6(棵)竹子,每只大熊猫给5棵与给6棵,总数相差10+10+8=28 (棵),所以原有大熊猫数 28÷(6-5)=28(只),竹子总数是 5×28+10=150(棵).[前铺]体育中心将一些乒乓球分给若干个人,每人5个还多余10个乒乓球,如果人数增加到3倍,那么每人分2个乒乓球还缺少8个,问有乒乓球多少个?分析:考虑人数增加3倍后,相当于按原人数每人给2×3=6(个),每人给5个与给6个,总数相差10+8=18 (个),所以原有人数 18÷(6-5)=18(人),乒乓球总数是 5×18+10=100(个).[总结]这种题型中会出现两种物品,一般两者之间还存在数量关系,如和差关系、倍数关系等,我们应该先利用数量关系将已知条件转化为一种物品的盈亏关系,再根据基本盈亏问题的解法计算.四、其他类型【例9】(★★★★奥数网题库)有若干盒卡片,每盒中卡片数一样多.把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张.现在把所有卡片都分完,每人都分到60张,而且还多出4张.问共有小朋友多少人?分析:60÷7=8……4,60÷8=7……4,说明卡片的盒数是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8×8=64(张),现在实际每人得到60张,即每人需要退出4张,其中要有4张是每人60张后多下来的,还有40张是我们一开始借来的要还出去,即要退出44张,44÷4=11(人),说明有11人.[巩固]幼儿园老师给小朋友分糖果.若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块.那么糖果最多有多少块?分析:最后一人分不到9块,那么最多可以分到8块,即若每人分9块,还差1块.根据盈亏计算公式,人数有(1+10)÷(9-8)=11(人),糖果最多有9×11-1=98(块);最后一人分不到9块,但至少可分到一块,即最少是最后一人差8块,根据盈亏计算公式,人数有(8+10)÷(9-8)=18(人),糖果最多有9×18-8=154(块),所以,这批糖果最多有154块.【例10】(★★★★奥数网题库)小同有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.小同共存了多少钱?分析:假设去掉22个2分币,那么按钱数算,5分币比2分币多8角4分,一个5分币比一个2分币多3分,所以5分币有: 84÷(5-2)=28(个)2分币有: 28+22=50(个)5×28+2×50+1×36=140+100+36=276(分).[前铺]妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1元,丙种卡每张2元.用这些钱买甲种卡要比买乙种卡多买8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?分析:“用这些钱买甲种卡要比买乙种卡多买8张,买乙种卡要比买丙种卡多买6张”所以盈亏总额是:1×8+2×6=20(元),单价相差2-1=1(元),所以共可以买乙种卡20÷1=20(张),妈妈给红红的钱数是:(20+8)×1=28(元),乙种卡每张:28÷20=1元4角.【例11】(★★★★奥数网题库)乐乐家去学校上学,每分钟走50米,走了2分钟后,发觉按这样的速度走下去,到学校就会迟到8分钟。
用方程解决盈亏问题【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【例 2】猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴【巩固】24块,【巩固】100【例 3】4个4个,【例 4】2【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【例 5】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2张信纸,乙每封信用3张信纸,一段时间后,甲用完了所有的信封还剩下20张信纸,乙用完所有信纸还剩下10个信封,则他们每人各买了多少张信纸?【例 6】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。
如全部分给小班的小朋友,每人分到8个,则缺2个。
