人教B版高中必修二数学教学参考书电子版
- 格式:docx
- 大小:22.09 KB
- 文档页数:1
2.1.2 平面直角坐标系中的基本公式【学习要求】1.理解两点间的距离的概念,掌握两点间的距离公式,并会求两点间的距离.2.理解坐标法的意义,并会用坐标法研究问题.【学法指导】通过在直角坐标系中构造直角三角形并应用勾股定理,探究出两点间距离公式,通过公式的应用,初步了解解析法证明的思路和方法,体验由特殊到一般,再由一般到特殊的思想及“数”和“形”结合转化思想.填一填:知识要点、记下疑难点1.两点间的距离公式:P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离表示为d(P 1,P 2)=|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2;(x -a )2+(y -b )2的几何意义是: 两点P 1(x ,y),P 2(a ,b) 的距离 .2.中点公式:已知平面直角坐标系中的两点A(x 1,y 1),B(x 2,y 2),点M(x ,y)是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22. 研一研:问题探究、课堂更高效[问题情境]我们已经知道数轴上的两点A 、B 的距离|AB|=|x A -x B |,那么如果已知平面上两点P 1(x 1,y 1),P 2(x 2,y 2), 如何求P 1,P 2的距离d(P 1P 2)呢?本节我们就来研究这个问题.探究点一 两点间的距离公式问题1 在平面直角坐标系中,有序实数对构成的集合与坐标平面内点的集合具有怎样的对应关系?有序实数对(x ,y)与点P 对应时x ,y 分别叫做什么?答: 具有一一对应关系.有序实数对(x ,y)与点P 对应时,(x ,y)叫做点P 的坐标.其中x 叫做点P 的横坐标,y 叫做点P 的纵坐标.问题2 在x 轴上,已知点P 1(x 1,0)和P 2(x 2,0),那么点P 1和P 2的距离为多少?答: |P 1P 2|=|x 1-x 2|.问题3 在y 轴上,已知点P 1(0,y 1)和P 2(0,y 2),那么点P 1和P 2的距离为多少?答: |P 1P 2|=|y 1-y 2|.问题4 如图,已知x 轴上一点P 1(x 0,0)和y 轴上一点P 2(0,y 0),那么点P 1和P 2的距离为多少?答: |P 1P 2|=x 20+y 20.问题5 在平面直角坐标系中,已知点A(x ,y) ,原点O 和点A 的距离d(O ,A)等于什么?答: 如下图,当点A 不在坐标轴上时,从点A(x ,y)作x 轴的垂线段AA1,垂足为A 1,再运用勾股定理得d(O ,A)=x 2+y 2 .问题6 一般地,已知平面上两点P 1(x 1,y 1),P 2(x 2,y 2),如何利用上述方法求点P 1和P 2的距离?答: 当x 1≠x 2,y 1=y 2时,|P 1P 2|=|x 2-x 1|;当x 1=x 2,y 1≠y 2时,|P 1P 2|=|y 2-y 1|;当x 1≠x 2,y 1≠y 2时,如图,在Rt △P 1QP 2中,由勾股定理知,|P 1P 2|2=|P 1Q|2+|QP 2|2,所以d(P 1,P 2)=|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.小结:两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式d(P 1,P 2)=|P 1P 2|=2-x 12+2-y 12. 例1 已知点A(1,2),B(3,4),C(5,0),求证:△ABC 是等腰三角形.证明: 因为d(A ,B)=(3-1)2+(4-2)2=8, d(A ,C)=(5-1)2+(0-2)2=20, d(C ,B)=(5-3)2+(0-4)2=20,即|AC|=|BC|. 又可验证A ,B ,C 不共线,所以△ABC 是等腰三角形.小结:本题是用代数的方法证明几何问题,这就是解析法. 具体来说就是根据图形特点,建立适当的直角坐标系,利用坐标解决有关问题,这种方法叫坐标的方法,也称为解析法.跟踪训练1 已知点A(-3,4),B(2,3),试在x 轴上找一点P ,使得d(P ,A)=d(P ,B),并求出d(P ,A). 