螺栓组连接的设计与受力分析
- 格式:pdf
- 大小:261.57 KB
- 文档页数:6
螺纹联接设计:螺栓组联接的受力分析螺栓联接多为成组使用,设计时,常根据被联接件的结构和联接的载荷来确定联接的传力方式、螺栓的数目和布置。
螺栓组联接受力分析的任务是求出联接中各螺栓受力的大小,特别是其中受力最大的螺栓及其载荷。
分析时,通常做以下假设:①被联接件为刚性;②各螺栓的拉伸刚度或剪切刚度(即各螺栓的材料、直径和长度)及预紧力都相同;③螺栓的应变没有超出弹性范围。
下面介绍几种典型螺栓组受力分析的方法。
1. 受轴向力Fz的螺栓组联接图15.5所示为气缸盖螺栓组联接,其载荷通过螺栓组形心,因此各螺栓分担的工作载荷F相等。
设螺栓数目为z,则F=Fz/z (15-19)此外螺栓还受预紧力,其总拉力的求法见本章第15.2.1节。
2. 受横向载荷FR的螺栓组联接图15.10为受横向力的螺栓组联接,螺栓沿载荷方向布置,载荷可通过两种不同方式传递。
图15.10(1) 用受拉螺栓联接螺栓只受预紧力F` ,靠接合面间的摩擦来传递载荷。
假设各螺栓联接接合面的摩擦力相等并集中在中心处,则根据板的平衡条件得或(15-20)式中μs--接合面摩擦系数,对于钢铁零件,当接合面干燥时,μs=0.10~0.16;当接合面沾有油时,μs=0.06~0.10;m--接合面数目;z--螺栓数目;kf--考虑摩擦传力的可靠系数,kf=1.1~1.5。
若z=1,m=1,并取μs=0.15,kf=1.2,则F`=8FR。
由此可见,这种联接的主要缺点是所需的预紧力很大,为横向载荷的很多倍。
(2) 用受剪螺栓联接时,靠螺栓受剪和螺栓与被联接件相互挤压时的变形来传递载荷。
联接中的预紧力和摩擦力一般忽略不计。
假设各螺栓受均匀载荷Fs,则根据板的静力平衡条件得zF S= F R或F S=F R/z(15-21)3. 受旋转力矩T的螺栓组联接图15.11图15.11为底座承受旋转力矩T的作用,有绕螺栓组形心的轴线O-O旋转的趋势,载荷也可通过两种方式传递。
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算一.螺栓组联接得设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面得工作能力5.校核螺栓所需得预紧力就是否合适确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。
1、螺栓组联接得结构设计螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。
为此,设计时应综合考虑以下几方面得问题:1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。
2)螺栓得布置应使各螺栓得受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。
如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓得布置3)螺栓排列应有合理得间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。
扳手空间得尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。
同一螺栓组中螺栓得材料,直径与长度均应相同。
5)避免螺栓承受附加得弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
第十四章 第三节 螺栓组联接的设计与受力分析鼠标双击自动滚屏工程中螺栓皆成组使用,单个使用极少。
因此,必须研究栓组设计和受力分析。
它是单个螺栓计算基础和前提条件。
螺栓组联接设计的顺序——选布局、定数目、力分析、设计尺寸一、结构设计原则1、布局要尽量对称分布,栓组中心与联接结合面形心重合(有利于分度、划线、钻孔),以受力均匀2、受剪螺栓组(铰制孔螺栓联接)时,不要在外载作用方向布置8个以上,螺栓要使其受力均匀,以免受力太不均匀,但弯扭作用螺栓组,要适当靠接缝边缘布局,否则受力太不均3、合理间距,适当边距,以利用扳手装拆4、避免偏心载荷作用a)被联接件支承面不平突起b)表面与孔不垂直c)钩头螺栓联接防偏载措施:a)凸合;b)凹坑(鱼眼坑);c)斜垫片二、螺栓组联接受力分析目的:——求受力最大载荷的螺栓前提(假设):①被联接件为刚性不变形,只有地基变形。
②各螺栓材料、尺寸、拧紧力均相同③受力后材料变形在弹性范围内④接合面形心与螺栓组形心重合,受力后其接缝面仍保持平面1、受横向载荷的螺栓组联接特点:普通螺栓,铰制孔用螺栓皆可用,外载垂直于螺栓轴线普 通 螺 栓 ——受拉伸作用铰制孔螺栓——受横向载荷剪切、挤压作用。
