当前位置:文档之家› 钢骨砼梁结构设计及应用

钢骨砼梁结构设计及应用

钢骨砼梁结构设计及应用
钢骨砼梁结构设计及应用

钢骨砼梁结构设计及应用

一、前言

由砼包裹型钢做成的结构被称为钢骨砼结构(也称劲性砼结构),在日本应用最为广泛,研究和试验也最多。这种结构被简称为SRC结构,现在已和钢结构、木结构、砌体结构以及钢筋砼结构并列为五大结构之一。其中实腹式钢骨砼构件具有较好的抗震性能、节约钢材、提高砼利用系数、施工方便等优点,在工程建设中得到广泛应用。本文将主要介绍钢骨砼梁的设计方法及构造要求,通过工程设计实例,具体说明其计算和使用,供类似工程设计时参考。

二、结构特点及计算方法

钢骨砼梁是钢梁和钢筋砼梁二者的组合结构,实腹式钢骨通常采用工字形、口字形,截面材料的选用主要是依据现行国家标准“钢结构设计规范(GBJ17-88)”和“高层民用建筑钢结构技术规程(J GJ99-98)”,保证构件具有足够的塑性变形能力,其屈服强度不宜过大,伸长率应大于20%;钢筋砼按照“砼结构设计规范(GBJ10-89)”要求实施。

钢骨砼梁的正截面强度各国的计算方法很不相同。前苏联“劲性钢筋砼结构设计指南CN3-78”假定型钢和砼成为一个整体,能够一致变形,几乎完全套用钢筋砼结构的计算方法。日本“钢筋砼结构计算标准”把钢筋砼梁的抗弯能力和型钢的抗弯能力叠加得到钢骨砼梁的抗弯能力,两种方法不同之处在于型钢梁能否与钢筋砼形成一个整体。现行“钢骨砼结构设计规程YB9082-97”在实腹式钢骨砼梁的计算方法上主要参考了日本计算标准,结合试验研究成果,对称配置钢骨砼梁正截面受弯承载力,计算结果偏于保守。

M≤Mssby+ Mrcbu

M为弯矩设计值,Mssby为梁中钢骨部分的受弯承载力,Mrcbu为梁中钢筋砼部分的受弯承载力。

当受拉翼缘大于受压翼缘的非对称钢骨截面,则可将受拉翼缘大于受压翼缘的面积作为受拉钢筋考虑,考虑粘结滑移对截面承载力的影响,砼抗压设计强度以f c代替f cm。由力矩平衡公式ΣM=0,力平衡公式ΣX=0可得:

f c A c=f y A s+N ss ,M u≤f c A c(h o s+h o c)-N ss(h o s-h o s s)+M ss

A c:受压区砼的面积,h o c、h o s s、h o s分别为受压区砼的合力点、钢骨中心以及受拉钢筋合力点至截面受压边缘的距离。

对于钢骨偏置在受拉区的非对称截面,按钢与砼组合梁的设计方法计算处理,为保证砼与钢骨整体作用,在钢骨上翼缘设置剪力连接件。在设计中值得注意的是,在钢骨部分受弯承载力的计算中可不考虑局部压屈,基于受力构件达到受弯承载力极限状态时,比弹性极限受弯承载力有所提高采用截面塑性发展系数γs,实际应用中,根据构件重要性可偏于安全取γs =1.0。

钢骨砼梁受剪承载力按照承载力极限状态理论

V≤Vssy+Vrcbu。

V为梁的剪力设计值,Vssy为梁中钢骨部分的受剪承载力,Vrcbu为梁中钢筋砼部分受剪承载力,无地震作用组合时

V≤0.4f c b b h bo, Vrcbu≤0.25f c b b h bo。

钢骨砼梁裂缝宽度和抗弯刚度,钢骨砼结构设计规程给出了计算公式,不对称钢骨砼截面抗弯刚度可按下式计算。

B=E s A s h bo2/[1.15Ψ+0.9+6αEρ/(1+3.5γ′f)]+E ss I ss

三、工程实例

华天贵宾楼工程,地下二层,地上二十八层,标准层层高3.3米,总高99.35米,总建筑面积48 000平方米。南北向沿高度作内外7.08°~7.91°倾斜,顶部最大外公倾平面尺寸达14米,外倾面积7700平方米,其倾斜部分采用斜向钢骨砼柱与水平钢骨砼梁拉结,受层高和各专业安管道安装空间的限制,为满足建筑净空使用要求,轴线跨度为11.955米,横向次梁梁高只能做成600毫米,高跨比接近1/20,且位于外挑部位,梁身刚度很难保证,经方案比较,确定采用钢骨砼宽扁梁。

此建筑主楼结构整体采用“SATWE”进行分析计算。其顶层内力最大,最大正弯矩设计值M=829.0 kN·m,最大剪力设计值V=331.6kN,轴向力设计值N=17.2kN,短期效用组合下弯矩标准值M k=637.7 kN·m。结合框架柱梁分析结果,假定梁截面尺寸700×600(h),钢骨采用Q235等级C的热扎H型钢HM450×300(440×300×11×18mm),截面特征见表1

表1

E ss I ss W ss f ss f ssy f ssv

2.06×105MPa

56100×

104mm4

2550×

103mm3

215M

Pa

235M

Pa

125M

Pa

混凝土强度等级C30,f c=15MPa,纵向钢筋f y=310MPa,f sv=210MPa。

(1)正截面抗弯、斜截面抗剪承载力计算

表2

名称公式计算结果

钢骨受弯承载力Mssby=r s w ss f ss575.7kN·m

钢筋砼受弯承载力Mrcb=M-Mssby 253.3kN·m

钢筋砼受弯配筋A s=Mrcb/f syγh co1504mm2

钢骨受剪承载力Vssy=t w h w f ssv555.5kN

钢筋砼剪弯承载力Vrcb=V-Vssy <0 (表中a=35mm,h bo=h b-a=600-35=565mm)

①选8Φ16,A s=1608mm2 ,A s>ρmin bh

②选13Ф18,A s=3315mm,

箍筋按构造,ρvmin=0.02f c/f yv=0.14%,选φ8@150(四肢箍)

0.4f c b b h bo=2373kN>V=331.6kN

0.25f c b b h bo=1483kN>V rc b=0 满足要求

(3)裂缝宽度验算

表3

名称公式计算结果

①②

受拉钢筋配筋率ρ=A S/bh bo 0.004066 0.008382 受压翼缘增强系数γ′f=(b′f-b)h′f/bh bo 0.8 0.8

砼截面开裂弯矩M C=0.235bh2f tk118.4kN·m 118.4kN

·m

短期荷载效应组合下钢筋砼部分所承担的弯矩

Mrck =E s A S h bo/{E s A S h b o+E S S I S S/h o s[0.2+6αEρ

/(1+3.5γ′f)]}×M K

421kN·m 492 kN·m

钢筋应变不均匀系数Ψ=1.1(1-M C/Mrck) 0.79 0.8352

折算直径d c=4(A s+A sf)/s 29.9mm 25.43

受拉钢筋和钢骨受拉翼缘

配筋率

ρte=(A s+A sf)/0.5bh 0.03337 0.0415

短期荷载效应组合下受拉

钢筋的应力δsk=Mrck/0.87A s h bo 532.6Mpa

>310MPa

301.9Mpa

<310MP

(表中E s=2.0×105MPa E c=3.0×104Mpa X e=E S/E C=6.67 h′f=0.2h bo=113mm)