已知大班比小班多3人,问:这筐苹果共有多少个?【巩固】幼儿园把一袋糖果分给小朋友.如果分给大班的小朋友,每人5粒就缺6粒.如果分给小班的小朋友,每人4粒就余4粒.已知大班比小班少2个小朋友,这袋糖果共有多少粒?【例 7】有一些糖,每人分5块则多10块,如果现有人数增加到原有人数的1.5倍,那么每人4块就少两块,这些糖共有多少块?【巩固】卧龙自然保护区管理员把一些竹子分给若干只大熊猫,每只大熊猫分5个还多余10棵竹子,如果大熊猫数增加到3倍还少5只,那么每只大熊猫分2棵竹子还缺少8棵竹子,问有大熊猫多少只,竹子多少棵?【巩固】体育队将一些羽毛球分给若干个人,每人5个还多余10个羽毛球,如果人数增加到3倍,那么每人分2个羽毛球还缺少8个,问有羽毛球多少个?板块一、直接计算型盈亏问题【例 8】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【解析】2块.这÷=919【巩固】元,就多【解析】个桃则多【解析】本,那【解析】由题意知:第一种方案:每人发5本多出70本;第二种方案:每人发7本多出10本;两种方案分配结果相差:701060-=-=(本),这是因为两次分配中每人所发的本数相差:752(本),相差60本的学生有:60230⨯+=(本)(或÷=(人).练习本有:30570220⨯+=).30710220【例 9】猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多只.【详解】当大猴分5个,小猴分3个时,猴王可留10个.若大、小猴都分4个,猴王能留下20个.也就是说在大猴分5个,小猴分3个后,每只大猴都拿出1个,分给每只小猴1个后,还剩下-=个,所以大猴比小猴多10只.201010【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?【解析】“差9本”和“差2本”两者相差927-=(本),因此就-=(本),每个人要多发1091知道,共有老师717⨯-=(本).÷=(人),书有71096124块,【解析】=(块)12【巩固】【解析】30元,140380(元).100【解析】20120+=250个(元).就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶.根据以上分析,可得损坏了202504400100205()()(个).⨯-÷+=【例 10】某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【解析】由已知条件每间5人少14个床位每间7人多4个床位比较两次分配的方案,可以看出,由于第二种方案比第一种每间多住(75)2-=人,一共要多出(144)18+=个床位,根据两种方案每间住的人数的差和床位差,可以求出宿舍间数,然后根据已知条件可求出住宿生人数.解:(414)(75)=9+÷-(间)⨯-=(人)⨯+=(人),或79459591459【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【解析】【解析】4粒154×4个,【解析】2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或4×28+48=160(个).【例 11】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11101⨯+= -=(条),由盈亏问题公式得,有小猫:818÷=(只),猫妈妈有810888(条)鱼.【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【解析】第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是:431÷=(人),有小玩-=(个),由盈亏问题公式得,参与分玩具的同学有:9192【解析】⨯=33266【解析】45(粒).【解析】65人.【例 12】用3张信纸,一段时间后,甲用完了所有的信封还剩下20张信纸,乙用完所有信纸还剩下10个信封,则他们每人各买了多少张信纸?【解析】由题意,如果乙用完所有的信封,那么缺30张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所以有信封(20+30)÷(3-2)=50(个),有信纸2×50+20=120(张).【例 13】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。
三年级奥数 盈亏问题 例题及答案板块一、直接计算型盈亏问题【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【巩固】 明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【巩固】 老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【巩固】 有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,【巩固】 2本,.【巩固】【巩固】 【巩固】 【巩固】 【巩固】 【巩固】 个萝卜;【例 2】 【解析】 猫1=(条),【巩固】 问:有多少位同学分多少个小玩具?【解析】 第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是:431-=(个),由盈亏问题公式得,参与分玩具的同学有:919÷=(人),有小玩具9327⨯=(个).