高中必修三统计知识点整理20190607191608
- 格式:docx
- 大小:96.97 KB
- 文档页数:22
高二数学必修三统计知识点整理数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。
下面是店铺给大家带来的高二数学必修三统计知识点整理,希望对你有帮助。
高二数学必修三系统抽样知识点把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
高二数学必修三分层抽样知识点1.定义:先按照某种规则把总体分为不同的层,然后在不同的层内独立、随机的抽取样本,这样所得到的样本称为分层样本。
如每层都是简单随机抽样,称为分层随机抽样。
2.特点:(1)不仅可以估计总体参数,同时也可以估计各层参数。
(2)便于抽样工作的组织。
(3)每层都要抽取一定的样本单位,这样分布比较均匀,可以降低抽样误差。
3.类型:4.适用条件:(1)抽样框中有足够的辅助信息,能够将总体单位按某种标准划分到各层之中。
(2)同一层内,各单位之间的差异尽可能小;不同层之间各单位的差异尽可能大。
——层内差异小,层间差异大。
高二数学必修三简单随机抽样知识点(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分: x1,x2 , ....,xx 研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。
高中数学必修三第13章:统计-知识点1、在统计问题中,研究对象的全体叫做总体,总体中的每一个对象叫做个体,总体中所含个体的数量称为总体的容量。
总体中抽取一部分个体叫做总体的一个样本,样本所含个体的数量叫做样本容量。
2、按照收集数据的不同方法,可以将数据分为观测数据和实验数据。
3、普查是大规模的全面调查,对总体的每个个体分别进行调查,优点是能准确反应总体的情况,缺点是调查范围大,耗时耗力,有时候还会破坏调查对象。
抽样调查,是从总体中抽取样本进行调查的方法,优点是省时省力,缺点是数据的精确性较差。
4、简单随机抽样:逐个抽取的方法,总体中每一个个体都有同样的概率被抽中,适用于个体之间差异较小和数目较少时,包括抽签法和随机数法。
5、分层随机抽样:当总体由差异明显的几个部分组成时,先把总体分成若干部分,然后从不同的部分中独立、随机地抽取样本。
适用于总体情况复杂,各单位之间差异较大,单位较多的情况。
6、系统抽样:先编号,然后分成若干段,在第一段中用简单随机抽样抽出一个编号,然后依次加上间隔数,直到获取整个样本。
该方法操作简便,不易出错。
7、一组数据的最大值和最小值的差称为极差,又称全距,每个小组的区间端点之间的距离叫做组距,组距的选取决定了组数的多少,极差=组距×组数。
将样本分组后,每个小组内的数据个数称为频数,频率=频数/样本容量。
8、在频率分布直方图中,纵坐标是频率/组距,所以,计算某一组的频率时,一定要记住用纵坐标去乘以组距,频率分布直方图中所有矩形的面积之和为 1 。
9、在频率分布直方图中,从左到右依次连接各矩形上底边的中点,就得到频率分布折线图。
10、茎叶图:适用于数据不多的时候,先把数据分成“茎”和“叶”两部分,然后把“茎”由小到大,由上往下写成一列,并在其左边和右边画一条竖直的线,最后把“叶”写在它所属的“茎”的同一侧,由小到大排成一行。
12 11、散点图:适用于 有相关性 的数据,比如身高和体重,将身高作为横坐标,体重作为 纵坐标 ,在平面直角坐标系中绘制出相应的 点,就得到了身高和体重的散点图。
数学必修三统计和概率知识点总结
数学必修三统计和概率的主要知识点包括:
1. 统计:
- 样本调查与总体推断:样本的选择和调查方法,通过样本推断总体特征;
- 随机变量与概率分布:离散型和连续型随机变量的概念,概率质量函数和概率密度函数;
- 期望与方差:随机变量的期望值和方差;
- 离散型随机变量的分布:二项分布、泊松分布等离散型随机变量的性质;
- 连续型随机变量的分布:均匀分布、正态分布等连续型随机变量的性质;
- 多元随机变量与边缘分布:多个随机变量之间的关系与边缘分布;
- 相关与回归:随机变量之间的相关性和回归分析;
- 统计与误差:抽样误差和非抽样误差。
2. 概率:
- 随机事件与概率:样本空间、随机事件和概率的概念;
- 概率的运算:事件的和、积以及互斥事件的概率;
- 条件概率:在已知一事件发生的条件下,另一事件发生的概率;
- 事件的独立性:事件之间的独立性和联合概率;
- 正态分布的应用:正态分布的特性、标准正态分布的应用;
- 抽样与抽样分布:抽样的概念,样本均值的分布;
- 参数估计:点估计和区间估计;
- 假设检验:零假设和备择假设的提出,检验统计量的构造。
以上是数学必修三统计和概率的主要知识点总结,具体内容可根据教材的要求进行深入学习和了解。
