清华大学材料科学基础第9章再结晶简本
- 格式:pdf
- 大小:742.77 KB
- 文档页数:26
9-1 证明临界晶核的形核功与临界晶核体积的关系为:∆G=VV∗.∆GG VV2并证明非均匀形核有同样的关系。
均匀形核:∆G=−43ππrr3∆GG VV+4ππrr2γγSSSS其中,∆GG VV=∆GG VV SS−∆GG VV SS=SS VV.∆TT TT mm,∆TT=TT mm−TT,γγSSSS表示固-液相的界面能,LL VV表示单位体积的熔化潜热,数值为正利用dd∆GG ddrr=0求出临界形核半径rr∗=2γγSSSS∆GG VV所以,∆G∗=−43ππrr∗3∆GG VV+4ππrr∗2γγSSSS=−VV∗∆GG VV+VV∗.3rr∗.γγSSSS=−VV∗∆GG VV+VV∗.3.∆GG VV2γγSSSSγγSSSS=VV∗.∆GG VV2非均匀形核同理可得:∆G=VV∗.∆GG VV2ff(θθ)9-2 写出临界晶核中原子数目的表达式,假设为面心立方晶体。
→临界晶核中原子数目=晶胞数×4(每个面心立方晶胞有4个原思路:晶胞数=临界晶核体积单个晶胞体积子)解:单个晶胞的体积=a3,其中a表示晶格常数,其与原子半径的关系为:α=2√2rr所以,单个晶胞的体积=�2√2rr�3=16√2rr3=12√2VVππ(因为单个原子体积V=43ππrr3)临界晶核的体积=43ππrr∗3=43ππ(2γγ∆GG BB)3临界晶核中原子数目=晶胞数×4=临界晶核体积单个晶胞体积×4=43ππ�2γγ∆GG BB�3×ππ12√2VV×4=16√2γγ3ππ29VV∆GG BB39-3 设想液体在凝固时形成的临界核心是边长为a的立方体,(1)导出均匀形核时临界晶核边长和临界形核功。
(2)证明在同样过冷度下均匀形核时,球形晶核较立方晶核更易形成。
(1)∆G=−aa3∆GG VV+6aa2γγSSSS利用dd∆GG ddaa=0求出临界晶核边长,aa∗=4γγSSSS∆GG VV所以,∆G∗=−aa∗3∆GG VV+6aa∗2γγSSSS=32γγSSSS3∆GG VV2(2)因为∆GG VV=∆GG VV SS−∆GG VV SS=LL VV.∆TT TT mm所以在相同过冷度下,∆GG VV相同又因为对球形晶核有∆G∗==16ππγγSSSS33∆GG VV2所以,∆GG球∗<∆GG立∗,故在同样过冷度下均匀形核时,球形晶核较立方晶核更易形成。
第一章6、实际金属晶体中存在哪些缺陷?它们对性能有什么影响?答:点缺陷:空位、间隙原子、异类原子。
点缺陷造成局部晶格畸变,使金属的电阻率、屈服强度增加,密度发生变化。
线缺陷:位错。
位错的存在极大地影响金属的机械性能。
当金属为理想晶体或仅含极少量位错时,金属的屈服强度σs很高,当含有一定量的位错时,强度降低。
当进行形变加工时,为错密度增加,σs将会增高。
面缺陷:晶界、亚晶界。
亚晶界由位错垂直排列成位错墙而构成。
亚晶界是晶粒内的一种面缺陷。
在晶界、亚晶界或金属内部的其他界面上,原子的排列偏离平衡位置,晶格畸变较大,位错密度较大(可达1016m-2以上)。
原子处于较高的能量状态,原子的活性较大,所以对金属中的许多过程的进行,具有极为重要的作用。
晶界和亚晶界均可提高金属的强度。