解: 设P(x,0),由题意得d(P ,A)=(x +3)2+(0-4)2=x 2+6x +25, d(P ,B)=(x -2)2+(0-3)2=x 2-4x +7 由d(P ,A)=d(P ,B),即x 2+6x +25=x 2-4x +7,化简得x =-95,故P 点的坐标为⎝⎛⎭⎫-95,0, d(P ,A)=⎝⎛⎭⎫-3+952+42=21095. 例2 证明:平行四边形四条边的平方和等于两条对角线的平方和.证明: 如图所示,以顶点A 为坐标原点,AB 边所在的直线为x 轴,建立直角坐标系,有A(0,0).设B(a,0),D(b ,c),由平行四边形的性质知点C 的坐标为(a +b ,c),因为|AB|2=a 2,|CD|2=a 2,|AD|2=b 2+c 2,|BC|2=b 2+c 2,|AC|2=(a +b)2+c 2,|BD|2=(b -a)2+c 2. 所以|AB|2+|CD|2+|AD|2+|BC|2=2(a 2+b 2+c 2),|AC|2+|BD|2=2(a 2+b 2+c 2).所以|AB|2+|CD|2+|AD|2+|BC|2=|AC|2+|BD|2.因此,平行四边形四条边的平方和等于两条对角线的平方和.小结: 用解析法证几何题的注意事项:(1)首先要根据题设条件建立适当的直角坐标系,然后根据题中所给的条件,设出已知点的坐标;(2)再根据题设条件及几何性质推出未知点的坐标;(3)另外,在证题过程中要不失一般性. 跟踪训练2 求函数y =x 2+1+x 2-4x +8的最小值.解: ∵函数的解析式可化为y =x 2+1+x 2-4x +8=(x -0)2+(0-1)2+(x -2)2+(0-2)2.令A(0,1),B(2,2),P(x,0),则问题转化为在x 轴上求一点P(x,0),使得|PA|+|PB|取最小值.∵A 关于x 轴的对称点为A ′(0,-1),∴(|PA|+|PB|)min =|A ′B|=(2-0)2+(2+1)2=4+9=13.即函数y =x 2+1+x 2-4x +8的最小值为13.探究点二 中点公式问题 已知A(x 1,y 1),B(x 2,y 2),M(x ,y)是线段AB 的中点,如何用A ,B 点的坐标表示M 点的坐标?答: 如图,过点A ,B ,M 分别向x 轴,y 轴作垂线AA 1,AA 2,BB 1,BB 2,MM 1,MM 2,垂足分别为A 1(x 1,0),A 2(0,y 1),B 1(x 2,0),B 2(0,y 2),M 1(x,0),M 2(0,y).因为M 是线段AB 的中点,所以点M 1和点M 2分别是A 1B 1和A 2B 2的中点,即A 1M 1=M 1B 1,A 2M 2=M 2B 2.所以x -x 1=x 2-x ,y -y 1=y 2-y. 即x =x 1+x 22,y =y 1+y 22. 这就是线段中点坐标的计算公式,简称中点公式. 例3 已知▱ABCD 的三个顶点A(-3,0),B(2,-2),C(5,2),求顶点D 的坐标(如图所示).解: 因为平行四边形的两条对角线的中点相同,所以它们的坐标也相同.设点D 的坐标为(x ,y),则⎩⎪⎨⎪⎧x +22=-3+52=1y -22=0+22=1,解得⎩⎪⎨⎪⎧ x =0y =4.所以点D 的坐标为(0,4), 小结: 利用解析法解决几何中的问题,要充分利用几何性质. 跟踪训练3 证明:直角三角形斜边的中点到三个顶点的距离相等. 证明: 如图所示,以直角三角形的直角顶点C 为坐标原点,一直角边CA 所在直线为x 轴,建立直角坐标系, 则C(0,0).设A(a,0),B(0,b), 则斜边的中点M 的坐标为⎝⎛⎭⎫a 2,b 2. |OM|=a 24+b 24=12a 2+b 2, |BM|=a 24+⎝⎛⎭⎫b 2-b 2=12a 2+b 2, |MA|=⎝⎛⎭⎫a -a 22+b 24=12a 2+b 2. |MA|=⎝⎛⎭⎫a -a 22+b 24=12a 2+b 2. 即直角三角形斜边的中点到三个顶点的距离相等.练一练:当堂检测、目标达成落实处1.已知A(-3,5),B(2,15),则d(A ,B)等于( ) A .5 2 B .513 C .517 D .5 5 解析: d(A ,B)=(2+3)2+(15-5)2 =52+102=5 5. 2.已知两点A(a ,b),B(c ,d),且a 2+b 2-c 2+d 2=0,则 ( )A .原点一定是线段AB 的中点 B .A 、B 一定都与原点重合C .原点一定在线段AB 上但不是中点D .