必修3统计知识点复习在数学的学习中,必修 3 中的统计部分是一个重要的知识板块。
它不仅在学术研究中有着广泛的应用,也与我们的日常生活息息相关。
接下来,让我们一起系统地复习一下这部分的重要知识点。
一、随机抽样随机抽样是获取数据的重要方法之一,常见的随机抽样方法有简单随机抽样、系统抽样和分层抽样。
简单随机抽样是从总体中逐个抽取个体,每个个体被抽取的概率相等。
抽签法和随机数表法是实现简单随机抽样的常用方式。
系统抽样则是将总体平均分成若干部分,然后按照一定的规则,从每一部分抽取一个个体。
在进行系统抽样时,要注意抽样间隔的计算。
分层抽样是将总体分成若干层,然后从每一层中按照一定比例抽取样本。
这种抽样方法能够充分考虑总体的层次差异,使得样本更具代表性。
二、用样本估计总体1、频率分布表和频率分布直方图通过收集数据,整理得到频率分布表。
根据频率分布表,可以绘制出频率分布直方图。
频率分布直方图能够直观地展示数据的分布情况,包括众数、中位数和平均数等特征值。
众数是一组数据中出现次数最多的数据值;中位数是将数据从小到大排序后,位于中间位置的数值(如果数据个数为奇数),或者中间两个数的平均值(如果数据个数为偶数);平均数则是所有数据的总和除以数据的个数。
2、茎叶图茎叶图也是用来展示数据分布的一种方式。
它由“茎”和“叶”两部分组成,能够保留原始数据的信息,同时便于直观地比较数据。
3、样本的数字特征除了上面提到的众数、中位数和平均数,样本的方差和标准差也是重要的数字特征。
方差描述了一组数据的离散程度,方差越大,说明数据的离散程度越大;标准差则是方差的平方根。
三、变量间的相关关系1、相关关系的概念变量之间的关系分为函数关系和相关关系。
函数关系是一种确定性的关系,而相关关系则是一种非确定性的关系。
2、散点图通过绘制散点图,可以初步判断两个变量之间是否存在相关关系。
如果散点图中的点大致分布在一条直线附近,则称这两个变量线性相关。
必修 3 知识点总结—统计简单随机抽样1.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
2.简单随机抽样常用的方法:( 1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
3.抽签法 :(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。
4.随机数表法:例:利用随机数表在所在的班级中抽取10 位同学参加某项活动。
2.1.2系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离) =N(总体规模) /n (样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
2.1.3分层抽样1.分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用随机抽或系用抽的法抽取一个子本,最后,将些子本合起来构成体的本。
2019-2019高二数学必修3第二章统计知识点归纳我们要振作精神,下苦功学习。
聪明出于勤奋,天才在于积累。
小编准备了高二数学必修3第二章统计知识点,希望能帮助到大家。
一.简单随机抽样1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量. 为了研究总体的有关性质,一般从总体中随机抽取一部分研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法; ⑵随机数表法; ⑶计算机模拟法; ⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
4.抽签法: (1)给调查对象群体中的每一个对象编号; (2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
二.系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
高二数学必修三知识点统计在高二数学必修三中,统计学是一个非常重要的知识点。
统计学的内容包括描述统计和推断统计两个部分。
描述统计是指通过对数据的整理、分析和总结,对数据的集中趋势、离散程度、分布形态等进行描述。
推断统计是指通过对抽样数据的处理和分析,从有限的样本中推断关于总体的性质和规律的统计方法。
下面我们将详细介绍高二数学必修三中的统计学知识点。
1. 数据的整理和显示在统计学中,对数据进行整理和显示是非常重要的一步。
常用的数据整理和显示方法有频数表、频率分布表、统计图表等。
频数表是将数据按照不同的取值进行分类,并统计每个类别中的数据个数。
频率分布表是在频数表的基础上除以总数据个数,得到每个类别的频率。
统计图表可以通过直方图、饼图、折线图等形式直观地显示数据的分布情况。
