人教版八年级上册数学表格式教学设计(教案):第18章平行四边形单元备课
- 格式:docx
- 大小:17.13 KB
- 文档页数:3
初二数学平行四边形说课稿模板:第18 章
说课稿不同于教案,教案只说“怎样教”,而说课稿则重点说清“为什幺要这样教”,小编整理了这篇初二数学平行四边形说课稿模板:第18 章,希望可以帮助到大家!
一、教学解读
教材分析:
本节课是人教版小学数学四年级上册第5 单元《平行四边形和梯形》第二节平行四边形和梯形的第1 课时,这部分内容是在学生直观认识了平行四边形,初步掌握了长方形和正方形的特征,认识了垂直与平行的基础上进行教学的,通过一系列的探究实践活动继续认识平行四边形的特性、底和高,为以后学习平行四边形面积打基础,学好这一部分内容,有利于提高学生动手能力,增强创新意识,而且进一步发展了学生对“空间与图形”的兴趣,对学生理解、掌握、描述现实空间,获得解决实际问题的方法有着重要价值。
教材通过两个例题和两段文字呈现了三部分内容:平行四边形的特征和定义、平行四边形的底和高、平行四边形特性及应用,
教材的编排始终遵循四年级的认知规律和思维规律,注重注重在学生实践操作中经历解决问题的整个过程,积累解决问题的经验,注意让学生通过动手操作,在实践过程中逐步促进学生空间观念的发展,在整个教材编排体系中起着非常重要的作用。
学情分析:
数学学习活动必须建立在学生认知发展水平和已有的生活经验基础上,四年级学生已经具备一定的数学学习能力和理解能力,学生初步认识了平行四边形,能够从平面图形中分辨出平行四边形。
同时学生在生活中也接触到很。
第三次集体备课课题:第十八章《平行四边形》地点:XX中学教学楼三楼时间:2019.4.3参加人员:八年级数学教师主备人:望海彬哥一、地位与作用同三角形一样,四边形也是最基本的平面图形,是本学段“空间与图形”的主要研究对象.本章将在平行线、三角形的基础上进一步研究一些特殊四边形的知识,探索平行四边形、矩形、菱形、正方形的有关性质和常用判定方法,并对有关结论进行推理证明,进一步发展学生的逻辑思维能力和推理论证能力,对学生要求较高. 就本学期的教学内容来讲,平行四边形一章是教学重点和难点之一. 就中考来讲,平行四边形的知识会以填空选择题、中档解答题、动手操作题、综合解答题等形式进行考察,约占中考总分的15~18%. 所以,学好这一章,既是对三角形知识的巩固,又是为后续的几何学习做好充分的知识和能力储备。
二、知识结构图从属关系:演变关系:三、课标要求【课标要求】:(1)理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系。
(2)探索并证明平行四边形的性质定理及其判定定理。
(3)了解两条平行线之间距离的意义,能度量两条平行线之间的距离。
(4)探索并证明矩形、菱形、正方形的性质定理以及它们的判定定理。
(5)探索并证明三角形的中位线定理。
四、课时安排建议本章教学时间约需20课时,具体安排如下:18.1 平行四边形7课时18.2 特殊的平行四边形6课时数学活动复习、考试、讲评7课时五、全章教学建议(一) 复习有关知识1、三角形的全等2、等腰三角形3、直角三角形4、几何变换:轴对称、旋转变换、平移变换。
(二)引导学生把学习性质和判定的过程, 变成系统研究这些新课题的过程这部分的新知识其实在难度上并不大, 学生对这些基本的几何图形和比较熟悉, 一般来说, 学生独立探究它们的性质和判定方法是完全可行的.1. 探究的方式: 实验+ 推理2. 引导学生有序地进行探究. 比如:在探究平行四边形的性质的时候, 可以给学生逐步提出下面的问题:[问题1] “对比三角形的研究方法,平行四边形我们可以研究哪些方面的知识?“平行四边形的定义、性质、判定。
初中数学《平行四边形》大单元教学设计01引言本课例为人教版八年级下册第十八章平行四边形整个单元的教学设计,基于对新课标的学习和理解,围绕大主题是“如何研究一个四边形”重新设计本单元教学,突出大单元的“整合性”。
平行四边形及特殊的平行四边形(矩形、菱形、正方形)都是常见的四边形,在学习了平行线、全等三角形、轴对称图形等知识的基础上进行的学习,是上述内容的后续和深化。
本单元的基本设计思想是:重视几何图形研究的一般活动经验的总结和应用,通过复习三角形,总结出三角形的研究思路、研究内容、研究方法,把这种经验一般化后,应用到平行四边形的系统研究中,探索平行四边形及其特例——矩形、菱形、正方形的定义、性质和判定,把具体知识的探索发现过程(图形观察、测量、实验与想像、归纳与猜想)与证实过程(演绎推理)融入几何图形研究活动中,让学生明确图形的研究内容(图形的构成要素与相关要素的位置和数量关系),学会几何研究的思路、方法,积累几何图形研究活动经验,发展“四能”以及几何直观、推理能力等数学核心素养。
02大单元教学设计2.1单元内容分析对于教材和学习内容的分析从以下几个方面进行分析:研究对象:平行四边形是特殊的四边形,而矩形、菱形、正方形又属于特殊的平行四边形,正方形还是特殊的矩形或菱形,研究对象从一般到特殊。
研究内容:本章的每一种图形都分别从定义、性质、判定三个方面进行研究。