结论都不正确 解析: 由a 2+b 2-c 2+d 2=0,得:a 2+b 2=c 2+d 2,即d(O ,A)=d(O ,B).所以A 、B 到原点O 的距离相等, 故选项A 、B 、C 都错,故选D.3.已知平面内平行四边形的三个顶点A(-2,1)、B(-1,3)、C(3,4),求第四个顶点D 的坐标.解: 分以下三种情况(如图所示).(1)构成▱ABCD 1(以AC 为对角线).设D 1(x 1,y 1),AC 的中点坐标为⎝⎛⎭⎫12,52,其也为BD 1的中点坐标,∴12=-1+x 12,52=3+y 12.∴x 1=2,y 1=2,即D 1(2,2).(2)以BC 为对角线构成▱ACD 2B ,同理得D 2(4,6).(3)以AB 为对角线构成▱ACBD 3,同理得D 3(-6,0).课堂小结:1.坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.平面几何中与线段长有关的定理和重要结论,可以用坐标法来证明.用坐标法解题时,由于平面图形的几何性质是不依赖于平面直角坐标系的建立而改变的,但不同的平面直角坐标系会使计算有繁简之分,因此在建立直角坐标系时必须“避繁就简”.。
全国中小学“教学中的互联网搜索”优秀教学案例评选教案设计中学数学(1.1.5空间几何体的三视图)一、教案背景1、面向学生:中学学科:数学2、课时:13、学生课前准备:(1)物品:三角板、圆规等(2)复习投影与直观图相关知识①平行投影:在一束平行光线照射下形成的投影。
点、线、三角形在平行投影后的结果。
②中心投影:光由一点向外散射形成的投影。
其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形。
③直观图:(斜二测画法的规则)(3)数学与文学(为情境导入做准备)【百度文库】/view/bb94b5bbfd0a79563c1e7252.html (4)数学与美术(为引入三视图做准备)【百度文库】/view/b43349e2524de518964b7dec.html 4、教师课前准备:除了准备实物投影仪,多媒体投影,在课前还网上收集参考教案、参考课件以及课例视频。
①参考教案:【百度文库】/view/4cbe6227a5e9856a56126084.html②参考课件:【百度文库】/view/9ab3f62c2af90242a895e5bb.html③参考课例:【百度视频】/v_show/id_XMjA0OTU1Mjcy.html二、三维目标:1、知识与技能:能画出简单几何体的三视图;能识别三视图所表示的空间几何体。
2、过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
3、情感态度与价值观:感受数学就在身边,提高学生的学习立体几何的兴趣,培养学生大胆创新、勇于探索、互相合作的精神。
三、教材分析本节课是在学习空间几何体结构特征,投影与直观图之后,尚未学习点、直线、平面位置关系的情况下教学的。
三视图利用物体的三个投影来表现空间几何体,是用平面图形表示空间几何体的一种方式。
它能够帮助我们从不同侧面、不同角度认识几何体的结构特征,使我们能够根据平面图形想象空间几何体的形状和结构。
【教学过程】一、新知初探探究点1:概率概念的理解例1:下列说法正确的是()A.由生物学知道生男生女的概率约为0.5,一对夫妇先后生两小孩,则一定为一男一女B.一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C.10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大D.10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1解析:一对夫妇生两小孩可能是(男,男),(男,女),(女,男),(女,女),所以A 不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是0.1,所以C不正确,D正确.答案:D规律方法:(1)概率是随机事件发生可能性大小的度量,是随机事件A的本质属性,随机事件A 发生的概率是大量重复试验中事件A发生的频率的近似值.(2)由概率的定义我们可以知道随机事件A在一次试验中发生与否是随机的,但随机中含有规律性,而概率就是其规律性在数量上的反映.