【巩固】 学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【解析】 第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是422-=(个),由盈亏问题公式得,朝阳小学有:66233÷=(个)班,买来足球33266⨯=(个).【巩固】 一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】 第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是541-=(粒),由盈亏问题公式得,参与分糖的同学有:919÷=(人),有糖果9545⨯=(粒).【巩固】 实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】 没辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.因此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人).【例 3】 【解析】 由 两次分【例 4】 【解析】 先根据盈亏【巩固】 【解析】 如 的盈亏问【例 5】 【解析】 第加的人刚好是原来的一半,这样新增加的人每人可分到2块糖果,这些人每人还差422-=块,一共差了10212+=块,所以新增加了1226÷=人,原有6212⨯=人.糖果数为:1251070⨯+=(块).【巩固】 卧龙自然保护区管理员把一些竹子分给若干只大熊猫,每只大熊猫分5个还多余10棵竹子,如果大熊猫数增加到3倍还少5只,那么每只大熊猫分2棵竹子还缺少8棵竹子,问有大熊猫多少只,竹子多少棵?【解析】 使同学们感到困难的是条件“3倍还少5只大熊猫”.先要转化这一条件,假设还有 10棵竹子,10 25=⨯,就可以多有 5个大熊猫,把“少5只大熊猫”这一条件暂时搁置一边,只考虑3倍大熊猫数,也相当于按原大熊猫数每只大熊猫给23 6⨯=(棵)竹子,每只大熊猫给5棵与给6棵,总数相差10108 28++=(棵),所以原有大熊猫数28(65) 28÷-=(只),竹子总数是52810 150⨯+=(棵). 【巩固】 体育队将一些羽毛球分给若干个人,每人5个还多余10个羽毛球,如果人数增加到3倍,那么每人分2个羽毛球还缺少8个,问有羽毛球多少个?【解析】 考虑人数增加3倍后,相当于按原人数每人给2×3=6(个),每人给5个与给6个,总数相差10+8=18 (个),所以原有人数 18÷(6-5)=18(人),乒乓球总数是 5×18+10=100(个).【例 6】 王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?【解析】 因7个少【巩固】 【解析】 因60÷4=15【例 7】 .【解析】 井【例 8】 乐乐有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.乐乐共存了多少钱?【解析】 假设去掉22个2分币,那么按钱数算,5分币比2分币多8角4分,一个5分币比一个2分币多3分,所以5分币有: 845228÷-=()(个);2分币有:282250+=(个). 所以乐乐共存钱:52825013614010036276⨯+⨯+⨯=++=(分).【例 9】 阳光小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?【解析】 每车多坐5人,实际是每车可坐56570+=(人),恰好多余了一辆车,也就是还差一辆汽车的人,即70人.因而原问题转化为:如果每车坐65人,则多出5人无车乘坐;如果每车坐70人,还少70人,求有多少人和多少辆车?车数是5565515++÷=()(辆),人数是65155980⨯+=(人)或565151980+⨯-=()()(人).【巩固】 幸福小学少先队的同学到会议室开会,若每条长椅上坐3人则多出7人,若每条长椅上多坐4人则多出3条长椅.问:到会议室开会的少先队员有多少人?【解析】 第二个条件可转化为:“每条长椅上坐7个人,则少21个人”,“多7人”与“少21人”两者相差72128+=(人),每条长椅要多坐734-=(人),因此就知道,共有2847÷=(条)长椅,人数是73728⨯+=(人).【巩固】 某小合唱队的同学到会议室开会,若每条长椅上坐3人则多出9人,若每条长椅上坐4人则多出3人.问:合唱队有多少人?【解析】 “6÷1=6【巩固】 6【解析】 这挖)=7名,个【巩固】 3条船坏【解析】 如式,有船【例 10】 【解析】 每个房间住3人,则多出23人,每个房间住5人,就空出3个房间,这3个房间如果住满人应该是531 5⨯=(人),由此可见,每一个房间增加53 2-=(人).两次安排人数总共相差2315 38+=(人),因此,房间总数是:38÷2=19(间),学生总数是:31923 80⨯+=(人),或者51953 80⨯-⨯=(人).【巩固】 学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?