梁最大裂缝宽度

W max=2.1Ψ(δsk)/(E s)×(2.70+0.1d e/ρte)γ

=2.1×0.8352×301.87/(2.0×105)×(2.7×25+0.1×25.43/0.0415)×0.7 =0.24mm<0.3mm

平均裂缝宽度W m=W max(1.66×1.5)=0.096mm

(4)挠度变形计算

近似取钢骨砼梁荷载为均匀分布。

表4

名称公式计算结果

短期荷载效应组合下截面抗弯刚度

B=E s A s h bo2/[1.15Ψ+0.2+6αEρ/(1+3.5γ′

f)]+E ss I ss

2.851×

1014N·mm2

长期荷载效应组

合下钢筋砼部分所承

担的弯矩

Mrclk=(M lk/M k)Mrck 446.0kN·m

长期荷载效应组合下梁的抗弯刚度

B l=Mrck/(Mrck+0.6Mrclk)×E s A s h bo2/[1.15

Ψ+0.2+6γEρ/(1+3.5γ′f)]+E ss I ss 2.254×

1014N·mm2

(表中砼保护层厚度c=25mm,钢筋表面形状系数γ=0.7)

Δs=5/48×M lk l2/B l=5/48×(578.2×106)/(2.254×1014)×119552=38.2mm

Δs/l=38.2/11955=0.0032=3.2‰,理论上满足要求。

设计中,分析外挑结构在荷载及地震作用下推力或拉力对梁不利影响,计算过程中梁端假定为简支,为平衡钢骨产生的拉力,需加配钢骨梁受力负筋;另受梁高限制,钢骨砼保护层厚度小于临界厚度c cr=0.25bf t1/2=0.25x300x2.01/2=106.1mm,设置锚固连接件(通常采用圆柱头焊钉,按钢-砼组合梁要求验算,以增强型钢与砼连接面上的粘接强度,限篇幅,从略)。

梁端节点因按“钢骨规程”对钢骨梁与钢骨梁暂无明确规定,遵循钢骨腹板部分设置钢筋贯穿孔时,截面缺损率不应超过腹板面积的20%,主筋不得与钢骨直接焊接的要求。

此工程于二OOO年十月开工,二OO一年八月封顶、并主体验收,二OO二年五月投入使用,建筑从建设至今,经观测,钢骨梁柱无裂缝,挠度也不大,效果良好。

四、结束语

通过此次工程结构设计,有如下体会:

1、在钢筋砼结构体系中,局部采用钢骨砼结构构件是可行的,特别是大跨度杆件设计时,结合宽扁梁的采用,可提高梁的抗弯、抗拉、抗压刚度,减小竖向变形值,降低梁高,其效果比纯钢筋砼结构好。

2、钢骨砼结构的设计和施工的重点是钢骨构件及其节点的设计,并且结合设计图纸,做好施工配合,注意钢筋与钢骨的连接,钢骨与砼柱的连接。

混凝土梁板结构设计计算书

混凝土梁板结构课程 设计计算书
姓名: 学号: 专业:

混凝土梁板结构设计课程设计计算书
目录
1 设计题目 ................................................................................................................. 1 1.1 基本条件 ....................................................................................................... 1 1.2 基本条件 ....................................................................................................... 1 2 结构布置及截面尺寸 ............................................................................................. 1 2.1 结构的布置 ................................................................................................... 1 2.2 板的截面尺寸确定 ....................................................................................... 2 2.3 次梁截面尺寸确定 ....................................................................................... 2 3 板的设计计算 ......................................................................................................... 3 4 次梁的设计计算 ..................................................................................................... 5 5 主梁的设计计算 ..................................................................................................... 7 6 施工图 ................................................................................................................... 15
I

钢骨钢筋砼梁柱(SRC)

(SRC)梁 度 例 立 (SRC) (SRC) 2004 SRC梁 度 理 流 例 行SRC 參 SRC梁 度 SRC 度 SRC梁- (Beam-Column) 例 SRC 力 例 (Concrete-Filled Tube, CFT) 力 例 參 (SRC) 梁 度 理 流 例

年(2004年) 六 列 496 520 SRC 料 說 2004年 行 SRC SRC SRC RC 邏 連 S RC SRC 度 SRC 行 RC 不 SRC 量 讀 SRC 易 了 SRC梁 度 SRC (Architectural Institute of Japan AIJ) SRC (2001) 度 念 參 論 度 (Strength Superposition Method) SRC梁 度 SRC 度 念 SRC梁 RC 參 AISC-LRFD (1999) ACI-318 (2002) 量SRC梁 RC 度 兩 來 SRC梁 度 RC 參 AISC-LRFD ACI-318 SRC梁 度 度 SRC RC S RC SRC 連 (SRC) SRC 梁 度 理 流 例 行SRC 參 SRC梁 度

SRC 度 SRC梁- (Beam-column) 例 SRC 力 例 (Concrete-Filled Tube, CFT) 力 例 參 流 例 了力 SRC 列 欄 讀 參 流 例 SRC梁 度 SRC SRC 不 理 SRC SRC梁 SRC SRC 4.3 4.4 4.5 4.6 SRC梁 落 不 SRC梁 梁 連 梁 連 SRC梁 SRC 不 度 了 梁 梁 切 SRC SRC梁 度φb M n 不 數 度M u SRC梁 度 度 φb M n 度 φb M n φbs M ns φbrc M nrc (1) φbs 0.9 度 數 φbrc 0.9 RC 度 數 M ns 度 ZF ys Z 數 F ys 降 力 M nrc RC 度

(梁板结构)混凝土结构设计复习题及答案

混凝土结构设计习题 楼盖(200题) 一、填空题(共48题) 1.单向板肋梁楼盖荷载的传递途径为楼面(屋面)荷载→次梁→主梁→柱→基础→地基。 2.在钢筋混凝土单向板设计中,板的短跨方向按计算配置钢筋,长跨方向按_ 构造要求配置钢筋。 3.多跨连续梁板的内力计算方法有_ 弹性计算法__和塑性计算法___ 两种方法。 4.四边支承板按弹性理论分析,当L2/L1≥_2__时为_单向板_;当L2/L1<__2 _时为_双向板。 5.常用的现浇楼梯有__板式楼梯___和___梁式楼梯___两种。 6.对于跨度相差小于10%的现浇钢筋混凝土连续梁、板,可按等跨连续梁进行内力计算。 7、双向板上荷载向两个方向传递,长边支承梁承受的荷载为梯形分布;短边支承梁承受的荷载为三角形分布。 g g q,折算 8、按弹性理论对单向板肋梁楼盖进行计算时,板的折算恒载'/2 q q 活载'/2 9、对结构的极限承载力进行分析时,需要满足三个条件,即极限条件、机 动条件和平衡条件。当三个条件都能够满足时,结构分析得到的解就是结构的真实极限荷载。 10、对结构的极限承载能力进行分析时,满足机动条件和平衡条件的解称为上限解,上限解求得的荷载值大于真实解;满足极限条件和平衡条件的解称为下限解,下限解求得的荷载值小于真实解。 11、在计算钢筋混凝土单向板肋梁楼盖中次梁在其支座处的配筋时,次梁的控制截面位置应取在支座边缘处,这是因为支座边缘处次梁内力较大而截面高度较小。 12、钢筋混凝土超静定结构内力重分布有两个过程,第一过程是由于裂缝的形成与开展引起的,第二过程是由于塑性铰的形成与转动引起的。 13、按弹性理论计算连续梁、板的内力时,计算跨度一般取支座中心线之间的距离。按塑性理论计算时,计算跨度一般取净跨。 14、在现浇单向板肋梁楼盖中,单向板的长跨方向应放置分布钢筋,分布钢筋的主要作用是:承担在长向实际存在的一些弯矩、抵抗由于温度变化或混凝土收缩引起的内力、将板上作用的集中荷载分布到较大面积上,使更多的受力筋参与工作、固定受力钢筋位置。 15、钢筋混凝土塑性铰与一般铰相比,其主要的不同点是:只能单向转动且转动能力有限、能承受一定弯矩、有一定区域(或长度)。 16、塑性铰的转动限度,主要取决于钢筋种类、配筋率和混凝土的极限压应变。当低或中等配筋率,即相对受压区高度 值较低时,其内力重分布主要取决于钢筋的流幅,

