函数概念的历史发展(完整资料).doc

  • 格式:doc
  • 大小:44.50 KB
  • 文档页数:6

下载文档原格式

  / 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】

函数概念的历史发展

函数概念是中学中最重要的概念之一,它既是数学研究的对象,又是解决数学问题的基本思想方法。早在16、17世纪,生产和科学技术的发展要求数学不仅研究静止不动的量,而且要研究运动过程中各个量之间的依赖关系,从而促进数学由常量上学时期进入到变量数学时期。函数也就成为研究变量数学必不可少的概念。

函数(function )一词,始用于1692年,见著于微积分创始人之一莱布尼兹G.W.Leibnic,1646—1717)的著作。而f(x)则由欧拉(Euler )于1724年首次使用。我国于1859年引进函数的概念,它首次是在清代数学家李善兰与英国传教士伟烈亚历山大合译的《代微积拾级》中出现。函数在初高等数学中,在物理、化学和其他自然科学中,在经济领域和社会科学中,均有广泛的应用,起着基础的作用。

函数的概念随着数学的发展而发展,函数的定义在发展过程中不断地精确、完善、抽象,函数的概念也不断得到严谨化、精确化的表达。

牛顿在《自然哲学的数学原理》中提出的“生成量”就是函

数概念的雏形。最初,函数是表示代数上的幂(23,,,x x x …),1673

年,莱布尼兹把任何一个随着曲线上的点变动的几何量,如切线、法线,以及点的横坐标都成为函数。

一、解析的函数概念

在18世纪占主导地位的观点是,把函数理解为一个解析表达式.

1698年,瑞士著名数学家约翰·贝努利定义:由变量x 和常量用任何方式构成的量都可以称为x 的函数.这里任何方式包括代数式子和超越式子.

1748年,约翰的学生,杰出数学家欧拉在它著名的《无穷小分析引沦》中把函数定义为“由一个变量与一些常量通过任何方

式形成的解析表达式”,这就把变量与常量以及由它们的加、减、乘、除、乘方、开方和三角、指数、对数等运算构成的式子,均称为函数.并且,欧拉还给出了函数的分类,把函数分为:代数函数与超越函数,有理函数与无理函数,整函数与分函数,单值函数与多值函数.

当时把函数看作一个解析表达式的还有著名的法国数学家达朗贝尔和拉格朗日.

但这种解析的函数概念有其局阳性,如某些变量之间的对应关系不能用解析式子表达出来,那么根据这个定义就不能称之为函数关系.例如著名的狄利克雷(D1richkt)函数

1 D(x)=

0x x

⎧⎨⎩,为有理数,为无理数

二、几何的函数概念

因为解析表达式在几何上可表示为曲线,一些数学家把曲线称为函数.

1746年,达朗贝尔在研究弦振动问题时,提出了用单独的解析表达式给出的曲线是函数.后来欧拉发现有些曲线不一定是由单个解析式给出的,他提出了一个新定义:函数是“xy平面上随手画出来的曲线所表示的y与x间的关系”.即把函数定义为一条随意画出来的曲线.欧拉称之为任意函数,即包括了由单个解析表达式给出的连续函数,也包括由若干个解析式表示的不连续函数(“不连续”函数的名称是欧拉首次提出的).但是,欧拉的观点没有被达朗贝尔接受,并展开了激烈争论.

1822年,法国数学家傅立叶提出了任意函数可展开为三角级数,这实际上是说,不管是连续函数或不能用解析表达式给出的函数(凡能用图形给出)都可以用三角级数表示.因此也说明了,仅从表达式是否“单一”,或函数是否连续来区别是不是函数,显然是不合理的.

傅立叶在论文《热的分析理论》中,证明了“由不连续的线给出的函数,能用一个三角函数式来表式”.他举例指出图7.2.1

所示的不连续曲线,表达式有无穷多个,即

,2(21)40,0,1,2,,(21)2(1)4k x k y x k k k x k πππ

ππππ⎧<<+⎪⎪===±±⎨⎪⎪-+<<+⎩…

但可以用单一的三角式表示为

sin sin sin 135x x x y =+++…

这有力地揭示了,用函数表示式的“单一”与否来区别函数的真伪是不行的,不久人们进一步发现了同一曲线即可用同一个函数,也可用两个以上的函数表示的种种例子:

三、科学定义的雏形

1775年,欧拉在《微分学》一书中,给出了函数的另一定义:“如果某些变量,以这样一种方式依赖于另一些变量,即当后者变化时前者也随之变化,则称前面的变量为后面变量的函数.”值得指出的是这里的“依赖”,“随之变化”等的含意不十分确切.例如g =x^2,当x 取一3,十3时y 均等于9,y 没有变化.又如常量函数y =c ,不论x 如何变化y 总是一个不变的值.因此,该定义限制了函数的外延,只能算函数概念的科学雏型.

19世纪最杰出的法国数学家柯西也给出了如下函数定义:“若当x 的每个值,都有完全确定的y 值与之对应,则称y 是f 的函数.”此定义澄清了函数概念与曲线、连续、解析式等纠缠不清的关系,

也避免了数学意义欠严格的“变化”一词,但对函数概念的本质---对应思想强调不够.而且,当时柯西仍然考虑f和y的关系用若干个解析式表示的情况.其实,所谓用解析式表示这一点,对x与y的关系并无多大意义,因此该定义也只能算科学函数概念的维型.

四、函数概念的精确化

1837年,德国数学家黎曼和狄里克雷克服了前述定义的缺陷,给出函数概念的精确化表述:“若对x的每一个值,有完全确定的y值与之对应,不管建立起这种对应的方式如何,都称y 是x的函数.”

这个定义彻底地抛弃了前述一些定义中解析式等的束缚,特别强调和突出函数概念的本质——对应思想,使之具有更加丰富的内涵.因而,此定义可视为称得上科学的函数定义.按照此定义,

1 D(x)=

0x x

⎧⎨⎩,为有理数,为无理数

就是一个函数了.

五、函数定义域限制的取消

前述定义基本上达到了精确化的表达.但它对自变量x却存在着一些限制,只允许它在实数集或在实数区间上取值,而不能像f(x)的值那样,既允许取连续的,也允许取不连续的值.因此,为使函数概念的适用范围更加广泛,使保y=f(x)=1/x!(x为正整数)也可看作函数,就促使函数概念朝着取消函数定义域限制的方向发展.为此,人们又给出了如下函数概念:“函数y=f(x)的自变量x可以不必取区间[a,b]中的一切值,而可以仅取其中任一部分.”换句话说是x的取值范围可以是任一数集.这就解除了对自变量x的限制,使函数概念较前广泛得多了.但是,自变量及函数值仍然仅限于数的范围,随着数学的发展.函数概念仍需拓广.