单个螺栓所承受的横向载荷相等靠摩擦传力靠剪切传力2、受横向扭矩螺栓组联接❖靠底板间摩擦传力由静平衡条件∴联接件不产生相对滑动的条件为:则各个螺栓所需的预紧力为❖靠螺杆受剪切传力由底板平衡条件可知由变形协调条件可知,各个螺栓的变形量和受力大小与其中心到接合面形心的距离成正比则螺栓所受的最大工作剪力为:3、受轴向载荷螺栓组联接单个螺栓工作载荷为:F=P/ZP——轴向外载Z——螺栓个数四川机电职业技术学院机械工程系 四川省攀枝花市 (0812)6251577。
螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。
1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。
为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。
这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。
2)螺栓的布置应使各螺栓的受力合理。
对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。
当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。
如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。
接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸(下图)可查阅有关标准。
对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。
扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。
4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。
同一螺栓组中螺栓的材料,直径和长度均应相同。
5)避免螺栓承受附加的弯曲载荷。
除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。
螺栓组受力分析与计算前言螺栓组是机械结构中常用的连接元件,常见于机器零件和设备中。
在机械结构中,螺栓组的受力分析和计算是非常重要的。
其中,螺栓组受力的大小和方向,不仅决定了螺栓的抗拉强度,还决定了整个机械结构的稳定性和可靠性。
在本文中,我们将介绍螺栓组的受力分析和计算,包括螺栓组的受力特点、受力方向、计算公式和实际案例。
螺栓组受力特点螺栓组是由若干个螺栓组成的一种连接结构。
在受到外力作用时,螺栓组的受力特点主要表现为:1.拉力:螺栓组一般是在拉伸状态下进行工作的,拉力是螺栓组受力的主要形式。
2.压力:螺栓组在受到工作装置的压力时,螺栓头和垫圈会承受一定的压力。
3.剪力:螺栓组在受到横向力或剪切力时,螺栓会发生剪切变形。
4.扭矩:螺栓组在受到扭矩力时,螺栓会扭转变形。
螺栓组受力方向螺栓组的受力方向可以分为两种类型:轴向力和剪力。
轴向力轴向力是螺栓组最常见的受力形式,是指沿着螺栓中心线方向的受力。
当受到轴向拉力和压力时,螺栓组会发生轴向变形,通过计算轴向力和剪力的大小和方向,可以确定螺栓组的破坏形式。
剪力剪力是指横向力或者剪切力在螺栓组上的作用。
当受到横向力或者剪切力时,螺栓组会承受剪切变形,通过计算剪力和轴向力的大小和方向,可以确定螺栓组的破坏形式。
螺栓组的计算公式为了确定螺栓组的受力方向和大小,可以使用材料力学的基本公式进行计算。
下面是螺栓组的计算公式。
轴向力的计算公式轴向拉力的计算公式如下:F = A * σ其中,F表示轴向拉力;A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。
轴向压力的计算公式如下:F = A * σ其中,F表示轴向压力;A表示螺栓的截面积;σ表示螺栓材料的压缩强度。
剪力的计算公式剪力的计算公式如下:F = A * τ其中,F表示剪切力;A表示螺栓的截面积;τ表示螺栓材料的剪切强度。
实例分析螺栓组的实际应用非常广泛,下面介绍几个实际案例。
案例1:车轮螺栓的受力分析和计算车轮螺栓是汽车结构中常见的连接元件,其受力情况如下图所示:在这个情况下,车轮螺栓的轴向拉力如下所示:F = A * σ = 3.14 * (12.52/2)^2 * 780 = 23161.3 N其中,A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。