一般梁的设计方法与步骤

一般梁的设计方法与步骤 一、梁截面的确定根据建筑功能的要求,确定梁系的布置形式后,按照建筑外立面造型、室内净高、外观要求、使用功能等需要,并结合结构受力和变形所需,综合确定梁截面的高度。当某梁高度因受力或变形所需而大于典型梁高时,需判断是否会对建筑使用功能造成影响,可能存在影响时,则必须跟建筑专业协商后确定最终解决方案。 二、有关梁的基本计算参数的确定 SATWE中与梁有关的主要有如下参数: 1.梁端负弯矩调幅系数:因混凝土本身就是一种非纯弹性的材料,在梁的裂缝宽度没有超出规范限制的情况下,砼也会进入弹塑性的工作状态,故在竖向荷载作用下,钢筋混凝土框架梁设计允许考虑混凝土的塑性变形内力重分布,适当减小支座负弯矩,相应增大跨中正弯矩。为避免梁支座处出现过宽裂缝,对现浇结构,梁端负弯矩调幅系数可在0.8~0.9的范围内取值,一般可取0.85。 2.梁设计弯矩放大系数:通过此参数可将梁的正负设计弯矩均放大,提高其安全储备。工程设计一般取1.0,不必高于规范的标准而对梁弯矩进行专门的放大。 3.梁扭距折减系数:对于现浇楼板结构,当采用刚性楼板假定时,可以考虑楼板对梁抗扭的作用而对梁的扭距进行折减。折减系数一般可取0.4。 4.连梁刚度折减系数:结构设计允许连梁开裂,开裂后连梁的刚度有所降低,程序中通过连梁刚度折减系数来反映开裂后的连梁刚度。取值大小以尽量使连梁不超筋为宜,程序限定不小于0.5。 5.中梁刚度增大系数:

当采用刚性楼板假定时,可用此系数来考虑楼板对梁刚度的贡献。按《高规》第 5.2.2条的条文说明,通常现浇楼面的中梁可取2.0,边梁由程序自动计算为1.5。 6.梁柱重叠部分简化为刚域:一般点选该项,以使计算模型较接近实际。 7.梁主筋及箍筋强度:按实际情况取用。 8.梁箍筋间距:为加密区间距,对实际配箍没有影响,仅会影响计算配筋简图中输出的数值,为便于以统一的标准对计算配箍值进行判断,现规定设计时均取为100。此外,还需在计算模型中,准确地定义框架梁的抗震等级、框支梁、需进行刚度折减的连梁、需设置的计算铰等,才会得到较符合实际的、合理的计算结果。 三、按计算配筋简图及规范的构造要求配置梁钢筋对于一个标准层对应多个计算层的平面,需经比较后选出一个配筋普遍较大的计算层作为配筋的基准平面,以该平面为依据完成配筋设计后,再对其它计算层中配筋较大的部位进行局部的修正。 配筋的具体步骤按以下顺序进行: 1.配置梁箍筋 一般设计人员习惯上往往较专注于梁纵筋的配置,而容易忽略梁计算箍筋超过说明中的箍筋缺省值的部位,从而造成若干部位配箍不足的情况时有发生。配箍不足会带来较不利的后果, 原因为:(1)由于抗剪计算的复杂性,其结果的准确性远没有抗弯计算成熟,各国对抗剪承载力的计算还没有得出统一的计算模式,故某些部位即使按计算箍筋配足,亦不一定有太大的富裕(相对于受弯),因此当实际配箍与计算箍筋相差较大时,可能会在正常使用或经受风及小震作用时即发生剪切破坏或出现过宽

钢骨砼梁结构设计及应用

钢骨砼梁结构设计及应用 一、前言 由砼包裹型钢做成的结构被称为钢骨砼结构(也称劲性砼结构),在日本应用最为广泛,研究和试验也最多。这种结构被简称为SRC结构,现在已和钢结构、木结构、砌体结构以及钢筋砼结构并列为五大结构之一。其中实腹式钢骨砼构件具有较好的抗震性能、节约钢材、提高砼利用系数、施工方便等优点,在工程建设中得到广泛应用。本文将主要介绍钢骨砼梁的设计方法及构造要求,通过工程设计实例,具体说明其计算和使用,供类似工程设计时参考。 二、结构特点及计算方法 钢骨砼梁是钢梁和钢筋砼梁二者的组合结构,实腹式钢骨通常采用工字形、口字形,截面材料的选用主要是依据现行国家标准“钢结构设计规范(GBJ17-88)”和“高层民用建筑钢结构技术规程(J GJ99-98)”,保证构件具有足够的塑性变形能力,其屈服强度不宜过大,伸长率应大于20%;钢筋砼按照“砼结构设计规范(GBJ10-89)”要求实施。 钢骨砼梁的正截面强度各国的计算方法很不相同。前苏联“劲性钢筋砼结构设计指南CN3-78”假定型钢和砼成为一个整体,能够一致变形,几乎完全套用钢筋砼结构的计算方法。日本“钢筋砼结构计算标准”把钢筋砼梁的抗弯能力和型钢的抗弯能力叠加得到钢骨砼梁的抗弯能力,两种方法不同之处在于型钢梁能否与钢筋砼形成一个整体。现行“钢骨砼结构设计规程YB9082-97”在实腹式钢骨砼梁的计算方法上主要参考了日本计算标准,结合试验研究成果,对称配置钢骨砼梁正截面受弯承载力,计算结果偏于保守。 M≤Mssby+ Mrcbu M为弯矩设计值,Mssby为梁中钢骨部分的受弯承载力,Mrcbu为梁中钢筋砼部分的受弯承载力。 当受拉翼缘大于受压翼缘的非对称钢骨截面,则可将受拉翼缘大于受压翼缘的面积作为受拉钢筋考虑,考虑粘结滑移对截面承载力的影响,砼抗压设计强度以f c代替f cm。由力矩平衡公式ΣM=0,力平衡公式ΣX=0可得: f c A c=f y A s+N ss ,M u≤f c A c(h o s+h o c)-N ss(h o s-h o s s)+M ss A c:受压区砼的面积,h o c、h o s s、h o s分别为受压区砼的合力点、钢骨中心以及受拉钢筋合力点至截面受压边缘的距离。 对于钢骨偏置在受拉区的非对称截面,按钢与砼组合梁的设计方法计算处理,为保证砼与钢骨整体作用,在钢骨上翼缘设置剪力连接件。在设计中值得注意的是,在钢骨部分受弯承载力的计算中可不考虑局部压屈,基于受力构件达到受弯承载力极限状态时,比弹性极限受弯承载力有所提高采用截面塑性发展系数γs,实际应用中,根据构件重要性可偏于安全取γs =1.0。 钢骨砼梁受剪承载力按照承载力极限状态理论 V≤Vssy+Vrcbu。