①定义:都反映了该图形与一般平行四边形相比在某一方面的独特之处;②性质:都包含一般性质与特殊性质两个方面,从组成图形的基本要素(边、角)或相关要素(对角线)之间的数量关系或位置关系、图形整体的对称性这两个维度,由一般到特殊、由静到动、由局部到整体地反映图形的特征;③判定:都反映了能判断一个图形是否属于某图形的最少条件,并且判断的条件都来源于性质,判定与性质互为逆命题。
从定义、性质和判定的逻辑关系看,每一种图形的定义都是它的充要条件,性质都是它的必要条件,判定都是它的充分条件,所以图形的某些特征是图形的充要条件。
菱形的判定尊敬的各位领导老师:大家好!我说课的题目是《菱形的判定》。
我针对本节课的教学内容主要从教材地位作用、学情分析、教学目标分析、教学方法分析、教学过程分析、板书设计等几方面逐一加以说明。
一、教材的地位和作用本节课选自人教版八年级下册第十九章第二节第4课时,主要内容是菱形的判定,让学生尝试从不同角度寻求菱形的判定方法,并能有效地解决实际问题。
它是在探究平行四边形和矩形的判定方法之后,又一个特殊四边形判定方法的探索,它不仅是三角形、四边形知识的延伸,更为探索正方形的性质与判定指明了方向。
本节课通过学生观察猜想,小组讨论合作交流后归纳证明得出结论,培养学生的推理能力和演绎能力,为以后圆等知识的学习奠定基础。
二、学情分析我从初一开始就对学生进行数学理念数学思考数学意识的培养,所以在新知识的接受方面学生还有一些优势,本节课根据这些特点适当的进行了难度的设计和环节上的考虑。
从认知状况来说,学生在此之前已经学习了平行四边形的判定,对判定有了初步的认识,这为顺利完成本节课的教学任务打下了基础,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以自己在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性,让学生愉快地学习。
三、教学目标分析根据本节课的教学内容,结合新课标理念, 我从四个方面制定了教学目标:(一)知识技能:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法. (二)过程方法:经历利用菱形的定义探究菱形其他判定方法的过程,培养学生的动手实验、观察、推理意识,发展学生的形象思维和逻辑推理能力.根据菱形的判定定理进行简单的证明,培养学生的逻辑推理能力和演绎能力.尝试从不同角度寻求菱形的判定方法,并能有效的解决问题,尝试评价不同判定方法之间的差异.通过对菱形判定过程的反思,获得灵活判定四边形是菱形的经验.(三)情感态度:在探究菱形的判定方法的活动中获得成功的体验,从成功中体会研究数学问题的乐趣,让学生学会主动寻求解决问题的途径,从而增强学生学习数学的兴趣,树立学好数学的信心。
平行四边形的性质课题平行四边形的性质课时第1课时课型复习课作课时间教学内容分析本节课复习平行四边形边角性质的应用。
教学目标1. 通过例题,巩固平行四边形的定义。
2. 能够根据平行四边形的性质,求角度和边长。
3. 结合三角形全等知识,探究平行四边形边、角性质的综合运用。
4. 能够根据平行线间距离,计算平行四边形的面积。
重点难点能够根据平行四边形的性质进行简单的推理和计算. 教学策略选择与设计能根据定义探究平行四边形的性质.求角度和边长。
再结合三角形全等知识,探究平行四边形边、角性质的综合运用。
最后,能够根据平行线间距离,计算平行四边形的面积。
学生学习方法应用法,分析法,探究法教具三角板教学过程教师活动学生活动设计意图【知识点1】利用平行四边形的定义解题平行四边形的定义有两层意思:①是四边形;②两组对边分别平行.这两个条件缺一不可.平行四边形的定义既是性质,又是判定方法:①由定义可知平行四边形的两组对边分别平行;②由定义可知只要四边形中有两组对边分别平行,那么这个四边形就是平行四边形.例:如图所示,在▱ABCD中,EF∥AB,GH∥AD,EF,GH 相交于点O,图中共有多少个平行四边形?解:在▱ABCD中,因为有EF∥AB,GH∥AD,所以EF∥AB∥CD,GH∥AD∥BC.所以除了▱ABCD外,还有▱AHO E、▱AHGD、▱ABFE、▱BFOH、▱BCGH、▱FCGO、▱FCDE、▱GDEO,图中一共有9个平行四边形.【知识点2】用平行四边形边角性质求角度,边长平行四边形的性质中存在着线段、角之间的数量关系,可以证明线段相等、角相等或进行线段、角的计算,在有关计算中可以通过列方程巧妙地解决有关问题. 例:(1)如图,在▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是( C)A.16°B.22°C.32°D.68°静听思考分析观察思考填空通过例题,巩固平行四边形的定义。
八年级数学教案:《平行四边形》(最新7篇)平行四边形教案篇一课型:新授课。
教学分析:本节课是在学生已经认识长方形、正方形的基础上进行教学。
重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。
教学目标:(一)知识与技能:引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。
会在方格纸上画长方形、正方形,并认识平行四边形。
(二)过程与方法:学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。