【解析】 每个房间住3人,则多出22人,每个房间多住5人,意味着就是每个房间住8个人,则空出1个房间,这1个房间如果住满人应该是188⨯=(人),由此可见,每一个房间增加835-=(人).两次安排人数总共相差22830+=(人),因此,房间总数是:3056÷=(间),学生总数是:362240⨯+=(人).【巩固】 军队分配宿舍,如果每间住3人,则多出20人;如果每间住6人,余下2人可以每人各住一个房间,现在每间住10人,可以空出多少个房间?【解析】 每间住6人,余下2人可以每人各住一个房间,说明多出两个房间,同时多出两个人,即两次分配方案人数相差2062230+⨯-=(人),每间房间相差:633-=(人),所以共有房间:30310÷=(间),一共有:3102050⨯+=(人),即可以空出1050105-÷=(间)房间.【巩固】 猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:一共有多少只小猪,猪妈妈一共带了多少张餐布?【解析】 每如【例 11】 2人各【解析】 这66盆.如【巩固】 6【解析】 由“其中两人分4个,其余每人分2个,则多出4个”转化为全家每人都分2个,这分4个的两人每人都拿出2个,共拿出4个,结果就多了448+=个;由“一人分6个,其余每人分4个,则缺少12个”转化为全家每人都分4个,分6个的人拿出2个,结果就少了12210-=个,转变成了盈亏问题的一般类型,则:全家的人数:[422(122)](42)+⨯+-÷-182=÷9=(人)橘子的个数:29826⨯+=(个)【例 12】 四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了 元钱.【解析】这笔钱买13千克芒果还差4元,若把这13千克芒果换成奶糖就会多出13226⨯=元,所以这笔钱买13千克-=元.而这笔钱买15千克奶糖会多出2元,所以每千克奶糖的价格为:奶糖会多出26422-÷-=(元).辅导老师共带了10152152(222)(1513)10⨯+=元.【巩固】小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱?【解析】因为“每千克牛肉比猪肉贵3元”,所以同样买10千克猪肉的话,就剩了3×10-6=24(元),这样化成普通的盈亏问题,猪肉的价钱是:(24-4)÷(12-10)=10(元),所以小明妈妈带的钱数是:12×10+4=【巩固】2元.已知【解析】这18千克差4解8×(所以牛肉每千克价格为:4元2角+8角=5元.小李带的钱为:4.2×20+2=86(元).【巩固】李明的妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋,并且没有剩余的钱.问:李妈妈带了多少钱?【解析】(法1)“李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋”,这三袋洗衣粉多花8×3=24(元),又因为花的钱总数一样多,所以在买碧浪洗衣粉的时候要把这些钱补上,而碧浪比雕牌每袋贵2元,所以要买碧浪洗衣粉袋数24÷2=12(件).这样李妈妈带的钱数是10×12=120(元).(法2)如果买雕牌与碧浪洗衣粉数量一样多,则买雕牌洗衣粉以后还剩3×8=24(元),根据普通的盈亏问题解法,买碧浪洗衣粉的数量是:24÷(10-8)=24÷2=12(件),所以李妈妈带的钱数是:12×10=120(元).【例 13】 小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校。
盈亏问题盈亏问题,顾名思义有剩余就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产生这种盈亏现象。
盈亏问题的关键是抓住两次分配时盈亏总量的变化,我们把盈亏问题分为三类:“一盈一亏”、“两盈”、“两亏”。
一、盈亏型【例 1】如果把一些桃子分给若干个人,则每人3个,多5个;每人5个,少5个。
问:一共有多少个人?有多少个桃子?【例 2】把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有多少人,糖果共有多少块?二、盈盈型【例 3】如果把一些桃子分给若干个人,则每人2个,多10个;每人3个,多5个。
问:一共有多少个人?有多少个桃子?盈亏问题【例 4】将一些玫瑰花插入到几只花瓶中,如果每瓶插10朵,就多出9朵玫瑰花;如果每瓶插11朵则多出2朵玫瑰花,那么一共有多少朵玫瑰花?多少只花瓶?三、亏亏型【例 5】如果把一些桃子分给若干个人,则每人5个,少5个;每人6个,少10个。
问:一共有多少个人?有多少个桃子?【例 6】老师发练习册给学生,每人10本,还差9本;每人9本,还差2本,请问有多少个学生?多少本练习册?盈亏问题四、盈亏经典习题【例 7】皮皮从家到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校,那么皮皮家距离学校多远?【例 8】国庆节快到了,学而思学校的少先队员去摆花盆,如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完。