钢骨混凝土结构

一、钢骨混凝土结构 (一)钢骨砼梁与钢筋砼柱节点连接 在钢筋砼柱内预埋钢骨段的办法来解决钢骨砼梁与钢筋砼柱的连接,为了避免因预埋钢骨段而引起钢性产生突变,应将预埋钢骨设计成变截面钢骨。(二)钢骨热处理 1、热处理 焊前热处理和焊后消氢处理焊前热处理即加热阻碍焊接区自由膨胀、收缩的部位。可用多把气焊炬同时进行预热。 焊后消氢处理也是低温时效,应在构件接头焊完后尚未冷却时进行。即把加热温度控制在200℃左右,保温2h,加速接头处氢的扩散逸出,消除氢脆倾向,稳定组织和尺寸,并消除部分残余应力。 2、高温时效消除残余应力。 用加热器把构件接头处加热至600℃±20℃,然后保温冷却。由于加热的最高温度为600℃低于700℃温度。因此,在整个过程中不发生组织变化。焊接应力主要通过保温和冷却过程中消除,为了使焊接应力消除得更彻底,加热过程要控制,加热至300℃后升温速度为100℃/h。 按照钢板厚度20?40mm保温时间定为0.5h?1h。保温时温差控制在50℃,达到保温时间后开始冷却。当温度大于300℃时冷却速度按150℃/h下降,当温度降到300℃以下时才允许增大冷却速度至常温。 3、防风雨措施 为了防止热处理过程中遇风雨,使该范围内的钢材由于温度急速变化而发生性能改变,在热处理过程中外覆盖防风雨罩。 (三)钢骨焊接 焊接质量受材料的性能、设备、工艺参数、气候和焊工技术等因素的影响,但同条件下C02气体保护焊较其他焊接方式的质量容易控制。 1、确定工艺参数 选择具有代表性的接头形式进行焊接方法的工艺试验,焊后经外观检查及超声波检测符合要求,据此确定的焊接工艺参数为C02焊。焊机KR500型,焊丝JM-56,焊丝直径1.2mm,电流250?300A,电压29?34V,焊速350?450mm/min,

【混凝土习题集】—10—钢筋混凝土梁板结构

第十章 钢筋混凝土梁板结构 一、填空题: 1、钢筋混凝土结构的楼盖按施工方式可分为 、 、 三 种形式。 2、现浇整体式钢筋混凝土楼盖结构按楼板受力和支承条件不同,又可分 为 、 、 、 等四种形式。 3、从受力角度考虑,两边支承的板为 板。 4、现浇整体式单向板肋梁楼盖是由组成 、 、 的。 5、单向板肋梁楼盖设计中,板和次梁采用 计算方法,主梁采用 计算方法。 6、多跨连续梁、板采用塑性理论计算时的适用条件有两个,一是 ,二是 。 7、对于次梁和主梁的计算截面的确定,在跨中处按 ,在支座处按 。 8、多跨连续双向板按弹性理论计算时,当求某一支座最大负弯矩时,活荷载按 考虑。 9、无梁楼盖的计算方法有 、 两种。 10、双向板支承梁的荷载分布情况,由板传至长边支承梁的荷载为 分布;传给短边支承梁上的荷载为 分布。 11、当楼梯板的跨度不大(m 3 ),活荷载较小时,一般可采用 。 12、板式楼梯在设计中,由于考虑了平台对梯段板的约束的有利影响,在计算梯段板跨中最大弯矩的时候,通常将8 1改成 。 13、钢筋混凝土雨篷需进行三方面的计算,即 、 、 。 二、判断题: 1、两边支承的板一定是单向板。( ) 2、四边支承的板一定是双向板。( ) 3、为了有效地发挥混凝土材料的弹塑性性能,在单向板肋梁楼盖设计中,板、次梁、主梁都可采用塑性理论计算方法。( ) 4、当求某一跨跨中最大正弯矩时,在该跨布置活载外,其它然后隔跨布置。( ) 5、当求某一跨跨中最大正弯矩时,在该跨不布置活载外,其它然后隔跨布置。( )

6、当求某跨跨中最小弯矩时,该跨不布置活载,而在相邻两跨布置,其它隔跨布置。( ) 7、当求某支座最大负弯矩,在该支座左右跨布置活载,然后隔跨布置。( ) 8、当求某一支座最大剪力时,在该支座左右跨布置活载,然后隔跨布置。( ) 9、在单向板肋梁楼盖截面设计中,为了考虑“拱”的有利影响,要对所有板跨中截面及支座截面的内力进行折减,其折减系数为8.0。( ) 10、对于次梁和主梁的计算截面的确定,在跨中处按在支座处T 形截面,在支座处按矩形截面。( ) 11、对于次梁和主梁的计算截面的确定,在跨中处按矩形截面,在支座处按T 形截面。( ) 12、多跨连续双向板按弹性理论计算时,当求某一支座最大负弯矩时,活荷载按满布考虑。( ) 13、当梯段长度大于3m 时,结构设计时,采用梁板式楼梯。( ) 三、选择题: 1、混凝土板计算原则的下列规定中( )不完全正确。 A 两对边支承板应按单向板计算 B 四边支承板当21 2≤l l 时,应按双向板计算 C 四边支承板当 312≥l l 时,可按单向板计算 D 四边支承板当321 2 l l ,宜按双向板计算 2、以下( )种钢筋不是板的构造钢筋。 A 分布钢筋 B 箍筋或弯起筋 C 与梁(墙)整浇或嵌固于砌体墙的板,应在板边上部设置的扣筋 D 现浇板中与梁垂直的上部钢筋 3、当梁的腹板w h 高度是下列( )项值时,在梁的两个侧面应沿高度配纵向构造筋(俗称腰筋)。 A mm h w 700≥ B mm h w 450≥ C mm h w 600≥ D mm h w 500≥ 4、承提梁下部或截面高度范围内集中荷载的附加横向钢筋应按下面( )配置。 A 集中荷载全部由附加箍筋或附加吊筋,或同时由附加箍筋和吊筋承担 B 附加箍筋可代替剪跨内一部分受剪箍筋 C 附加吊筋如满足弯起钢筋计算面积的要求,可代替一道弯起钢筋 D 附加吊筋的作用如同鸭筋 5、简支楼梯斜梁在竖向荷载设计值q 的作用下,其承载力计算的下列原则( )项不正确。 A 最大弯矩可按斜梁计算跨度0 l '的水平投影0l 计算 B 最大剪力为按斜梁水平投影