(3)正确理解概率的意义,要清楚概率与频率的区别与联系.对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件.探究点2:概率与频率的关系及求法例2(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是多少?解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.9附近,所以这个射手射击一次,击中靶心的概率约是0.9.规律方法:(1)频率是事件A发生的次数m与试验总次数n的比值,利用此公式可求出它们的频率.频率本身是随机变量,当n很大时,频率总是在一个稳定值附近左右摆动,这个稳定值就是概率.(2)解此类题目的步骤是:先利用频率的计算公式依次计算出频率,然后用频率估计概率.探究点3:概率的应用例3:为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出500尾,查看其中有记号的鱼,有40尾,试根据上述数据,估计水库中鱼的尾数.解:设水库中鱼的尾数是n,现在要估计n的值,假定每尾鱼被捕的可能性是相等的,从水库中任捕一尾鱼,设事件A={带记号的鱼},则P(A)=2 000 n.第二次从水库中捕出500尾鱼,其中带记号的有40尾,即事件A发生的频数为40,由概率的统计定义知P(A)≈40500,即2 000n≈40500,解得n≈25 000.所以估计水库中的鱼有25 000尾.规律方法:(1)由于概率反映了随机事件发生的可能性的大小,概率是频率的近似值与稳定值,所以可以用样本出现的频率近似地估计总体中该结果出现的概率.(2)实际生活与生产中常常用随机事件发生的概率来估计某个生物种群中个别生物种类的数量、某批次的产品中不合格产品的数量等.二、课堂总结1.概率的统计定义一般地,如果在n次重复进行的试验中,事件A发生的频率为mn,则当n很大时,可以认为事件A发生的概率P(A)的估计值为mn,此时0≤P(A)≤1.2.频率与概率的关系概率可以通过频率来“测量”或者说频率是概率的一个近似,概率从数量上反映了一个事件发生的可能性的大小.三、课堂检测1.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是()A.100个手术有99个手术成功,有1个手术失败B.这个手术一定成功C.99%的医生能做这个手术,另外1%的医生不能做这个手术D.这个手术成功的可能性大小是99%解析:选D.成功率大约是99%,说明手术成功的可能性大小是99%,故选D.2.下列叙述中的事件最能体现概率是0.5的是()A.抛掷一枚骰子10次,其中数字6朝上出现了5次,抛掷一枚骰子数字6向上的概率B.某地在8天内下雨4天,该地每天下雨的概率C.进行10 000次抛掷硬币试验,出现5 001次正面向上,那么抛掷一枚硬币正面向上的概率D.某人买了2张体育彩票,其中一张中500万大奖,那么购买一张体育彩票中500万大奖的概率解析:选C.A,B,D中试验次数较少,只能说明相应事件发生的频率是0.5.3.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是________.解析:这一年内汽车挡风玻璃破碎的频率为60020 000=0.03,此频率值为概率的近似值.答案:0.034.给出下列四个命题:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;②做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是51100;③随机事件发生的频率就是这个随机事件发生的概率;④抛掷骰子100次,得点数是1的结果18次,则出现1点的频率是9 50.其中正确命题的序号为________.解析:①错,次品率是大量产品的估计值,并不是针对200件产品来说的.②③混淆了频率与概率的区别.④正确.答案:④5.如果掷一枚质地均匀的硬币,连续5次正面向上,有人认为下次出现反面向上的概率大于12,这种理解正确吗?解:这种理解是不正确的.掷一枚质地均匀的硬币,作为一次试验,其结果是随机的,但通过大量的试验,其结果呈现出一定的规律,即“正面向上”“反面向上”的可能性都是12,连续5次正面向上这种结果是可能的,但对下一次试验来说,仍然是随机的,其出现正面向上和反面向上的可能性还是12,而不会大于12.。