问有多少少先队员参加摆花盆活动,一共摆多少花盆?盈亏问题【例 1】5人,20个【例 2】40块【例 3】5人,20个【例 4】79朵,7只【例 5】5人,20个【例 6】7人,61本【例 7】1500米【例 8】7人,38盆。
第九讲 盈亏问题盈亏问题是应用题模块的一个重点和难点之一,解决它有两大类思路,算数方法和方程方法。
相对来说,方程法更直观,学习方程工具后希望用方程把这里的题目再重新做一遍。
本讲只讲算数解法。
一、 基本型盈亏问题基本概念:一定量的物体,按照某种标准进行分组,最后会产生一种结果;按照另一种标准进行分组,又会产生另一种结果。
基本特点:两个未知:总份数,总数。
两个一定:总份数不变,总数不变。
基本思路: 比较法:(1)总份数=总差÷每份差(2)再代到任一条件求总数。
基本题型:盈盈型:总份数=(较大余数‐较小余数)÷每份差;亏亏型:总份数=(较大不足数‐较小不足数)÷每份差;盈亏型:总份数=(余数+不足数)÷每份差。
如:小朋友分苹果,每人4本多10个;每人6本少8个,问多少人多少苹果? 两个未知:人为份数,苹果为总数;两个一定:人数不变,苹果数不变。
(1) 人数=(10+8)÷(6‐4)=9(2) 苹果数=4×9+10=46(或6×9‐8=46)我们遇到的题目一定首先分清什么是份数,什么是总数,可以套一下人分苹果模型,人为份数,苹果为总数。
有变化的盈亏问题先把它转化成基本型盈亏。
例1:(2008春蕾杯小学数学邀请赛决赛)A、B买了相同张数的信纸。
A在每个信封里装1张信纸,最后用完所有信封还剩40张信纸;B在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封。
他们都买了多少张信纸?分析与答:信封为份数,信纸为总数。
每个信封里装3张信纸,最后用完所有的信纸还剩40个信封,相当于如果把所有的信封用完还差3×40=120张信纸。
即:每个信封里装1张信纸,还剩40张信纸;每个信封里装3张信纸,120张信纸。
信封数=(40+120)÷(3‐1)=80信纸数=80×1+40=120注:很多同学的错误解法是 信封数=(40+40)÷(3‐1)=40一定注意第二个条件要把份数转化成总数再做题目。
第六讲:盈亏问题一、 基本型盈亏问题核心1、 分东西——找到总量和单位量2、 两种分配方案——表格法简单明了二、 解题思路——比较法例:程老师给同学们分积分卡,如果每人5张,还剩18张,如果每人7张,就缺2张。
有多少个同学,共有多少张卡?解析:总量:卡 (把卡分给同学,被分的东西就是总量)单位量:同学 (一般来说,“每”字后面的是单位量)草图分析 ○ ○ ○ …… ○ (一个○表示一个人)5 5 5 …… 5 多出来18张 2 2 2 …… 2 还要每人再给2张,才是7张用多出来的18张分给每人2张还不够,18+2 还要“借”2张那么人数就是(18+2)÷(7-5)=10(人)卡的总张数 根据方案一:5×10+18=68(张)根据方案二:7×10-2=68(张)总结:比较两次方案总量的盈亏差距,再比较两次方案单位分得的量的差距总量的盈亏差距是由单位分得的量的差距引起的。
所以 总量的盈亏差距 ÷ 单位分得的量的差距 = 单位量老师这里只举例说明了盈亏型,聪明的小朋友,你能回忆老师课堂上的讲解,自己画一画盈盈型、亏亏型的草图吗?分配方案: 每人分得 盈/亏 方案一 5 +18 方案二 7 -2三、 解题步骤1、 找总量和单位量2、 表格法表示两种分配方案3、 公式求单位量4、 根据任一分配方案求总量注意:1、总量和单位量是不变的数,题目中有两个总量或单位量时要转化为一个2、盈与亏针对的是总量3、每一次分配方案中要统一四、 例题讲解(一)基本型例1 猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?解析: 总量:鱼单位量:小猫列式计算单位量:(8-0)÷(11-10)=8(条)鱼共有:10×8+8=88(条)或11×8=88(条)(草图省略,小朋友自己画一画)例2 育英小学买来一批小足球分给各班,如果每班分4个,就差66个,如果每班分2个,则正好分完,育英小学一共有多少个班?买来多少个足球?解析 : 总量:小足球 单位量:班列式计算单位量:(66-0)÷(4-2)=33(个)小足球共有:4×33-66=66(个)或2×33=66(个)(草图省略,小朋友自己画一画)例3 三年级一班少先队员参加学校搬砖劳动,如果每人搬4块砖,还剩7块,如果每人搬5块,则少2块砖,这个班少先队员有几个人?要搬的砖共有多少块?解析 :虽然题目中没有说“分什么”,但我们想想场景,搬砖不就相当于把砖“分”给少先队员吗?每人搬4块就相当于每人分得4块。
学而思网校三年级的同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,请问:有多少位同学?分多少粒糖果?学校排练节目,如果每行排11人,则少9人;如果每行排8人,正好排完;一共要排几行?一共有多少人?