钢骨砼梁结构设计及应用

钢骨砼梁结构设计及应用 摘要:简介钢骨砼梁结构设计,并通过工程实例,着重说明其设计思路,及节点构造和有关施工技术要求,特别是在大跨度梁构件中可与宽扁梁结合一起应用。 关键词:钢骨砼梁正截面承载力裂缝宽度节点构造 一、前言 由砼包裹型钢做成的结构被称为钢骨砼结构(也称劲性砼结构),在日本应用最为广泛,研究和试验也最多。这种结构被简称为SRC结构,现在已和钢结构、木结构、砌体结构以及钢筋砼结构并列为五大结构之一。其中实腹式钢骨砼构件具有较好的抗震性能、节约钢材、提高砼利用系数、施工方便等优点,在工程建设中得到广泛应用。本文将主要介绍钢骨砼梁的设计方法及构造要求,通过工程设计实例,具体说明其计算和使用,供类似工程设计时参考。 二、结构特点及计算方法 钢骨砼梁是钢梁和钢筋砼梁二者的组合结构,实腹式钢骨通常采用工字形、口字形,截面材料的选用主要是依据现行国家标准“钢结构设计规范(GBJ17-88)”和“高层民用建筑钢结构技术规程(JGJ99-98)”,保证构件具有足够的塑性变形能力,其屈服强度不宜过大,伸长率应大于20%;钢筋砼按照“砼结构设计规范(GBJ10-89)”要求实施。 钢骨砼梁的正截面强度各国的计算方法很不相同。前苏联“劲性钢筋砼结构设计指南C N3-78”假定型钢和砼成为一个整体,能够一致变形,几乎完全套用钢筋砼结构的计算方法。日本“钢筋砼结构计算标准”把钢筋砼梁的抗弯能力和型钢的抗弯能力叠加得到钢骨砼梁的抗弯能力,两种方法不同之处在于型钢梁能否与钢筋砼形成一个整体。现行“钢骨砼结构设计规程YB9082-97”在实腹式钢骨砼梁的计算方法上主要参考了日本计算标准,结合试验研究成果,对称配置钢骨砼梁正截面受弯承载力,计算结果偏于保守。 M≤M ssby+ Mrcbu M为弯矩设计值,Mssby为梁中钢骨部分的受弯承载力,Mrcbu为梁中钢筋砼部分的受弯承载力。 当受拉翼缘大于受压翼缘的非对称钢骨截面,则可将受拉翼缘大于受压翼缘的面积作为受拉钢筋考虑,考虑粘结滑移对截面承载力的影响,砼抗压设计强度以f c代替f cm。由力矩平衡公式ΣM=0,力平衡公式ΣX=0可得: f c A c=f y A s+N ss ,M u≤f c A c(h o s+h o c)-N ss(h o s-h o s s)+M ss A c:受压区砼的面积,h o c、h o s s、h o s分别为受压区砼的合力点、钢骨中心以及受拉钢筋合力点至截面受压边缘的距离。 对于钢骨偏置在受拉区的非对称截面,按钢与砼组合梁的设计方法计算处理,为保证砼与钢骨整体作用,在钢骨上翼缘设置剪力连接件。在设计中值得注意的是,在钢骨部分受弯承载力的计算中可不考虑局部压屈,基于受力构件达到受弯承载力极限状态时,比弹性极限受弯承载力有所提高采用截面塑性发展系数γs,实际应用中,根据构件重要性可偏于安全取γs =1.0。 钢骨砼梁受剪承载力按照承载力极限状态理论 V≤V ssy+Vrcbu。

整体式单向板肋梁楼盖结构设计

XXXX大学工程技术学院 本科生课程设计 题目:整体式单向板肋梁楼板结构设计 专业:土木工程 _________ 年级:土木1111 _________ 学号:__________________________ 学生:__________________________ 指导教师:_______________________ 完成日期: 2014 年06月15日

内容摘要 按结构形式,楼盖可分为单向板肋梁楼盖、双向板肋梁楼盖、井式楼盖、密肋楼盖和无梁楼盖(又称板柱结构)。本文以整体式单向板肋梁楼板结构设计为研究方向,以混凝土结构的相关理论为依据,结合现场施工工艺,对混凝土结构的应用现状及发展前景进行阐述,并根据设计题目给出的整体式单向板肋梁楼盖设计实例对结构平面进行计算并做出初步设计图,然后对结构的板、次梁、主梁进行合理化分析、设计。最后,详细深入的分析了混凝土结构的施工常见问题与质量通病,并结合混凝土结构施工中常见的质量通病问题及工程实例经验,全面 的阐述了有关质量问题的解决方法。 关键词:混凝土结构;截面有效高度;配筋计算;建筑施工质量

内容摘要.................................................................. I...引言.. (1) 1混凝土结构的应用及前景 (2) 1.1混凝土结构应用现状 (2) 1.2混凝土结构的发展前景 (2) 2整体式单向板肋梁楼盖设计实例 (3) 2.1基本设计资料 (3) 2.2结构平面布置,板、次梁、主梁截面尺寸选定 (4) 2.3板的设计 (5) 2.4次梁的设计 (7) 2.5主梁的设计 (10) 3 混凝土结构施工中常见的质量通病 (16) 3.1混凝土结构质量的重要性 (16) 3.2常见的建筑施工质量通病 (16) 参考文献 (19)

(梁板结构)混凝土结构设计复习题及答案

混凝土结构设计习题 楼盖(200题) 一、填空题(共48题) 1 .单向板肋梁楼盖荷载的传递途径为楼面(屋面)荷载T 次梁T主梁T 柱T 基础T 地基。 2. 在钢筋混凝土单向板设计中,板的短跨方向按 计算配置钢筋,长跨方向按_构造要 求配置钢筋。 3?多跨连续梁板的内力计算方法有弹性计算法和塑性计算法两种方法。 4. 四边支承板按弹性理论分析,当L2/L i >_2—时为_单向板_;当L2/L 1<__2 —时为_双向板。 5. 常用的现浇楼梯有—板式楼梯—和—梁式楼梯—两种。 6 ?对于跨度相差小于10 %的现浇钢筋混凝土连续梁、板,可按等跨连续梁进行内力计算。 7、双向板上荷载向两个方向传递,长边支承梁承受的荷载为梯形分布;短边支承梁承 受的荷载为三角形分布。 8、按弹性理论对单向板肋梁楼盖进行计算时,板的折算恒载g' = g + q/2 ,折算活载 q' = q/2 9、对结构的极限承载力进行分析时,需要满足三个条件,即极限条件、机动条件和 平衡条件。当三个条件都能够满足时,结构分析得到的解就是结构的真实极限荷载。 10、对结构的极限承载能力进行分析时,满足机动条件和平衡条件的解称为上限解, 上限解求得的荷载值大于真实解;满足极限条件和平衡条件的解称为下限解,下限 解求得的荷载值小于真实解。 11、在计算钢筋混凝土单向板肋梁楼盖中次梁在其支座处的配筋时,次梁的控制截面位置应 取在支座边缘处,这是因为支座边缘处次梁内力较大而截面高度较小。____________ 12、钢筋混凝土超静定结构内力重分布有两个过程,第一过程是由于裂缝的形成与开展 引起的,第二过程是由于塑性铰的形成与转动引起的。 13、按弹性理论计算连续梁、板的内力时,计算跨度一般取支座中心线之间的距离。按 塑性理论计算时,计算跨度一般取净跨。 14、在现浇单向板肋梁楼盖中,单向板的长跨方向应放置分布钢筋,分布钢筋的主要作用是: 承担在长向实际存在的一些弯矩、抵抗由于温度变化或混凝土收缩引起的内力、将板上作用 的集中荷载分布到较大面积上,使更多的受力筋参与工作、固定受力钢筋位置。 15、钢筋混凝土塑性铰与一般铰相比,其主要的不同点是:只能单________ 能承受一定弯矩、有一定区域(或长度)。 16、塑性铰的转动限度,主要取决于钢筋种类、配筋______ 和混凝土的极限压应变。当低或中等配筋率,即相对受压区高度?值较低时,其内力重分布主要取决于钢筋的流幅,这时内力重分布是