(三)情感态度价值观:培养学生积极参与的学习品质,使学生获得成功的`体验,感受教学与日常生活的密切联系,树立学好数学的信心。
教学策略:创设情景、动手实践、交流合作。
教具学具:多媒体课件、长方形、正方形、格子纸、三角板。
教学流程:一、创设情景,提出问题。
今天,我们的好朋友智慧星要带领大家到图形王国去参观。
参观之前提一个小小的要求,请你仔细观察、多动脑筋。
(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。
引出课题)二、协作探索,研究问题。
1、教学长方形、正方形。
(1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?(2)教学对边的概念:在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。
(多媒体演示)(3)小组合作研究长方形、正方形的特点。
下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。
长方形的对边和正方形的边有什么特点,角有什么特点?(4)指名汇报,并演示自己发现的过程。
共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。
(5)在方格纸上画出长方形、正方形2、教学平行四边形。
(1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?我们把这样的四边形叫做平行四边形。
18章平行四边形总复习教案——数学大餐“大餐一二”“吃喝”和“加菜”二.“大餐一”三、“细琢回味”1、定义是在什么基础上的?2、从定义看包含关系(双黄蛋)?四、“大餐二”1、教师细讲定义学生完成题目并体会“双黄蛋”的包含关系教师出示例教师要求学生先尝试独立思考,再小组讨论、交流.2、教师巡视学生情况3、3、学生独立完成并完善此图4、展示学生所写所填并规范答案!5、学生根据老师讲解的完善并熟记性质图。
五、“体育锻炼”1.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过点O作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.2. 已知:AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC交BC于F,求证:EC=EF=FBA DEEB F C3、如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF.A D FEB C六、“加菜”在“3”题的后面加上第二问(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?1、体育锻炼环节:学生自练自讲。
2、找三个人去讲台讲解,我是小老师。
3、老师说说每一小题考查了哪些知识E4、老师讲解拓展提高题“加菜”“总结回味”本节课我们复习了哪些知识点?师引导学生归纳总结.梳理知识,并建立知识体系.教师黑板板书题目及知识结构布置下节作业下次大餐。
平行四边形【典型例题】(一)平行四边形:1. 平行四边形的性质:边:对边相等对边平行角:对角相等邻角互补对角线:对角线互相平分⎧⎨⎩⎧⎨⎩⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪平行四边形是中心对称图形,对角线的交点是对称中心。
2. 平行四边形的识别:(1)两组对边分别平行的四边形是平行四边形。
(2)一组对边平行且相等的四边形是平行四边形。
(3)对角线互相平分的四边形是平行四边形。
(4)两组对边分别相等的四边形是平行四边形。
(5)两组对角分别相等的四边形是平行四边形。
3. 相关链接:(1)两条平行线之间的距离:两条平行线中,一条直线上的任一点到另一条直线上的距离,叫做这两条平行直线间的距离。
性质:两条平行线间的距离处处相等。
(2)平行四边形的面积:①如图1所示:S 平行四边形ABCD =BC ·AF=CD ·AEADBCEF图1注意:这里底是相对于高而言,也就是说平行四边形任一边均可作底。
②同底(等底)同高(等高)的平行四边形面积相等。
4. 平行四边形知识的应用:(1)直接运用其特征去解决问题,求角的度数,线段长度,证明角相等,互补等,证明线段长度相等成倍分。
(2)先识别一个四边形是平行四边形,然后用其性质解决问题。
例1. 如图2,四边形ABCD 是平行四边形,且∠EAD=∠BAF ,(1)试说明△CEF 是等腰三角形,(2)△CEF 的哪两边之和恰好等于平行四边形ABCD 的周长,请说明为什么?AB CDE F图2解:(1)在平行四边形ABCD 中,AD ∥BC ,AB ∥CD 。
所以∠EAD=∠F ,∠BAF=∠E ,又已知∠EAD=∠BAF ,所以∠E=∠F 。
所以△CEF 是等腰三角形。
(2)△CEF 中,(CE+CF )与平行四边形ABCD 的周长相等。
由(1)得∠EAD=∠BAF=∠E=∠F ,所以DE=AD ,FB=AB , 所以CE+CF=CD+AD+CB+AB即有 CE+CF 与平行四边形ABCD 的周长相等。