aD
O
研究整体,由MA=0,经化简得:
aO
mg AD
A
FAx
FN ml AD 2 3mg
图(b)
FAy
(b)
7-3 动静法的应用
7-3-2 典型问题
再研究轮与BD杆,由MD=0,并注意到式(a),得
1 3 3 FN l AD mg (c) 3 2 F (b) – (c) 得
1. 质点达朗贝尔定理 由 F FN m a 即 F FN m a 0
FI ma
m
FN
引入惯性力 FI m a
F
ma
则 F FN FI 0 — 质点的达朗贝尔定理 即作用于质点的主动力,约束力与惯性力构成平衡力系。
2.关于惯性力: 1) 质点加速运动时,外部物质世界作用在质点上的
已知 G, ,求BC绳断瞬时,求AB绳张力。
A
C
FI
给小球加惯性力, 受力如图。 由 FT G FI 0
FT
B
a
FI
G
FT G cos
7-1 质点系的达朗贝尔原理
G FT
7-1-2 质点系的达朗贝尔原理 1. 一般形式 对 mi 有:
Fi e FNi FIi 0
FN
FBy
B
aD
aO
FBx
mg
图(b)
mg AD
A
FAx
FAy
图(c)
7-3-2 典型问题
运动至AEB水平时,速度如图(d),易知BD=AD。
vB 3lωAD
由T–T0=W,有
(d)
B
B
C
E
A