大跨度大截面钢骨砼梁柱施工技术

大跨度大截面钢骨砼梁柱施工技术 韩伟朱建华秦文 (江苏苏州第一建筑集团公司) 【摘要】苏州市体育中心健身馆工程钢骨砼梁柱跨度为35.40m,梁截面500×2200,在施工中对钢骨梁柱的吊装、安装、排架搭设、模板支撑、钢筋与型钢梁柱的穿插,混凝土的配制、振捣方式、养护等方面采取相应的技术措施,既保证了施工质量和进度,又达到了良好的效果。 【关键词】钢骨砼梁柱大跨度吊装模板支撑混凝土 1.工程概况 苏州市体育中心健身馆工程是与已建体育场、馆相配套工程,是全民健身活动中心,集健身、休闲、娱乐、购物、训练为一体的多功能综合性建筑,建筑面积43000m2,地下一层、地上五层,本工程的网球馆、篮球馆和羽毛球中心为大空间钢骨砼组合结构。屋面和楼面主要由9榀钢骨砼门架组成,最大跨度为35.40m,其中钢骨砼柱最大截面1000 mm ×1000 mm,钢骨砼梁最大截面500 mm×2200 mm,砼强度等级为C50,钢骨梁柱采用低合金Q345B结构钢,梁柱对接焊缝为完全熔透二级焊缝。主体施工中钢骨砼结构施工是本工程重点和难点,钢骨砼组合结构在苏州地区施工尚属首例,因此在本工程施工实际情况下,参阅其它类似工程施工文献资料,制定了相应的有效技术措施,本文将对施工中的特殊工艺作如下介绍。 1.1钢骨砼梁柱的主要特征

1.2钢梁、柱节点构造: ⑴钢柱生根于地下室柱顶预埋件上,预埋件由26 mm厚上下两块钢板和φ30螺栓组合而成,材料为Q235B钢,钢柱根部标高为-0.05 m。 ⑵钢柱从-0.05 m层地下室顶板生根分别至21.50 m 和22.80m,多节钢柱拼接,腹板采用10.9级摩擦型高强螺栓M20,加连接钢板连接,翼缘板采用坡口焊接。 ⑶钢梁支承在钢柱支承板上,与钢柱焊接固定,形成钢牛腿。由于本工程钢骨砼梁跨度大,中部梁与钢牛腿采用10.9级摩擦型高强螺栓M22,加连接钢板连接,翼缘板采用坡口焊接而成。 2、钢骨砼梁柱施工工艺 2.1由于钢梁柱制作、运输和安装过程存在着超长、超高、超重等难题,故对梁、柱采取分段制作、运输、吊装、拼接的方法。根据设计要求,将钢梁分为三段,柱分层次制作、安装。待钢柱扶直就位后再进行钢梁吊装拼接、焊接。通过焊缝探伤检测合格后,最后进行砼结构施工。 2.2钢骨砼梁柱的施工程序为: 钢骨梁柱制作并运至现场→钢柱吊装→安装钢柱、校正并焊接固定→钢梁吊装就位、扶正、校正并焊接固定→搭设支模排架→绑扎柱钢筋→支柱模板→支设大梁底模→绑扎钢梁底部钢筋→绑扎钢梁面层钢筋→绑扎钢梁两侧腰筋→焊接箍筋→验收钢筋→支梁侧模→安装其余模板→下层楼面加固→浇筑梁板柱砼→养护。

梁板柱混凝土结构设计

《混凝土设计》课程设计 学生姓名: 张奇指导教师:徐晓红学生班级:土木08-1班学生学号:16 任务参数:序号一 D 序号二 3 设计时间:2011 年 5 月26 日 至2011 年 6 月 5 日

1、设计资料 某综合商场混凝土结构楼板设计,根据建筑方案要拟采用钢筋混凝土现浇单向板肋梁楼盖。柱采用400400?的方形截面,楼面活荷载为2 5.3m kN 。 (1)楼面做法: 楼面采用mm 20厚水泥砂浆抹面,下铺mm 50厚水泥焦渣,梁板下面采用mm 20厚石灰砂浆粉刷。 (2)材料: 梁板混凝土均采用20C 级,钢筋直径大于mm 12时,采用335HRB 级钢(月牙纹),直径小于mm 12时,采用235HPB 级钢。 2、楼盖结构平面布置 (1)、主梁沿横向布置,次梁沿纵向布置。主梁跨度为m 5.7,次梁的跨度为m 6,主梁每跨内布置2根次梁,板的跨度为m 5.2,则 4.25 .26 0102==l l ,因此,可按单向板设计。 (2)、按照跨高比条件,要求板厚5.6240 2500 =≥h , 对民用建筑的楼盖板,要求mm h 70≥,因此,取板厚mm h 70=。 (3)、次梁的截面高度应满足:500~33312 6000 ~186000 12~ 18 === l l h ,取截 面高度mm h 450=,截面宽度取mm b 200=。 (4)、主梁截面高度750~50010 ~ 15 == l l h ,取截面高度mm h 700=,宽度取 mm b 300=。 楼盖平面布置见图12-

图2-1楼盖平面布置图 、 板的设计 板按考虑塑性变形内力重分布方法计算。取m 1宽板带为计算单元。 (1)荷载: mm 20厚水泥砂浆 232.002.020m kN m kN =? mm 50厚水泥焦渣 2 3 7.005.014m kN m kN =?