晶界越多,晶粒越细,金属的塑性变形能力越大,塑性越好。
8、什么是固溶强化?造成固溶强化的原因是什么?答:形成固溶体使金属强度和硬度提高的现象称为固溶强化。
固溶体随着溶质原子的溶入晶格发生畸变。
晶格畸变随溶质原子浓度的提高而增大。
晶格畸变增大位错运动的阻力,使金属的滑移变形变得更加困难,从而提高合金的强度和硬度。
9、间隔固溶体和间隔相有什么不同?答:合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之一相同的固相称为固溶体。
间隙固溶体中溶质原子进入溶剂晶格的间隙之中。
间隙固溶体的晶体结构与溶剂相同。
第二章1、金属结晶的条件和动力是什么?答:液态金属结晶的条件是金属必须过冷,要有一定的过冷度。
液体金属结晶的动力是金属在液态和固态之间存在的自由能差(ΔF)。
2、金属结晶的基本规律是什么?答:液态金属结晶是由生核和长大两个密切联系的基本过程来实现的。
液态金属结晶时,首先在液体中形成一些极微小的晶体(称为晶核),然后再以它们为核心不断地长大。
在这些晶体长大的同时,又出现新的品核并逐渐长大,直至液体金属消失。
3、在实际应用中,细晶粒金属材料往往具有较好的常温力学性能,细化晶粒、提高金属材料使用性能的措施有哪些?答:(1)提高液态金属的冷却速度,增大金属的过冷度。
材料科学基础第九章复习资料西南⽯油⼤学北京⼯业⼤学版材料科学基础第九章1.弹性模量:产⽣弹性形变时所需的应⼒,⼯程上表征材料对弹性变形的抗⼒。
2.滞弹性:在弹性范围内,应变落后于应⼒的⾏为称为滞弹性。
3.普弹性:陶瓷材料,⾦属材料及玻璃态⾼分⼦材料在较⼩负荷下⾸先发⽣的形变。
特征:1:应⼒与应变符合线性关系及胡克定律。
2:加上或去除应⼒时,应变都能瞬时达到平衡4.⾼弹性:特点是弹性模量⼩、形变量⼤,变性具有热效应,伸长时放热,回缩时吸热,且在⼀定条件下表现出明显的松弛效应。
5.内耗:由于应变滞后于应⼒,在适当频率的外⼒作⽤下,应⼒-应变曲线就变成了封闭回线,这⼀过程将产⽣不可逆的能量消耗,回线所包围的⾯积就是应⼒循环⼀周所消耗的能量,称内耗。
10.施密特定律:==式中称为取向因⼦,记作。
ON、OP、OT,都在同⼀平⾯上时,则有,当时=,滑移处于最有利的位置,称为软取向。
当,称为硬取向。
11.临界分切应⼒:能引起滑移或孪⽣所需要的最⼩分切应⼒。
12.多系滑移:由临界分切应⼒定律可知,当对⼀个晶体施加外⼒时,可能会有两个以上的滑移系上的分切应⼒同时满⾜的条件,⽽使各⾃滑移⾯上的位错同时启动,这种现象称为多系滑移。
13.交滑移:螺位错因柏⽒⽮量与位错线平⾏,滑移⾯有⽆限多个。
因此当螺位错在某⼀⾯上的运动受阻时,可以离开这个⾯⽽沿另⼀个与原滑移⾯有相同滑移⽅向的晶⾯继续滑移,由于位错的柏⽒⽮量不变,为错在新的滑移⾯上仍按照原⽅向运动,这⼀过程就叫做交滑移。
14.主滑移系:当外⼒在某⼀滑移系上的分切应⼒值超过时,该滑移系开始启动,我们把这⼀滑移系称作主滑移系。
15.共轭滑移系:随着⼀次滑移的进⾏,晶体的取向相对于加载轴发⽣着变化,滑移到⼀定程度后,另⼀个等同的滑移系也能满⾜条件⽽参与滑移,该滑移系称为共轭滑移系。
16.扭折带:晶体在滑移和转动时,若在某些部位受阻,位错在那⾥堆积,使滑移和转动只发⽣在⼀个狭窄的带状区域,这个区域就叫做扭折带。