2. 数据的中心趋势数据的中心趋势是用来表征一组数据集中的位置的指标。
常见的数据的中心趋势有算术平均数、中位数和众数。
算术平均数是所有数据值的总和除以数据个数,它可以用来描述数据的平均水平。
中位数是将数据按照大小排列后的中间值,当数据个数为奇数时,中位数即为中间值,当数据个数为偶数时,中位数是中间两个值的平均数。
众数是数据中出现次数最多的值,它可以用来描述数据的典型特征。
3. 数据的离散程度数据的离散程度是用来描述一组数据分散程度的指标。
常见的数据的离散程度有极差、方差和标准差。
极差是最大值和最小值之差,它可以用来描述数据的全距。
方差是每个数据与平均数之差的平方和的平均数,它可以衡量数据与平均数的偏离程度。
标准差是方差的正平方根,它可以衡量数据的相对离散程度。
4. 正态分布和标准正态分布正态分布是一种重要的概率分布,也称为高斯分布。
它具有钟形曲线,以平均数为对称轴,标准差为曲线的控制参数。
正态分布在实际问题中有着广泛的应用。
标准正态分布是平均数为0,标准差为1的正态分布。
5. 抽样和抽样分布在推断统计中,抽样是指从总体中随机选取一部分个体作为样本。
数学必修三统计和概率知识点总结统计和概率是数学必修三中的重要知识点,下面是统计和概率的一些基本概念和常见应用总结:1. 统计的基本概念:- 总体:研究对象的全体。
- 样本:从总体中抽取的一部分个体。
- 参数:总体的特征值,通常用来描述总体的某种性质。
- 统计量:样本的某种函数,用来描述样本的某种性质。
2. 随机事件和概率:- 随机事件:在一定条件下,可能发生也可能不发生的事件。
- 样本空间:随机试验的所有可能结果组成的集合。
- 概率:用来描述某个随机事件发生的可能性大小的数值。
3. 随机变量和概率分布:- 随机变量:将随机试验的结果与某个数值相对应的变量。
- 离散型随机变量:只能取有限个或者可列个数个值的随机变量。
- 连续型随机变量:可以取连续范围内的任意值的随机变量。
- 概率分布:随机变量取各个值的概率。
4. 二项分布和正态分布:- 二项分布:描述了在n次独立重复试验中,成功次数的概率分布。
- 正态分布:在自然界中许多现象可以用正态分布来描述,它是最常见的概率分布。
5. 随机事件的独立性与相关性:- 独立事件:一个事件的发生与另一个事件的发生没有关联。
- 相关事件:一个事件的发生与另一个事件的发生有关联。
6. 统计推断:- 估计:通过样本数据推断总体参数的值。
- 假设检验:基于样本数据对总体参数提出的某种假设进行推断。
7. 相关系数和回归分析:- 相关系数:用来描述两个变量之间的相关程度。
- 回归分析:通过已知数据建立函数关系模型,可以预测未来的可能结果。
这些是统计和概率的一些基本知识点,掌握了这些知识,可以帮助我们在实际问题中进行数据的处理和分析,并进行相应的推断和预测。
必修 3 知识点总结—统计简单随机抽样1.简单随机抽样,也叫纯随机抽样。
就是从整体中不加任何分组、划类、排队等,完整随机地抽取检查单位。
特色是:每个样本单位被抽中的可能性同样(概率相等),样本的每个单位完整独立,相互间无必定的关系性和排挤性。
简单随机抽样是其它各样抽样形式的基础。
往常不过在整体单位之间差异程度较小和数目较少时,才采纳这类方法。
2.简单随机抽样常用的方法:( 1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①整体变异状况;②同意偏差范围;③概率保证程度。
3.抽签法 :(1)给检核对象集体中的每一个对象编号;(2)准备抽签的工具,实行抽签(3)对样本中的每一个个体进行丈量或检查例:请检查你所在的学校的学生做喜爱的体育活动状况。
4.随机数表法:例:利用随机数表在所在的班级中抽取10 位同学参加某项活动。
系统抽样1.系统抽样(等距抽样或机械抽样):把整体的单位进行排序,再计算出抽样距离,而后依据这一固定的抽样距离抽取样本。
第一个样本采纳简单随机抽样的方法抽取。
K(抽样距离) =N(整体规模) /n (样本规模)前提条件:整体中个体的摆列对于研究的变量来说,应是随机的,即不存在某种与研究变量有关的规则散布。
能够在调查同意的条件下,从不一样的样本开始抽样,对照几次样本的特色。
假如有明显差异,说明样本在整体中的散布承某种循环性规律,且这类循环和抽样距离重合。
2.系统抽样,即等距抽样是实质中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实行也比较简单。
更为重要的是,假如有某种与检查指标有关的协助变量可供使用,整体单元按协助变量的大小次序排队的话,使用系统抽样能够大大提升估计精度。
分层抽样1.分层抽样(种类抽样):先将整体中的全部单位依据某种特色或标记(性别、年纪等)区分红若干种类或层次,而后再在各个种类或层次中采纳随机抽或系用抽的法抽取一个子本,最后,将些子本合起来组成体的本。