钢骨砼梁结构设计及应用

钢骨砼梁结构设计及应用 由砼包裹型钢做成的结构被称为钢骨砼结构(也称劲性砼结构),在日本应用最为广泛,研究和试验也最多。这种结构被简称为SRC结构,现在已和钢结构、木结构、砌体结构以及钢筋砼结构并列为五大结构之一。其中实腹式钢骨砼构件具有较好的抗震性能、节约钢材、提高砼利用系数、施工方便等优点,在工程建设中得到广泛应用。本文将主要介绍钢骨砼梁的设计方法及构造要求,通过工程设计实例,具体说明其计算和使用,供类似工程设计时参考。 二、结构特点及计算方法 钢骨砼梁是钢梁和钢筋砼梁二者的组合结构,实腹式钢骨通常采用工字形、口字形,截面材料的选用主要是依据现行国家标准钢结构设计规范(GBJ17-88)和高层民用建筑钢结构技术规程(JGJ99-98),保证构件具有足够的塑性变形能力,其屈服强度不宜过大,伸长率应大于20%;钢筋砼按照砼结构设计规范(GBJ10-89)要求实施。 钢骨砼梁的正截面强度各国的计算方法很不相同。前苏联劲性钢筋砼结构设计指南CN3-78假定型钢和砼成为一个整体,能够一致变形,几乎完全套用钢筋砼结构的计算方法。日本钢筋砼结构计算标准把钢筋砼梁的抗弯能力和型钢的抗弯能力叠加得到钢骨砼梁的抗弯能力,两种方法不同之处在于型钢梁能否与钢筋砼形成一个整体。现行钢骨砼结构设计规程YB9082-97在实腹式钢骨砼梁的计算方法上主要参考了日本计算标准,结合试验研究成果,对称配置钢骨砼梁正截面受弯承载力,

计算结果偏于保守。 MMssby+ Mrcbu M为弯矩设计值,Mssby为梁中钢骨部分的受弯承载力,Mrcbu为梁中钢筋砼部分的受弯承载力。 当受拉翼缘大于受压翼缘的非对称钢骨截面,则可将受拉翼缘大于受压翼缘的面积作为受拉钢筋考虑,考虑粘结滑移对截面承载力的影响,砼抗压设计强度以fc代替fcm。由力矩平衡公式M=0,力平衡公式X=0可得: fcAc=fyAs+Nss , MufcAc(hos+hoc)-Nss(hos-hoss)+Mss Ac:受压区砼的面积,hoc、hoss、hos分别为受压区砼的合力点、钢骨中心以及受拉钢筋合力点至截面受压边缘的距离。 对于钢骨偏置在受拉区的非对称截面,按钢与砼组合梁的设计方法计算处理,为保证砼与钢骨整体作用,在钢骨上翼缘设置剪力连接件。在设计中值得注意的是,在钢骨部分受弯承载力的计算中可不考虑局部压屈,基于受力构件达到受弯承载力极限状态时,比弹性极限受弯承载力有所提高采用截面塑性发展系数s,实际应用中,根据构件重要性可偏于安全取s =1.0。 钢骨砼梁受剪承载力按照承载力极限状态理论 VVssy+Vrcbu。 V为梁的剪力设计值,Vssy为梁中钢骨部分的受剪承载力,Vrcbu为梁中钢筋砼部分受剪承载力,无地震作用组合时 V0.4fcbbhbo,Vrcbu0.25fcbbhbo。 钢骨砼梁裂缝宽度和抗弯刚度,钢骨砼结构设计规程给出了计算公式,

钢筋混凝土梁板结构课程设计任务书

钢筋混凝土梁板结构课程设计任务书 一.课程设计的目的 该课程设计是学完《混凝土结构》课程,掌握了一定的专业基础知识后的第一次实践性教学环节,该课程设计每人一题,每人每题的设计依据祥见表一、表二与表三。该课程设计的目的在于使学生熟悉结构设计的全过程,学会利用目前国内土木行业中应用最广泛也最先进的PMCAD结构设计软件进行工程结构设计,初步培养学生综合运用所学专业知识分析和解决实际工程问题的能力。 1、了解单向板和双向板肋形楼盖的荷载传递路线及其计算简图的确定;通过板和次梁的计算,熟练掌握单向板和次梁按考虑塑性内力重分布计算方法和双向板按弹性理论的内力计算方法。 2、通过主梁的计算,掌握主梁按弹性理论分析内力的计算方法和内力包络图及材料抵抗弯矩图的绘制方法。 3、正确理解和应用我国现行有关设计规范和规程,了解并熟悉梁板的有关构造要求。学会绘制钢筋材料表,掌握钢筋混凝土结构施工图的表达方式和制图标准的规定,训练学生手工和计算机绘图的基本技能。 二.设计资料 某三层地下综合体民用建筑的负二层平面如图所示,柱网尺寸为 7.2 m×7.2 m。采用钢筋砼现浇单向板肋梁楼盖,楼面活载标准值及楼面构造做法等设计资料如下: 1、楼面活载标准值为 8.0 kN/m2,楼面面层采用大理石贴面,自重1.16 kN/m2,板底和梁表面均采用20mm厚水泥砂浆粉刷,自重20 kN/m3。 2、梁板均采用强度等级为C 20的混凝土,主梁和次梁的纵向受力钢筋为HRB335级钢筋或HRB335级钢筋,其余均采用HPB235级钢筋。 3、板伸入墙内120mm,次梁伸入墙内240mm,主梁伸入墙内370mm;钢筋砼柱截面尺寸为350mm×350mm。 4、参考资料 (1)《混凝土结构》上、中册,东南大学,同济大学,天津大学合编。 (2)《砌体结构》施楚贤主编;混凝土结构设计规范GB50010-2002。 (3)建筑结构制图标准GB/T50105-2001。 (4)砌体结构设计规范GB50003-2001。 (5)建筑结构荷载规范GB50009-2001。 (6)混凝土结构设计规范GB50010-2002.。 三.设计内容和要求 1、合理地确定楼盖结构类型,进行楼盖结构平面布置。 2、单向板和次梁按考虑塑性内力重分布方法计算内力;双向板按弹性理论计算内力;

劲性钢骨砼柱梁施工技术

翠湖宾馆商务综合楼劲性钢骨砼柱梁施工技术 作者:李贞燕(云南建工第六建筑工程有限公司) [ 摘要] 本文介绍了钢骨砼结构中钢柱、钢梁的制作、吊装、焊接,以及钢筋、模板和砼的施工。 [ 关键词] 钢骨砼结构钢柱、钢梁的制作吊装钢筋模板砼施工 一、工程概况 昆明翠湖宾馆商务综合楼位于昆明市翠湖南路 6 号,与翠湖公园毗邻。是 一座集会议、餐饮、娱乐、休闲等多功能于一体,功能齐全、设施完善、造型美 观、装饰豪华的现代化智能建筑。 工程按高层一类建筑设计,抗震设防烈度为八度。建筑面积23179吊,建筑总高度24m,钢骨混凝土框架结构,地下一层,地上四层。 本工程钢骨混凝土框架结构的设计及施工,在云南省同类建筑中具有领先 水平,钢骨柱、钢骨梁构件钢材选用Q345GJ-C氐合金钢,要求热轧或正火状态交货,其碳当量ceg三0.42,焊接裂纹敏感性系数Pcmi 0.29。底脚螺栓、柱基底 板、钢骨柱底板、[32a、[40a及连接角钢和钢板均采用Q345B低合金钢。 二、钢骨混凝土框架结构的施工特点及难点 1、工程质量要求高,工期紧,场地狭窄 本工程确定“确保省优一等奖,争创‘鲁班奖'的工程质量目标。合同工期142天。工程地处市区翠湖公园及“卢汉公馆”文物保护建筑旁。施工受到的限制多, 又要确保原有建筑的正常使用。 2、工程体量大,施工难度大 工程体量大(最大单层建筑面积7802吊),最大跨度25.2m,最大层高1 2m。使用荷载大而且分布不均匀。建筑物体形复杂且超长(93m)、超宽(82.8m); 29. 8m高劲性柱共21根、25.2m跨劲性梁,共20榀,用钢量530吨。 柱垂直度偏差、制作安装精度要求高,梁柱节点构造复杂、构件不得现场二次 加工;跨度达25.2m 的会议大厅,施工荷载大,模板支撑高度达12m。