(★★★)
乐乐老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了14本;如果每人分7本,则多了2本。
请问:优秀少先队员有几人?乐乐老师买来多少本练习本?
(★★★)
学校派一些学生去搬一批树苗,如果每人搬6棵,则差4棵;如果每人搬8棵,则差18棵。
请问:学生有几人?这批树苗有多少棵?
(★★★)
学而思网校三年级的同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,请问:有多少位同学?分多少粒糖果?
(★★★★)
闹闹、优优两人买了相同张数的信纸,闹闹在每个信封里装1 张信纸,最后用完所有的信封还剩40 张信纸,优优在每个信封里装3 张信纸,最后用完所有的信纸还剩40 个信封,他们都买了多少
(★★★★)
幸福小学少先队的同学到会议室开会,若每条长椅上坐3人则多出7人,若每条长椅上多坐4人则多出3条长椅.请问:到会议室开会的少先队员有多少人?
一、基本型盈亏问题:。
盈亏问题知识要点盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:盈亏型:(盈+亏)÷两次分得之差=人数或单位数盈盈型:(盈-盈)÷两次分得之差=人数或单位数亏亏型:(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换(判断盈亏类型); 2.关系互换(确定盈亏数量)直接计算型盈亏型1.三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?2.秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?3.王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?4.今有共买物,人出八,盈三;人出七,不足四。
问人数、物价各几何?(九章算术“盈不足”中第1题)5.猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:一共有多少只小猪,猪妈妈一共带了多少张餐布?6.某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?7.幼儿园老师给小朋友分糖果.若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块.那么糖果最多有多少块?8.(2008年第八届“春蕾杯”四年级初赛试题)学校组织春游,租船让学生划。
三年级奥数盈亏问题例题及答案板块一、直接计算型盈亏问题【例 1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【例 2】(2007年“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多只.【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?【巩固】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【例 3】某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【巩固】某学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?板块二、条件关系转换型盈亏问题【例 4】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【例 5】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 信纸,乙每封信用3 信纸,一段时间后,甲用完了所有的信封还剩下20 信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少信纸?【例 6】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。
盈亏问题
例一:机器人等等给一些小机器人分易拉罐,如果每个小机器人分4个就少9个;如果每个小机器人分3个正好分完,问:有多少个小机器人?
例二:机器人等等给几位小朋友分硬币,如果每位小朋友分10个硬币,就多出19个硬币;如果每位小朋友分12个硬币,就多出3个硬币,那么一共有多少位小朋友?机器人等等一共有多少个硬币?
例三:艾迪和薇儿举办演唱会,将门票分给几位观众,如果没人发10张,还差28张;如果每人发7张,还差7张,请问有几位观众?有几张门票?
例四:一些工人帮艾迪搬石头,如果每个工人搬4块石头,还剩17块;如果每个工人搬6块,则少5块石头,一共有多少个工人?要搬的石头共有多少块?
例五:昊昊过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;如果每人出7元,就多出了4元,那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少元?
例六:艾迪和薇儿分别给两堆游客安排房间,如果每间房住4名同学,就会有7个人没地方住;
(1)如果每间房住5名同学,就会空出3个床位,这队学生一共有多少人?
(2)如果每间房住5名同学,最后2个房间就正好空着没有同学住了,这对学生一共有多少人?
例七:军队分配宿舍,如果每间住3人,则多出20人;如果每间住6人,余下2人可以各住一个房间;现在每间住10人,可以空出多少个房间?
例八:几个服务员端盘子,如果每人端5个盘子,还剩下3个盘子没人端;如果其中两人端4个盘子,其余每人端6个盘子,就恰好能把所有的盘子都端完,一共有几个服务员?一共要端多少个盘子?。