钢筋混凝土梁板的配筋构造讲解

钢筋混凝土梁板的配筋构造 3.1 受弯构件的构造要求 (1)梁的一般构造 钢筋混凝土梁的常用截面有矩形、T形、工形和花篮形等形式,如图 图3.25梁的截面形式 受弯构件在外荷载作用下,截面上将同时承受弯矩M和剪力y的作用。在弯矩较大的区段可能发生沿横截面的(称为正截面)受弯破坏,在剪力较大的区段可能发生沿斜截面的受剪破坏,当受力钢筋过早切断、弯起或锚固不满足要求时,还可能发生沿斜截面的受弯破坏。 一、梁和板的一般构造规定 (一)梁的配筋构造 1)梁的截面尺寸 梁的截面高度h与梁的跨度l及所受荷载大小有关。一般情况下,独立简支梁,其截面高度h与其跨度l的比值(称为高跨比) h/l=1/12—1/8 ;独立的悬臂梁h/l为1/6左右;多跨连续梁h/l=1/18—1/12 。 梁的截面宽度b与截面高度h的比值b/h,对于矩形截面一般为1/2.5~1/2;对于T形截面一般为1/3~1/2.5 。 为了统一模板尺寸便于施工,梁的常用宽度一般为180mm、200mm、220mm、250mm,250mm以上以50mm为模数;而梁的高度h一般为250mm、300 mm、…、1000mm等尺寸,当h≤800mm时以50mm为模数,当h>800mm时以1OOmm为模数。 2)梁的配筋 梁中一般配置下列几种钢筋(图3.26): ①纵向受力筋。如①号筋,它是用来承受弯矩的钢筋。纵向受力钢筋的常用直径为10-28mm,根数不得少于2根。梁内受力纵筋的直径应尽可能相同;当采用不同的直径时,它们之间相差至少应为2mm以上,便于施工中容易用肉眼识别,但相差也不宜超过6mm。 ②弯起钢筋。如②、③号钢筋,它是由纵向受力钢筋弯起而成。它的作用是:中间段同纵向受力钢筋一样,可以承受跨中正弯矩;弯起段可以承受剪力;弯起后的水平段有时还可以用来承受支座处的负弯矩。 弯起钢筋的弯起角度—般是:当梁高h ≤800mm时为45°;当梁高h>800mm 时为60°

钢骨混凝土结构梁柱节点深化设计方法_韩伟

1.梁加腋处主筋绕过型钢柱当混凝土梁为加腋梁时,上下排钢筋的最外两侧钢筋可按照1∶6比例,弯折后从外侧绕过型钢柱;中部的构造筋伸至型钢柱边弯锚。 2.梁的角筋穿过型钢柱的腹板当主梁位于型钢柱中部时,根据设计要求,两个方向梁4根主筋在遇到型钢柱时,型钢柱腹板开孔(图1)。 3.梁面主筋遇型钢柱翼缘板处的连接型钢混凝土梁上下排钢筋的中间2~4根钢筋既不能绕过型钢柱,也没有足够空间穿过型钢柱腹板,因此梁上排钢筋采用与型钢柱钢托座焊接,焊接长度满足规范要求。 由于部分梁梁面钢筋有两排,因而钢托座面 标高相对降低80mm ,在托座位置处另增设条形钢垫板焊接,使梁的上下排筋均有相对焊接位置,避免梁面一、二排钢筋焊接冲突(图2)。 钢骨混凝土结构 梁柱节点深化设计方法 ●经验交流 □韩伟蔡宝 图1梁角筋穿腹板示意角筋穿腹板焊接于托座焊接于托座 角筋穿腹板 图2梁面主筋遇型钢柱 翼缘板处的连接示意焊接于托座垫块上 焊接于托座上 钢骨混凝土组合深化设计主要为定位梁、柱交接处各部分的位置关系,以及梁柱 钢筋的位置,并设计梁柱钢筋穿过型钢或者与型钢相连接的相关构造,使现场梁柱的型钢、钢筋实际施工满足设计和规范规定。 16

图3梁底主筋遇型钢柱翼缘板处的连接用套筒连接焊接于托座上图4柱箍筋在节点处连接示意钢 板条两端焊接于托座腹板4.梁底主筋遇型钢柱翼缘板处的连接梁底主筋如与梁面相同做法,需在封梁侧模前先进行焊接工作,工序搭接要求高,施工过程中较为繁琐,为此可采取梁下排钢筋机械连接的方法。经分析滚轧直螺纹套筒与型钢柱具有可焊性,做相应试验检测,试验结果表明直螺纹套筒与型钢焊接处的强度大于钢筋强度,证明以直螺纹套筒作为型钢与钢筋连接是可行的。梁中部下排钢筋连接可采用焊接或冷挤压套筒(须做相应试验检测)连接(图3)。5.部分斜梁遇型钢柱的连接斜梁部分可根据其位置和角度来确定相应做法。梁外侧纵筋可绕柱型钢通过,满足其锚固长度;梁偏外侧中部的纵筋如遇柱型钢腹板断开,双面焊于型钢柱加劲板上5d ;梁中部纵筋可双面焊于钢托座上5d ,因此斜梁局部托座或连接板需加长。6.柱箍筋在节点处的设置由于柱箍筋在梁柱节点部位受钢结构的影响无法形成封闭,通常的处理方法是钢托座或钢梁腹板开孔或箍筋焊接在腹板上,造成开孔数量多,需进行补强措施或焊接工程量大,对钢结构有一定的影响。因此可采取钢板条焊接封闭来代替柱箍筋。根据柱箍筋大小及数量,计算单位高度内受力箍筋面积,按照等强度代换的原则将箍筋截面积代换成钢板条截面积,钢板条与钢构件连接采用坡口焊形式(图4)。7.Xsteel 建模Xsteel 建模是钢骨梁柱节点顺利施工的 前提,利用计算机对劲性节点进行模拟,可 以提前清晰地反映梁柱节点中钢结构及钢筋的交叉关系,对钢构件穿筋孔、钢托座和滚轧直螺纹焊接等的设置以及节点处钢筋的下料提供了直观的参考依据,从而使腹板开孔、钢托座位置的准确性大大提高。以上介绍了钢骨混凝土结构梁柱节点深化设计的多种方法,即梁的角筋穿型钢柱腹板;梁加腋处主筋绕过型钢柱;梁面、梁底主筋遇型钢柱翼缘板处的连接;部分斜梁遇型钢柱的连接以及柱箍筋在节点处采取钢 板条焊接封闭来代替柱箍筋等有效措施,简 化了施工,具有较强的可操作性。施工前利用计算机采用Xsteel 建模,可清晰地反映梁柱节点中钢结构及钢筋的交叉关系,有利于孔位、各构件位置等准确定位。施工过程中严格执行与控制,不仅可加快施工进度,节省工期,而且可提升钢骨混凝土结构梁柱连接的工程质量和节点域承载能力。(韩伟,蔡宝:苏州第一建筑集团公司) 17

相关主题
文本预览
相关文档 最新文档